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CHAPTER 1

INTRODUCTION

One of the important topics in psychological measurement is how to
make a specified psychological behavior or process measurable, and in this
context the latent trait model [Lord & Novick, 1968] may be a most useful
mathematical model. For a relatively simple psychological process its phys-
iological counterpart may easily be clarified, but in most cases this is not
true, at the present stage of development. Thus the psychological scaling
is usually the device for measuring a hypothetical construct or latent trait,
rather than for clarifying the relationship between psychological and phys-
iological behaviors.

The latent trait model has been developed both as a mental test theory
and as a social psychological measurement, in which we mainly consider
one psychological dimension, and deal with a Bernoulli trial for an item
response. The use of item characteristic function was initiated by Ferguson
[Ferguson, 1942], and has been elaborated by Lawley [Lawley, 1943], Tucker
[Tucker, 1946], Lord and others [Lord, 1952; Lord & Novick, 1968] in the
mental test theory. Birnbaum [Birnbaum, 1968] effectively utilized the
logistic model of the dichotomous item as a substitute for the normal ogive
model to answer many problems in test construction and the scoring of
responses. In social psychology, Lazarsfeld [Lazarsfeld, 1959], developed
the latent structure analysis, using the trace line which is fundamentally
equivalent to the item characteristic function in the mental test theory.
Recently Samejima [Samejima, 1969] suggested a more generalized model,
in which graded item responses are treated as well as dichotomous item
responses, and the response pattern of graded scores is used in estimation
of the latent trait.

The main objective of the present paper is: 1) to propose a general
model for free-response data collected for measuring a specified unidimen-
sional psychological process, by expanding the latent trait model further
to include the case in which an item is not scored; 2) to systematize situations
which vary with respeet to the scoring level of items; 3) to find out general
conditions for the operating characteristic of an item response category to
provide a unique maximum likelihood estimator. Under this model the
psvchological construct can be a perceptual sensitivity, potentiality for
learning mazes, a personality trait, a mental ability, an attitude, etc., which
distributes almost in all fields of psychology.

1.1 Free-Response Data

Since this is a general model for free-response data, it may be worth
questioning what free-response data in psychological studies are. By free-
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response data we usually mean a set of data collected by using the free-
response format of questioning, to which the subject should find his answer
out of all conceivable responses. As distinct from this, a multiple-choice
item presents a certain limited number of prearranged choices or alternatives,
from which the subject should choose one.

Thus in usual cases the definition is made in terms of the format of
questioning, rather than in terms of the content or quality of data. It is
easily seen, however, that in many cases the whole space of possible answers
to an item consists of a relatively small number of elements, even if they
are not explicitly suggested as choices or alternatives. To give a simple and
extreme example, suppose the subject is asked to answer whether he has
perceived a light spot on the screen in a dark room, after each presentation
or non-presentation of the light. In this example, the whole space consists
of only two elements, “have seen” and “have not seen”, even if the format
of questioning used is that of the free-response situation. In other words,
it will give little effect on the result if we change the format of questioning
into that of the multiple-choice situation, so that the subject should be
asked to check one of the two alternatives given. An important implication
is, however, that the probability with which the subject answers correctly
by guessing can be large, when the whole space consists of a small number
of possible answers, even if a question is asked with the free-response format
of questioning.

In contrast to this, suppose that the whole space is an infinite set of
possible answers. Thus it is impossible to make a multiple-choice item out
of it, unless we take a finite subset of possible answers as our alternatives.
In such a case, the quality of the item is inevitably changed by the use of
the multiple-choice format.

The above brief discussion suggests that for scientific analysis of data
we should strictly distinguish the free-response content from the free-response
format, and also the multiple-choice content from the multiple-choice format.
We must define our free-response data with respect to their contents, rather than
with respect to their formats of questioning with which they were collected.
The possibility of obtaining free-response data with the multiple-choice
format is discussed elsewhere [Samejima, 1968; in preparation [b]].

Thus in this paper we deal with any data with valid contents, regardless
of the format of questioning adopted. In so doing some degree of tolerance
may be considered so that categorized data are also included, if the way of
categorization is appropriate enough not to invite too much noise. This,
categorization can be made afterwards, as well as beforehand.

1.2 Basic Concepts and Assumptions

In this paper, we shall call a specified psychological construct the frait,
or the latent trait, whether it is customarily called the trait or not. Let 8



FUMIKO SAMEJIMA 3

denote the trait. The trait can operationally be defined in terms of a set
of n items, to which specific psychological behaviors are elicited.
The first general assumption throughout this paper is the following.

(1) The latent trait is uni-dimensional, i.e., the n items have only one
psychological dimension in common. To be more precise, using the
additive model, each item variable is considered as a linear combination
of one common factor and a unique factor.

Let g, h, or j denote an item, and &, , k, , or k; be a specific item response,
or a behavior elicited by the item. In actual situations these responses to a
specified item may be more or less categorized. Especially in the free-response
situation each item may elicit a great many different responses, and it is
neither possible nor meaningful to treat them separately. Thus we usually
analyze data by categorizing them more or less in terms of their identities.
In the example given in Section 1.1, for instance, the subject’s free answers
are classified into two categories, “have seen a light spot’’, and ‘“have not
seen a light spot”. We shall call such a category the item response category,
or the response category, and use it in preference to “item response’”, and
for simplicity let k, , ks , or k; denote the item response category also. Thus
these symbols represent an appropriately defined event class of the whole
space of all possible answers to a specified item each. The set of all the re-
sponse categories to a specified item can either be finite or enumerable,
and the categories should be disjoint and exhaustive in the whole space.

We shall call this general situation the nominal response level or simply
the nominal level. If all the response categories to an item can be arranged
in a rank order so that they provide score categories, we shall call this special
case the graded response level, or simply the graded level. In this case, if the
- lowest category is specified, we shall assign non-negative integers, 0 through
m, , reversely to the categories arranged in the rank order, which will be
called item scores. Any categorical judgment data in a well designed psy-
chological experiment or survey can be regarded as a good example of the
graded level situation, in which m, is a finite number. If m, = 1 in the graded
level situation, it will be called the dichotomous response level, or simply the
dichotomous level. The situation is common in mental measurement, in which
each item is scored either correct or incorrect. Also the example in Section 1.1
is another typical example of the dichotomous level situation.

When we have n items for measuring the trait, we obtain a sequence
of n responses as the results of the subject’s performance. By the response
pattern we mean a sequence of specified item response categories given by
the subject or respondent to a set of n items. Let V denote the response
pattern, which is given by a vector such that

(1-2-1) V=(}C1,IC2,"',IC,,"',IC,.)
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on the nominal level, and
(1"2’2) V=(x17x2)"'7xa)"')xn)
on the graded level. Then our second general assumption is the following.

(2) The principle of local independence [Lord & Novick, 1968, pages
360-362] or conditional independence, holds, 7.e., for a fixed value of
the trait the distributions of the item response categories are independent
of one another.

We shall call the probability of a specified event, which is defined for
a fixed value of the trait, the operating characteristic. Let P, (6), P, (6),
and Py(6) denote the operating characteristics of item response categories
k, and z, , and of response pattern V respectively. Since the operating char-
acteristic is defined for a fixed value of the trait, it is a function of 8. Thus
the general assumption (2) can be expressed by the formula

(1-2-3) Py(o) = II P.(®)
g€V

on the nominal level, and

(1-2-4) Py(o) = TI P.(0)

on the graded level.
* The third general assumption is:

(3) The operating characteristic of an item response category is three-
times differentiable with respect to 6.

The basic function A,,(0) {Samejima, 1969, page 24] is defined by

(1-2-5) 40,(0) = 5= log P, (0

d
= 25 Pr(0)/Ps(6)

for a specified item response category k, , with the two limits

Ci,.o = lim A4,,(6)
(1-2-6) "t
C*c.a = hn_l Akq(a)!
86

where § and 8 are the lower and upper bounds of the range of 4. On the
graded response level, the subscript k, is replaced by z, in the above three
formulas.

Finally, our fourth general assumption is the following.

(4) The upper and lower bounds of the trait are positive and negative
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infinities, 7.e., we have
(1-2-7) —o < § < »,

Since in some cases we can reasonably assume that one, or both, of
the upper and lower bounds of the trait is finite, this fourth assumption
may not appear reasonable. Such a situation can be regarded, however, as
the case in which either the range of 4 is truncated, or the variable is trans-
formed into another, one being strictly increasing in the other. To give an
example for the latter case, let 6 be transformed into 7 by

(1-2-8) T =c/(1 + ce™)
where ¢, and ¢, are positive constants. In this example, we have
(1-2-9) 0<r<eg

for the range of 7. When ¢, = 1, the trait takes only positive values less
than unity. In any case, we have for the maximum likelihood estimator 7y

(1-2-10) v = 1(6v)

if the maximum likelihood estimator , exists, by virtue of the transformation-
free character of the maximum likelihood estimator [Samejima, 1969, pages

6-7].



CHAPTER 2

SYNDROME RESPONSE PATTERNS

As was observed in Chapter 1, the operating characteristic is the sole
function which relates the item response category, k, , with the trait, 6, in
the present model. In order to estimate the subject’s position on the trait
dimension from his response pattern on 7 items, its operating characteristic
takes an important role either in the maximum likelihood estimation or in
Bayesian estimations [Samejima, 1969, Chapters 2 & 7]. When the distri-
bution of the trait is unknown, maximum likelihood estimation will be the
most reasonable method. In order for the operating characteristic of a re-
sponse pattern to provide a unique maximum, however, the operating
characteristic should be a uni-modal function of 6, or a strictly monotone
function of 6 if we permit a terminal maximum. Thus, in short, it should
have a relatively simple relationship with the trait.

For reasons discussed by Samejima [Samejima, 1969, pages 9 & 10],
conditions which provide such an operating characteristic of the response
pattern should be considered with respect to a single item, rather than with
respect to a specified set of n items. A sufficient condition proposed by
Samejima is the joint satisfaction of Conditions (i) and (ii)* such that

(2-1) Condition (i): % 4,0 <0

where an equality should hold at most at an enumerable points of 8, 7.e.,
the basic function should be strictly decreasing in 6, and

Cri,s >0

(2-2) Condition (ii)*: { ,
Ck,.b' S 0

where one at least is a strict inequality.

By virtue of the general assumption (4) given in Section 1.2, Condition (i)
automatically involves Condition (ii)* under the present assumptions. To
prove this, it is easily seen from (1-2-5) and (2-1) that P, (8) should be
either a uni-modal function of # or a strictly monotone function of 8. If it
is uni-modal, strict inequalities should hold in both formulas of (2-2) in
order for Condition (i) to be true. If it is a monotone function, one of the
formulas of (2-2) should equal zero, since P,,(6) is a bounded function of 8,
and it follows that a strict inequality should hold in the other, in order for
Condition (i) to be true. Thus Condition (i) automatically includes Condition
(ii)* under the present general assumptions.

7
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Suppose that a response pattern consists of item response categories,
for each of which Condition (i) is true. We shall call such a response pattern
a syndrome response pattern, in the sense that it necessarily provides a unique
local maximum or a terminal maximum, and, therefore, can be a good indi-
cator of the subject’s position on the trait dimension. When n = 1, ..,
there is only one item, a response pattern consists of a single item response
category. If it is a syndrome response pattern, this single response category
satisfies Condition (i). To generalize the term, we shall call any item response
category which satisfies Condition (i) under the present general assumptions
a syndrome response category.

It is obvious from the definition of the syndrome response pattern that
it has additive properties [Cramér, 1946, page 10]. Let the whole space S
be the set of a finite or enumerable syndrome response categories, each of
which is provided by a different item. Let D denote a class, the syndrome
response pattern. From this we have:

1) The whole space 8 belongs to the class D.

2) If every set of the sequence S, , S, , - -- belongs to D, both unions
and intersections of these sets also belong to D.

3) If 8, and S, belong to D, and S, is a subset of S, , then the difference,
S; — 8., belongs to D.

Thus the syndrome response pattern, D, is an additive class.

From the definition of the syndrome response category, we can see that
its operating characteristic takes either one of the following three types.

Type (i): A monotone increasing function of 8 with zero and a positive
value less than or equal to unity as its lower and upper
asymptotes respectively, and whose first derivative should
be positive for all 6, i.e., it should not equal zero at any
point of 6.

Type (ii): A monotone decreasing function of 6 with a positive value
less than -or equal to unity as its upper asymptote and zero
as its lower asymptote, and whose first derivative should
be negative for all 8, i.e., it should not equal zero at any
point of 6.

Type (iii): A uni-modal function of 6 with zero as its two lower as-
ymptotes, and whose first derivative should be positive up
to the modal point and should be negative afterwards.

These three types of operating characteristic are simple and meaningful,
in the sense that they can be direct indicators of the subjects’ positions
on the trait continuum. If, for instance, P;,(0) is constant throughout the
whole range of 8, the relationship between the response category and the
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trait is simple enough, but not meaningful, since it does not provide any
information about the subject’s position on the trait dimension. If P;,(6)
has more than one modal point, we must say their relationship is by no
means simple.

We must note, however, that the satisfaction of one of these three
statements is a necessary condition that k, should be a syndrome response
category, but not a sufficient condition. We can easily conceive, for example,
of a bi-modal operating characteristic of response pattern as the product
of two operating characteristics of item response categories of Type (iii),
which are not syndrome response categories and whose modal points are
substantially far from each other. Thus the resultant operating characteristic
of the response pattern cannot be a syndrome to the subject’s position on
the trait continuum, though each operating characteristic of the item re-
sponse category is a symptom of the subject’s position by itself. In a reversed
way, two or more complicated operating characteristics of item response
category can provide a symptom operating characteristic of the response
pattern. Figure 2-1 illustrates with an example of such a case, in which two
bi-modal operating characteristics of item response category (dotted and
dashed lines) provide a uni-modal operating characteristic of response
pattern (solid line) according to the principle of local independence.

The syndrome response pattern and category must be considered
distinctly from the cases illustrated above, and will be our main concerns

10 W

054

00

Figure 2-1

An example, in which two bi-modal operating characteristics of item response
category (dotted and dashed.lines) provide a uni-modal operating characteristic of
response pattern (solid line) according to the principle of local independence.
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in the subsequent chapters, when conditions which provide a unique maximum
are discussed on different levels. We must keep in mind that, by virtue of
the transformation-free character of the maximum likelihood estimator,
a' unique maximum condition assures us its existence with respect to 6, as
well as with respect to any variable which is a continuous and one-to-one

mapping of 6.



CHAPTER 3

THE NOMINAL RESPONSE LEVEL

As was introduced in Section 1.2, the nominal response level is the most
general situation, of which both the graded response level and the dichotomous
response level are subsets. Distinct from the usual latent trait theory where
discussion is solely directed towards dichotomous items, the item response
category is the focus of our attention throughout the rest of this paper,
rather than the item itself as the smallest unit.

3.1 Assumptions and Formulas

All the discussion on the nominal response level starts with the as-
sumption that the factors affecting the respondent’s attitude towards a
specified response category k, can be classified into two distinct tendencies,
“being attracted by k,” and ¢its rejection’”’. In other words, our assumption
is: if the subject chose a specified response category k, as his answer, it
means that he was attracted by that category, and its rejection did not
occur to him; if, on the other hand, the subject did not choose k, , it means
either he was not attracted by that category, or he was, but eventually
rejected it.

Let R;,(6) denote the probability, with which the subject of trait
is attracted by the response category k, , and U,,(f) be the conditional
probability with which he rejects the category, given that he has already
been attracted by k, . These two probabilities are defined for a fixed value
of 8, and, therefore, are functions of 8. On the assumption made in the pre-
ceding paragraph, the fundamental formula for the operating characteristic
of the item response category on the nominal level is given by

(3-1-1) Po,(6) = Ri(0)[1 — Un(8)].

Thus P,,(6) can be a function of various types depending upon the functional
formulas of R;,(6) and U,,(6), with the constraint

(3-1-2) 2P0 = 1.

In an extreme case where R,,(8) = 0 for all the values of 8, t.e., the
probability with which the subject is attracted by k, is zero regardless of
his position on the trait dimension, the operating characteristic of k, is zero
for the entire range of 6. We can conceive of all sorts of dummy answers
‘to an item as examples of such a situation. In another extreme case where
U,,(6) = 1 for all the values of 8, P, (6) is also zero throughout the whole

11
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range of 6, since the category is rejected with probability one regardless
of the value of R,,(6). If U,,(6) = 0 for all 6, the conditional probability
of rejection of k, is zero, and the operating characteristic is totally determined
by E,,(6). The correct answer to a power test item may be a good example
of this situation. Similarly, if R.,(6) = 1 for all 8, the operating characteristic
is totally determined by the second factor of (3-1-1), ie., [1 — U,,(0)]. If
R, (6) = 1 and U,,(6) = O for all 8, P,,(8) = 1 throughout the entire range
of 6, which is of little use in reality.

The second assumption on the nominal response level is that both
R.,(6) and U,,(0) are three-times differentiable with respect to 6 throughout
the whole range of 6. It is easily seen from (3-1-1) that this assumption is
consistent with the general assumption (3) given in Section 1.2.

The basic function of the item response category k, on the nominal
level is obtained from (1-2-5) and (3-1-1) such that

(3-1-3) A, (0) = aio log R, (6) + _éa_a log [1 — U,,(0)]

J d
36 BarO/Be(0) = 35 UL0/11 = V. 0)].

One characteristic of the nominal response level is that the functional
formulas for R,,(6) and U,,(8) for a specified response category k, can be
independent from each other, and also they can be independent from those
of other response categories to the same item g, with the sole constraint
(3-1-2). Thus two or more non-scored response categories can be compared
with one another on the-trait continuum solely in terms of their operating
characteristics a posteriori.

3.2 Sufficient Condition for k, to be a Syndrome Response Category

A sufficient, though not necessary, condition that &, should be a syndrome
response category is the joint satisfaction of:

az
9 logRu,(9) <0
(3-2-1) g

57 g L — U (@] < 0

for the whole range of 6, where an equality holds at most at an enumerable
number of points of 6, as is easily seen from (2-1) and (3-1-3).

The fact that (3-2-1) is not a necessary condition can be observed
through an example. If R,,(6) is a strictly increasing function of 6 with some
positive value as its lower asymptote, it does not satisfy the first inequality
of (3-2-1) for a certain range of 8. And yet it can provide a syndrome response
category if it is combined with an adequate U,,(6).
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It is worth noting, however, that, as far as R,,(6) and U,,(0) satisfy
(3-2-1), their functional formulas can be defined independently from each
other, in order to make k, a syndrome response category. We can conceive,
moreover, of families of formulas expanded from R;,(6) and U,,(8) such that

{R::;(e) = Ry (az0 + Br)
£(0) = Ui (b + Bo)

where ap and ay are positive constants and 8 and By are real constants,
any pair of members of which provides a syndrome response category for
k, , provided that (3-2-1) is true.

(3-2-1) can be expanded to permit one of the formulas to be equal to
zero for some intervals of 8, with the constraint that R,,(6) = 0 or U,,(6) # 1.
When either one of R,,(6) and U,,(6) is constant for all 9, the satisfaction
of the compensating formula of (3-2-1) is the necessary and sufficient con-
dition that %, should be a syndrome response category. It is easily seen that
an equality holds in one of the formula of (3-2-1) for the entire range of
if, and only if, B,,(6) or U,,(6) is constant, since both are bounded functions.

A useful fact is that a set of R,,(0) and U,,(8) which satisfies (3-2-1)
in its original form can be provided by W (6), any three-times differentiable
and strictly increasing function of ¢ with zero and unity as its lower and
upper asymptotes, which satisfies

2
(3-2-3) a"—o log [5‘% we) | <o,
where a striet inequality holds for all 8 except, at most, for an enumerable
number of points of 6. (3-2-3) implies that the first derivative of W(8) should
not equal zero at any point of 6. In this case, R,,(6) or [I — U,,(68)] can be
given by either one of:

(3-2-2)

CW(0),

Cl1 — W),
and
C*W(O)[1 — W.(0)],
where W, and W, are possibly different functional formulas satisfying (3-2-3)
each, C is an arbitrary positive constant less than or equal to unity, and C*
is an arbitrary positive constant with the constraint that it should not make

the third term greater than unity for any 6. For we obtain from (3-2-3)
that

650 % log W(6) <0
3-2-4 ,

57 log [L = W) < 0
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where a strict inequality holds. for all 8 except, at most, for an enumerable
number of points of ¢ each, and the left hand sides of these two formulas
are also the second derivatives of log R,,(6) or log {1 — U,,(8)] when the
first and second terms given above are used, and so is the sum total of the
left hand sides of them when the third term is used, if we use W, in the first
formula and W, in the second of (3-2-4). The proof that (3-2-4) can be
obtained from (3-2-3) is given in Appendix in a more general form, in which z
is used instead of 8, and f is used in place of W, and the restriction that W(6)
should have zero and unity as its asymptotes is excluded.

In general, if we group two or more syndrome response categories
together, the resulting category is not always a syndrome response category.
Since it is likely to happen in practical situations that we should group
many categories of minor significance into one category named ‘“others’”,
this can be a fatal defect in estimation of the trait on the nominal level.
In the homogeneous case of the graded response level, however, we shall
obtain a syndrome response category if we combine two or more adjacent
score categories together, which will be observed in Chapter 5.

If all the response categories to item g are syndrome response categories,
~ we can distinguish the following three situations, which hereafter will be
called Situations A, B and C. :

Situation A: There are one response category whose operating char-
acteristic is of Type (i), t.e., strictly increasing in 6, and
another whose operating characteristic is of Type (i),
i.e., strictly decreasing in 6. In addition to them, there
possibly are one or more categories the operating char-
acteristics of which are of Type (iii), Z.e., uni-modal.

Situation B: There are more than one response category whose operating
characteristic is of Type (i) (or of Type (ii)), and at least
one response category whose operating characteristic is
of Type (ii) (or of Type (i)). In addition to them, there
possibly are one or more categories the operating char-
acteristics of which are of Type (iii).

Situation C: There are an enumerable number of categories whose
operating characteristics are of Type (iii), but no categories
the operating characteristics of which are of Type (i),
or no categories the opearting characteristics of which
are of Type (ii), or neither of them.

We can easily see that Situation C can be true only if the set of all
the response categories to item ¢ is enumerable whereas the other two can
be true whether it is finite or enumerable. Discussions will mainly be focused
on Situations A and B in following sections, since in practical situations
the set is usually finite.
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3.3 Plausibility Curve as a Typical Example of the Nominal Level Situation

As an example of a characteristically nominal situation, we shall consider
a non-scored category in ability measurement. Suppose a certain response
category to item g of a power test is an incorrect, but plausible, answer. We
may reasonably assume that, if the examinee’s ability is very low, it is likely
that he does not even relate that category with the item at all, whereas he
does if his ability is sufficiently high. Thus in such a case R,,(f) can be con-
sidered as being a strictly increasing function of 6, if the response category
k, has some direct significance to the ability measured. The conditional
probability with which the response category is rejected because of its in-
correctness is also a function of ability, and again this probability, U,,(6),
can be considered as being a strictly increasing function of ¢ for such a
response category.

There can be varieties of such false answers if examinees have responded
to the item freely, without being forced to choose one of prearranged al-
ternatives. It is conceivable that some of the incorrect answers may require
high levels of ability while some others may not, some may be related strongly
to the ability measured whereas some others may not, and so forth.

An objective measure of the plausibility of a specified false answer
is its operating characteristic. We shall call any operating characteristic
of a false answer, whose Ry, (6) and U,,(8) satisfy these conditions given in
a previous paragraph, the plausibility curve in metal measurement, provided
that it is a syndrome response category. As the conditions suggest, a plausi-
bility curve is necessarily of Type (iii), 7.e., uni-modal, defined in Chapter 2.
A schematized hypothesis for the plausibility curve will be the following.
An examinee may be attracted by a specified wrong, but plausible, answer
to item ¢, but may fail in detecting its irrationality; the probability with
which this happens is a function of ability, and it increases as ability in-
creases, reaches maximum at a certain level of ability, and then decreases
afterwards. The modal point of a plausibility curve can be a measure of the
ability level which is required for an examinee to stay with the plausibility
of the false answer. If an item provides such response categories, their plausi-
bility curves will be powerful sources of information in estimating examinees’
abilities. In other words, we can make use of specific wrong answers to an
item as sources of information, as well as the correct answer. It is conceivable
that two or more distinct false answers may have exactly the same modal
points, or, moreover, exactly the same plausibility curves. In such a case,
it is hard to order these categories, and yet each non-scored category can
be an information source by itself.

For the purpose of illustration, Figure 3-3-1 presents an example of the
plausibility curve, whose R, (8) and U, (6) satisfy (3-2-1) with strict in-
equalities, and are given by
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( 09 r°
R, = Ry
S i O = e
Ui(0) =1 — [1 —e™[1 + &7

It is indicated by the formulas that the upper asymptote of R, (6) is 0.9,
and the lower asymptote of U,,(6) is exp (—1.7), i.e., approximately 0.183.
The two dashed curves in Figure 3-3-1 are R,,(8) and [1 — U,,(6)] respec-
tively, the dotted curve is U,,(6), and the solid curve is the plausibility
curve, P,,(8). In this example W(6) for generating R,,(0) is

| S AN
——\/2—f e dt
T Y —@
and the one for generating U,,(8) is
[1 + e—1.7(0—0.5)]—l.
It is easily seen that both satisfy (3-2-3).

8.4 Multi-Correct and Multi-Incorrect Responses

Non-ordered multi-correct or multi-incorrect responses have been
discussed with regard to bio-assay rather than psychology. It is a situation
in which there exist more than one response category which has a strictly

S e —

08 / \

Ficure 3-3-1

An example of the plausibility curve, whose Ri,(6) and Us,(8) are given by (3-3—15.
These formulas satisfy (3-2-1) together with strict inequalities so that the resulting
response category is a syndrome response category.
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increasing operating characteristic, or more than one whose operating char-
acteristic is strictly decreasing in 6. Thus it corresponds to Situation B,
if all the response categories to item g are syndrome response categories.

In the case where there exist more than one syndrome response category
of Type (i), i.e., strictly increasing, the sum total of the upper asymptotes
of their operating characteristics should not exceed unity, because of the
constraint (3-1-2). When all the response categories to item ¢ are syndrome
response categories, this sum total should equal unity. A typical example
may be the case where U,,(6) is constant for all 8 and R, (6) is strictly in-
creasing in 6 and satisfies the first formula of (3-2-1) for each syndrome
response category of Type (i), under the constraint (3-1-2). In such a case
we have
(3-41) 2 lim B, 0][1 — U (0] < 1,

kg* 0 -
where Y :,» means the summation over all the categories of Type (i), and
an equality holds when all the response categories to item g are syndrome
response categories.

As was mentioned in Section 3.2, (3-2-1) is a sufficient condition for k,
to be a syndrome response category, but not a necessary condition, as far
as we consider a particular pair of R,,(8) and U, (6). For illustrative purposes,
we shall see an example, in which, (3-2-1) is not satisfied, and yet a syndrome
response category is provided. Let B,,(6) and U,,(6) be such that

— _ _ ~oy—1
(3-4-9) {Rk,,(o) =@ —c)1 —c +e
U (8 = e,(1 + e )"
where ¢, and ¢, are constants, satisfying

(3-4-3) 0<e¢ <e¢ < 1.

)

It can be proved that both R,,(6) and U,,(6) are strictly increasing in 8,
with zero as their lower asymptotes-and (c. — ¢,)(1 — ¢,)" and ¢, as their
respective upper asymptotes. Thus it is obvious that [I — U,,(8)] does not
provide any one of the three types of functions given in Chapter 2, whereas
R,,(8) is of Type (i) and also satisfies the first formula of (3-2-1). Substituting
(3-4-2) into (3-1-1) we obtain the operating characteristic of k, such that

(3-4-4) P (0) = (c2 — )1 + 3—0)"‘,

which proves that k, is a syndrome response category of Type (i).

Similar discussion can be made for the case in which there exist more
than one syndrome response category of Type (ii), i.e., strictly decreasing.
Situation B is not so likely to happen in typically nominal situations, how-
ever. It is more likely to happen in the heterogeneous case of the graded
response level, which will be discussed in the following chapter.



CHAPTER 4

THE GRADED RESPONSE LEVEL (1)—
THE HETEROGENEOUS CASE

On the graded response level, an item score is assigned to each item
response category, in accordance with specified psychological criteria. This
set of item score categories can either be enumerable or finite. Discussions
will mainly be focused on the finite case, however, in this chapter and also
in Chapter 5, since in practice we encounter mostly with the filnite case
Thus in Sections, 4.1 through 4.5, it is assumed that the set of al the score.
categories to item g¢ is finite, whereas the enumerable case is discussed in
Section 4.6.

4.1 Fundamental Concepts and Assumptions Particular to the Graded Response
Level

As was introduced in Section 1.2, let z, denote the item score or graded
response category, as distinct from the nominal response eategory k, , and,
for convenience, let z, be integers, 0 through m, , which express the relative
positions of the categories in their ordered sequence.

Since the graded response level is a subset or special case of the nominal
level, fundamental discussions made in the preceding chapter are also valid
in the present situation. The fundamental formula for the operating char-
acteristic of the score category is given by replacing z, for &, in (3-1-1) such
that

(4-1-1) P(6) = R..(0)[1 — U, (6)].

where I,,(6) is the probability with.which the subject of trait 6 is attracted
by the score category z, , and U_,(8) is the conditional probability that the
rejection oceurs to him, given that he has been attracted by »z, .

We shall assume on the graded level that a subject, who is attracted
by the score category =z, , automatically rejects the category (z, — 1), by
which he has been attracted. Thus if x, is greater than 1, such a subject
has a sequence of “being attracted by” and “‘the rejection of”’ previous
categories. Although this assumption is rather schematic than descriptive
in the sense that it does not necessarily indicate the temporal relationship
of the subject’s psychological reality, it may be acceptable in general.

Let 1.,(6) denote the conditional probability with which the subject
of trait 9, who has already been attracted by the category (xz, — 1), is further
attracted by z, . Following this logic, we can write

19
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(41-2) R.(0) = ] M.(9)
and
(4'1'3) Ux,(o) = M(z,-ﬂ)(o)'

Using the symbol P#*(0) instead of R,,(6) and substituting (4-1-2) and
(4-1-3) into (4-1-1), we obtain

(4-1-4) P60 = I M0l — M,.,(0)]

= P(6) — Pt,.0(6),

which gives the fundamental formula for the operating characteristic of
the score category in the graded level situation. Thus M ,(6) for the s'8,
0 through (z, + 1), is the sole determinant of the operating characteristic,
P, (6), and P, (8) is dependent upon the operating characteristics of pre-
ceding score categories.

Our second assumption on the graded level is that M., (6) is either strictly
increasing in 8 or constant for all 6. In particular, we assume that

{Mo(e) =1
M(,,,,“)(O) = 0’

and otherwise M., (6) is greater than zero and less than unity for all 8, when
it is constant. Since in general n items are selected in such a way that each
of them has some direct and positive significance to the trait measured,
this assumption may be acceptable. Implications of (4-1-5) are obvious,
considering the fact that there are neither lower categories than 0 nor higher
categories than m, . From (4-1-5) and the definition of P} (§) we have

P¥) =1
(4-1-6) P¥6) = M.(9).
| - Pr.0) =0

We can conceive of a special case in which we have

(4-1-5)

4-1-7) Px(6) = M,(6 — \.,)
for the z,’s, 1 through m, , where
(4:-1-8) 0=)\1<k2< L <)‘m,< @,

It is obvious from (4-1-7) that in this case P¥* (6) for the z,’s, 1 through m, ,
are identical, except for the positions on the trait continuum. We shall call
this special situation the homogeneous case of the graded response level.
Some characteristics of this case have been discussed by Samejima [Samejima,
1969, Chapter 4] and further observation will be made in Chapter 5.
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As distinct from the homogeneous case, all the other cases will be cate-
gorized and called the heterogeneous case, or the term will be used for the
general case of the graded response level, by which the homogeneous case
is included as well. In the following sections of this chapter emphasis will
be put upon the heterogeneous case as a special situation rather than the
general situation of the graded response level.

Our third assumption on the graded level is that M., (6) is three-times
differentiable with respect to 6. By virtue of (4-1-4) it follows that P¥ (),
and hence P,,(0), are also three-times differentiable, which is consistent with
the general assumption (3) in Section 1.2.

4.2 Sufficient Condition for the Score Categories to be Syndrome Response
Categories '

Since the operating characteristics of (m, + 1) score categories are not
independent from one another, here we shall consider conditions with which
all the (m, + 1) response categories to a specified item g are syndrome
response categories, rather than those with respect to a single score
category z, .

The direct translation of (3-2-1) for the nominal level situation, which
was discussed in the preceding chapter, gives

2
> s log M.(0) < 0

2

a3
555 log [1 — M(,,H)(O)] < (_)

(4-2-1)

where a strict inequality holds for all @ except, at most, for an enumerable
number of points of 6, for the graded level situation as a sufficient, though
not necessary, condition that the score category z, should be a syndrome
response category. Then its expanded form, which was discussed in Section
3.2, implies that an equality may hold for all @ in one of the formulas of
(4-2-1) and a strict inequality should hold for all 8 except, at most, for an
an enumerable number of points of 6 in the other. For category 0 this means

2

(4-2-2) 8%;2 log [1 — M,(6)] < 0.

where a strict inequality holds for all 8 except, at most, for an enumerable
number of points, since by (4-1-5) it is obvious that the first formula of
(4-2-1) has an equality for all 6. (4-2-2) is also a necessary condition as well
as a sufficient condition, since we have from (4-1-4) and (4-1-6)

(4-2-3) Po(6) = 1 — M,(6),
and hence (4-2-2) is equivalent to (2-1), which gives the definition of the
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syndrome response category. This also implies that-M,(#) should have unity
as its upper asymptote. Given (4-2-2), the first formula of (4-2-1) means
for the score category 1

2

d
(4-2-4) 3¢ log Mi(6) < 0,

where a strict inequality should hold for all 6 except, at most, for an enu-
merable number of points. (4-2-4) implies that the lower asymptote of M ,(6)
should be zero, since M,(6) is a bounded function. Now it is interesting to
note that in order for (4-2-1) to be true in its expanded form for the categories,
1 through m, , M,,(6) can be constant for all the other z,’s, 2 through m, .
In that case, an example of Situation B is provided, where the operating
characteristic of category 0 is of Type (ii), 7.e., strictly decreasing in 6, and
those for the categories, 1 through m, , are of Type (i), i.e., strictly increasing
in 6. This is also a typical example of multi-correct responses discussed
in Section 3.4. In order for (4-2-1) to provide Situation A, however, which
has only one operating characteristic of Type (i), only one of Type (ii),
and (m, — 1) of Type (iii), .e., uni-modal, M., (f) should not be constant
for any of these categories. In that case, it should be strictly increasing in
with unity as its asymptote for the z,’s, 2 through m, , whereas its lower
asymptote does not necessarily have to be zero. A typical example of such
a case will be given in Section 5.2 of the next chapter, when the logistic
model of the homogeneous case is discussed. ‘

The fact that (4-2-1) is not a necessary condition for z, to be a syndrome
score category, even in its expanded form, can easily be seen from the fact
that it does not provide two or more score categories whose operating char-
acteristics are of Type (iii) although this is permitted in Situation B. In
that case, M,(6) should have some positive value as its lower asymptote,
which is not provided by (4-2-1).

In any case, under the present assumption, category O can only be a
syndrome response category of Type (ii). On the other hand, since we have
from (4-1-4) and the second formula of (4-1-5)

(4-2-5) P, (0 = I M.

for category m, , it can only be a syndrome response category of Type (i).
More diversity is allowed for the categories, 1 through (m, — 1), which
will be observed in more detail in the following section.

Suppose that the formulas for A,,(8) for the categories, 1 through m, ,
are independent from one another. Suppose, further, we consider a family
of formulas expanded from each M.,(6) in such a way that

(4'_2_6) M:‘g(a) = sz(azno + 629)

where a,, is a positive constant and B, is a real constant. It is easily seen
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that the necessary and sufficient condition that any combination of members
of these families should provide a set of (m, + 1) syndrome score categories
in Situation A, and, moreover, in so doing A ¥ () can be used interchangeably
among categories, is the satisfaction of:

2
E"_ log M,(6) < 0
(4-2-7)

9°
l-agi IOg [1 - Mz:z(o)] S_O

for each and every M, (6), where a strict inequality should hold for all @
except, at most, for an enumerable number of points in each formula. Such
a M, (0) is given by W(8) itself, which was introduced in the preceding
chapter, Z.e., any three-times-differentiable and strictly increasing function
of 6 with zero and unity as its lower and upper asymptotes, which satisfies

2

3 3
(3-2-9) o log [b—a W(o)] <o,

where an equality holds, at most, at an enumerable number of points. It
should be reminded that the first derivative of W(6) should not equal zero
at any point of 8 in order to satisfy (3-2-3).

4.3 Orderliness and Reclassification of Syndrome Score Categories

Suppose we have an item g the score categories of which are syndrome
response categories. Do the operating characteristics of these score categories
reflect the rank order in some way or another? In fact, the answer is negative
in many examples, though positive in others, and this is one of the char-
acteristics of the heterogeneous case as distinet from the homogeneous case.

As a measure of orderliness of the score categories of a single item, we
could take the modal points of their operating characteristics. As was men-
tioned in Section 3.2, in Situation B there are more than one score category
whose operating characteristic is of Type (i), i.e., strictly increasing, or more
than one whose operating characteristic is of Type (ii), 4.e., strictly decreasing,
or both. This fact suggests there are two or more score categories which
uniformly have negative or positive terminal maxima, and among them
there is no order, even though their scores are ordered. In fact, Situation B
includes the case in which none of the operating characteristics of the score
categories are of Type (iii), Z.e., uni-modal, but all of them are of Types
(i) or (ii), even though m, is a large number. It is easily seen that, in order
to have more than one syndrome response category of Type (ii), the lower
asymptote of M ,(6) should be greater than zero, which evidently does not
satisfy the first formula of (4-2-1), as was observed earlier. Thus categories
0 and 1 should necessarily be of Type (ii) in this case. If M,(6) is also strictly
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increasing in 6 with the lower asymptote greater than zero, it possibly provides
a syndrome response category of Type (ii) for category 2. In this way, we
can conceive of at most m, categories of Type (ii) having negative infinity
as their common terminal maximum, with the sole exception of the highest
score category, m, , being of Type (i). Similarly, we can think of a case in
which there are m, score categories of Type (i) having positive infinity
as their common terminal maximum, with the exception of category 0 which
has negative infinity as its terminal maximum. Besides, we can even con-
ceive of a case where categories of lower scores have positive infinity as their
terminal maxima whereas those of higher scores have some local maxima,
and also a case where categories of higher scores have negative infinity as
their terminal maxima while those of lower scores have local maxima, al-
though categories 0 and m, always have negative and positive terminal
maxima respectively and no two categories can be possessed of positive
and negative infinities as their terminal maxima in the reversed order of
their scores.

These examples indicate the disorderliness of the modal points of the
operating characteristics of score categories, which suggests that in the
heterogeneous case we must strictly distinguish the order of the modal
points from the rank order of scores attached to the response categories.

In Situation A where categories 0 and m, are sole categories which have
negative and positive infinities as their terminal maxima respectively, we
could expect more orderliness than in Situation B. Extending the observa-
tion made on Situation B, however, we can see that, in the general case,
the complete orderliness is not reached in Situation A either. To explain
this, suppose [[.<., M.(6) is a strictly increasing function of 6 with zero
and unity as its lower and upper asymptotes. Then we can conceive of
M.,.1,(8) which provides a syndrome response category for x, and yet as
close to a constant as we wish. In such a case, the modal point of category
z, can be as high as we wish, to exceed the local maximum of the next category,
(z, + 1), if an appropriate M .,.2 () is given.

For the purpose of illustration, we shall consider an example, in which

J Px(6) = ®(—0.4,1)
(4-3-1) P%(6) = (0.0, 1)

1M3(0) = ¢(—1.2,0.01)
where ® indicates the normal ogive function, and the two numbers in the
brackets indicate its mean and variance respectively. These functions provide
syndrome response categories for both z, = 1 and z, = 2, as we shall see
in Sections 5.2 and 5.4. Figure 4-3-1 presents P%(0), P%(8), and P%(6) by

dashed line, and M.(8) and M,(6) by solid line. We can see that approximately
859, of the upper part of P%(8) almost overlaps that of P%(6). Figure 4-3-2
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P3(8), P3(6) and P3(6) (dashed line) and M(6) and M4(0) (solid line) of example 1,
in which Pj(8), P3(8) and M;(8) are given by (4-3-1). Also M.,(8) of the new category
resulted by combining the categories 1 and 2 is presented (dotted line).

presents P,(0), i.e., the operating characteristic of category 1, by dotted
line, and P,(6), i.e., that of category 2, by dashed line. We can see in this
figure that not only the local maximum for category 1 is far greater than the
local maximum for category 2, but the relative positions of these two curves
seem to be in the reversed order of the scores. This rather peculiar result
comes from the fact that M,(8) has a very steep curve compared with M,(6),
as we can see in Figure 4-3-1. In other words, passing through the boundary
between categories 1 and 2 does not require a psychological process which is
closely related to the trait, while passing through the boundary between

FiGUrRe 4-3-2

Py(6) (dotted line) and Pi(8) (dashed line), z.e.,, the operating characteristics of
categories 1 and 2, of example 1. Also the operating characteristic of the new category
resulted by combining the categories 1 and 2 is presented (solid line).
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categories 2 and 3 has a very high discriminating power around § = —1.2,
and, as a result, P,(8) has a sharper curve than P,(6).

It is easily seen that a sufficient, though not necessary, condition that
the complete orderliness of modal points for the syndrome score categories
should be reached in the order of the category scores is the satisfaction of

(4-3-2) , A,-0(0) < A,,(8)

for all @ for the z,’s, 1 through m, , where A,,(6) is the basic function of
category z, . From (4-1-4) and (1-2-5), the definition of the basic function,
we can rewrite (4-3-2) into the form

ad 0
an M,,(B) 5—5 M(z,+1)(9)
> — .
M0 — M. (0)] " 1 — M¢,..,(6)
This leads to the fact that if we have

(4-3-3)

(4-3-4) ai’é log [1 — M, (6)] < a ~log [1— My (8)]

for the z,’s, 1 through m, , the resulting operating characteristics provide
strictly ordered modal points for (m, 4+ 1) syndrome score categories.

For the purpose of illustration, we shall consider another example,
in which (4-3-4) is satisfied. Let m, = 4, and M., (6) is given by

(4-3-5) M. (0) = 1 — exp {—e" "}

for the z,’s, 1 through 4, where b,, = 0.0, 0.5, 1.0, 1.5 respectively. Since
we have from (4—3—5)

(4-3-6) 602 log [80 M,,(O)] e’ < 0

and it is obvious that the lower and upper asymptotes of M, (8) are zero
and unity respectively, (4-3-5) provides Situation A, as was seen in Section
4.2, Further, we obtain

@-3-7) gélog [1— M. ()] = —e®

which leads to the satisfaction of (4-3-4) with a striet inequality. Thus all
the score categories of this example are syndrome response categories and,
moreover, the complete orderliness of their modal points is reached. Figure
4-3-3 presents the five operating characteristics of this example by solid
line, P* (6) for the z,’s, 1 through 3, by dashed line, and M,,(6) for the z,’s,
2 through 4, by dotted line. Note that P%(8) = P.(8), and M ,(6) = P%(6).

Now we shall proceed to discuss the reclassification of syndrome response
categories. If we combine two adjacent syndrome response categories, the
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Firaure 4-3-3

P, (6) for the categories, 0 through 4, <.e., the operating characteristics of these
categories (solid line), P;.,( 0) for the categories, 1 through 3, (dashed line), and MM (8) for
the categories, 2 through 4, (dotted line), of example 2, in which M. (6) is given by (4-3-5)
where 0., = 0.0, 0.5, 1.0, 1.5 for the z,’s, 1 through 4 respectively.

resulting new category is not always a syndrome response category. Figure
4-3-2 also presents the operating characteristic of the new category, t.e.,
the combination of categories 1 and 2, by solid line, which shows a conspicuous
bi-modality. This new category is obviously not a syndrome response eategory,
though A, (8) for the new category, which is the product of M,(6) and
M ,(9), 1s a strictly increasing function of ¢ with zero and unity as its lower
and upper asymptotes, as is shown by dotted line in Figure 4-3-1. This is a
typical example of the case in which reclassification of syndrome response
categories does not produce a syndrome response category, although even
in the heterogeneous case it can provide a new syndrome score category
depending upon the functional formula of the resulting M. (6).

Thus we have seen in this section that in the heterogeneous case the
scores assigned to syndrome response categories do not necessarily reflect
the order of their modal points or maximum likelihood estimates, and also
a new category obtained by combining two adjacent syndrome response
categories is not always a syndrome response category. If we consider Situation
B in addition to Situation A, these observations become more impressive.
This fact might lead us to question whether the heterogzneous case has a
psychological significance. For this reason, we shall consider a general psy-
chological process which can be explained by the heterogeneous case of the
graded response level.
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Suppose a specified psychological process can be categorized into a
finite number of steps. Let z, denote a step or graded category, and assume
that, in order to proceed to the step z, , the subject must have passed all
the preceding steps. Thus each boundary between steps is a discriminating
process, in which M, (6) takes an important role. If M., (0) is steep, it is
highly discriminating, and if it is even, its discrimination power is low,
and the resulting likelihood function, 7.e., operating characteristic, is affected,
as we have seen in Figures 4-3-1 and 4-3-2. In an extreme case where a dis-
criminating process has no correlation with the trait, 4.e., M.,(6) is constant
for all 6, or where its slope is very little, category z, possibly has a terminal
maximum at positive infinity, even if it is one of the middle categories.

At any rate, in measuring a psychological trait, it may not be desirable
to use an item involving a little discriminating process. In this sense, the
orderliness of the modal points for syndrome score categories can be a measure
of adequacy of the item, although their kurtosis may be important as well.

4.4 Bock’s Multinomial Response Model as an Example of the Heterogeneous
Case

A multinomial model has been suggested by Bock by generalizing the
logistic response law and using the multivariate logits [Bock, 1966]. In this
model, the operating characteristic of category &k under the experimental
condition j is given by

(a-4-1) Py =,

where z;; 1s a multivariate logit, and m (>2) is the number of response
categories.

If we apply this model for the uni-variate situation and change the
notation into the present one, we can rewrite (4-4-1) into the form

ak, 048k,

€

Z eaz9+ﬂ.

(4-4-2) | P.(0) =

where o’s are positive constants and §8’s are real constants. Although ocriginally
this was presented as a nominal model by Bock, in the present system,
it is a typical example of the heterogeneous case of the graded response
level.

Suppose that these response categories are scored in accordance with
the magnitude of @. Thus we have

(4'4‘3) QOSC‘ISO&S"'S“N-
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Let M.,(6) be such that

6a,+,

(4-4-4) M. () = =

mg

Z ea.0+ﬂ.

s=zgo—1

for the z,’s, 1 through m, . Differentiating (4-4-4) with respect to 8, we have

mz e(a.+a(,,_n)8(a. _ a(z’_l))eﬁ.«vﬂ(;,—n

a5 Lm0 === :
aa [ i a.6+ﬂ.]
. €

which equals zero if, and only if, the «,’s for categories, (z, — 1) through
m, , take the same value, and is greater than zero if, and only if, at least,
one of them is different from another. This fact indicates that M. (6) is
either strictly increasing in 6 or constant for all 6, which satisfies the funda-
mental assumption made for M,,(6) in Section 4.1. Since we can rewrite
(4-4-4) into the form

(4-4-6) M.(0) = - ,
. 1+ — =
Za e(a.—a(:,—x))aeﬂz-ﬂ(:,—x)
we have
Z &
4-4-7) M. (6) = fnLe o
eﬁ(z,-—-) + Zeﬁ.

when M,,(6) is constant, and

lim M,,(6) > 0
(4-4-8) e
lim M., (0) = 1
f—
when it is strictly increasing in 6.
From (4-1-2) and (4-4-4) we can write

(4-4-9) Px(6) = I M.(9)

8<zg

mg
Z ea.0+ﬂ,

s=zg

Mg
Z ecx.9+ﬂ,

=0

’
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and inserting this into (4-1-4) we obtain

ea.,9+ﬁ,,

(4-410) P.(0) = ———

Z ea.9+ﬂ.

2=0

which is identical with (4-4-2). Thus it has been shown that, defining M, (6)
by (4-4-4), we can specify the Bock model as an example of the heterogeneous
case of the graded response level, although it was originally developed for
the non-ordered case. .

Now the question is whether this model provides syndrome score cate-
gories or not. If the a,’s for all categories, 0 through m, , are the same value,
from (4-4-10) we have

(4-4-11) P.(6) =

eﬂs,

mg ’

3

=0
which indicates that all the operating characteristics are constant for all 6,
and, therefore, none of the categoriss is a syndrome response category.
Let us suppose, then, that, at least, one of the «,’s has a different value
from another. Differentiating (4-4-10) with respect to 6, we have

P 2 (o, — e
(4-4-12) 20 P, (6) = 2= P..(9)

(4-4-13) AL (0) = —5

Z (a,g . as)ea.0+ﬂ-
P ~ .

Zv ea.0+ﬂ.

8=10

Since we have

(1-4-14) {Z e"'“"'}{i aar, — m)e“'“”'}
s=10 s=0
T e

8=0

mg Mg

— Z Z a,(as . a‘)e(a.+a¢)9eﬂn+ﬂz

=0 t=9
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= i 3= (s — ay)’et e =% 8

=0 t>s
<0,
we obtain
i)
(4-4-15) 3g 4=:(0) <0,

which means that z, is a syndrome response category. Thus we have seen

that the Bock model provides syndrome score categories for all the z,’s

under the restriction that, at least, one of the «,’s is different from another.
Setting (4-4-13) equal to zero, we obtain

Z o, eu.0+ﬂ.
(4-4-16) a;, = T,—‘“_ )

Z ea.0+ﬁ.

3=0
so that the value of 8 satisfying (4-4-16) is the modal point for category z, .
Since the right hand side of (4-4-16) is the weighted sum of the «,’s and
thus strictly increasing in 6, we can see that, if, and only if, all the «,’s take
different values from one another, 7.e., if, and only if, strict inequalities
hold in (4-4-3), a perfect orderliness is reached, with terminal maxima at
negative and positive infinities for z, = 0 and z, = m, respectively, and
unique local maxima otherwise. In other words, in such a case, a perfect
orderliness is realized in Situation A, with one operating characteristic of
type (i), another of type (ii), and all the other (m, — 1) of type (iii), satisfying

lim P, () = 1; for z,=0

(4-4-17) fome
lim P,,(8) = 0; otherwise
- -

and

lim P, (6) = 1; for z,=m,
(4-4-18) b

lim P,,(6) = 0; otherwise

-0

The formula (4-4-16) also suggests that, if there are more than one

category which share the least value of a, , the operating characteristics
of these categories are uniformly of type (ii), 7.e., strictly decreasing in 6,
and, similarly, if there are more than one category which share the greatest
value of a, , the operating characteristics of all these categories are of type (i),
i.e., strictly increasing in 6. In other words, if one of them, or both, takes



32 PSYCHOMETRIKA MONOGRAPH SUPPLEMENT

place, Situation B is provided. Since we can rewrite (4-4-10) into the form

(4-4-19) P, (6) =— 1 ,
Z’: ol OpBe=be,
=0

in the former case we have for the upper asymptotes of these strictly de-
creasing operating characteristics

. 1
4-4-20 lim P, ,(0) = —F— ,
( ) 0_1’1_1: .(6) 3

where ) ,. means the summation over all the categories sharing the common
least value of @, , and in the latter case we have for the upper asymptotes
of these strictly increasing ones

. 1
(4-4-21) }1!:1 P.(6) = G

where .. indicates the summation over all the categories sharing the
common greatest value of a, .

We can also see from (4-4-16) that, if more than one category share
a common value of «, which is neither least nor greatest, they also share
a common local maximum. If these categories also share a common value
of B., , their operating characteristics are identical uni-modal functions of 6,
as is obvious from (4-4-10). The same is true in earlier two cases, in which
identical strictly monotone decreasing and increasing functions are shared
respectively. In the second case, M .,.1,(6) is constant for all @ with respect
to these categories, as is cbvious from (4-4-6).

Thus we have seen that Bock’s multinomial response model can be
regarded as a typical example of the heterogeneous case of the graded response
model, which may provide either Situation A or Situation B, although
originally it was presented as a model for the non-ordered case.

4.5 Necessary and Sufficient Condition that M. (8) should be Strictly Increasing

in 0

So far discussions have been made on the assumption that M, (6) is
either constant or strictly increasing in 6, for all 6. In practical situations,
however, it is also likely to happen that a set of P¥ (6) is given for the cate-
gories, 1 through m, , and a question is whether for these categories M., (6)
is a strictly increasing function of 8 or not. In this section, therefore, we shall
see the necessary and sufficient condition that M.,(6) should be strictly
increasing in 6, given a set of P (6).

We can write from (4-1-2) that
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(4-51) M.(6) = P3(6)/P,-1(6)
for the z,’s, 1 through m, . Differentiating this with respect to 6, we have

\ o0 5 PLO) — PAO) & PLou(0)
(4—5_2) 6—0 an(e) = —_— P(z —l)(e) —_

which should be positive, or equal to zero at most at an enumerable number
of points, in order for M, () to be strictly increasing in 6. Since the denom-
inator of (4-5-2) is positive for all 8, the above statement should be realized
in its numerator.

It is easily seen that this is true, if, and only if, we have

(4-5-3) 2 log Pt 1,(6) < = log PA(0)

for the z,’s, 1 through m, , throughout the whole range of 8, where an equality
holds at most at an enumerable number of points. For we can write

@54) 2 log PA(6) — - log Ph,-(0)

)
be(8) 2 PAO) — PAO) £ PL, 1 (0)
P;kg(e)P(zp—l)(e)

which has a positive denominator for any value of 6, and whose numerator is
exactly the same as that of (4-5-2). Thus a question whether M, (8) for a
specified category is strictly increasing in # or not is completely detectable
if P¥(6) and P¥,_,,(8) are given. This is true in the heterogeneous case as
well as in the homogeneous case.

4.6 Enumerable Set of Syndrome Score Categories

In previous four sections of the graded response level, we have assumed
that the set of item scores or graded response categories is. finite, 0 through
m,(< »). We can conceive of the situation, however, in which it is enumer-
able, although at this moment the author is not certain about its practical
importance. In this section, we shall add some discussion about the enumer-
able set of graded item response categories.

The fundamental formula for the operating characteristic, (4-1-4), is
also valid in the enumerable case. If the first or last category, or both, exists,
either one of the formulas (4-1-5), or both, is also reasonably assumed, and
hence we obtain the first two formulas or the last one of (4-1-6), or both,
although m, is not an adequate notation in these formulas. The homogeneous
case is also defined by (4-1-7), by replacing M, by P* | where r is an arbitrary
category neither first nor last, and defining \,, in such a way that
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>0; for eategories less than r
(4-6-1) A, 1 =0; for category r
1 <0; for categories greater than r,

by keeping their relative magnitudes suggested by (4-1-8).

Suppose that all the score categories to item g are syndrome response
categories in the enumerable situation. In the homogeneous case, it is obvious
from the discussions made in previous sections that either Situation A or
Situation C oceurs. In other words, there are four possible situations, each
including an enumerable number of uni-modal operating characteristics and
the following in addition.

(1)  One strictly decreasing operating characteristic, and one strictly
increasing operating characteristic.

(2)  One strictly decreasing operating characteristic.

(3) One strictly increasing operating characteristic.

(4) None.

Since the orderliness of the modal points for the homogeneous case, which
will be discussed in Section 5.3, is also valid for the enumerable situation, in
these four cases the modal points of the infinite number of categories are
arranged strictly in the order of scores assigned to the categories, including
one terminal maximum at negative infinity in (2), one terminal maximum
at positive infinity in (3), and both in (1).

In the heterogeneous case, the orderliness of the modal points of syndrome
response categories is not necessarily reached, as was observed in the finite
situation. We can even conceive of examples, in which there exist an infinite
number of non-ordered syndrome response categories. To give one, suppose
that the first formula of (4-2-1) is satisfied for category », which contains an
infinite number of M. (6) whose item scores are no greater than r, and P*(6)
is strictly increasing in 6 with zero and unity as its lower and upper asymp-
totes. Suppose, further, that

(4-6-2) M.(0) =% for z,=r4+1,r+2,r4+3, -

Thus (4-2-1) is fulfilled in its expanded form for all the categories greater than
or equal to 7, and all of them are syndrome response categories, with operating
characteristics of type (i), z.e., strictly increasing, having upper asymptotes
given by

(4-6-3) lim P, (6) = 277",

60—

There are an infinite number of such categories, and each of them has a
terminal maximum at positive infinity. In a more extreme example, there
may be an infinite number of categories, each of which has a terminal maxi-
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mum at negative infinity, and an infinite number of categories which have a
terminal maximum at positive infinity each, in addition to an infinite number
of categories, which have a uni-modal operating characteristic each and
whose modal points are not necessarily arranged in the order of scores attached
to them.



CHAPTER 5
THE GRADED RESPONSE LEVEL (2)—THE HOMOGENEOUS CASE

/
Fundamental concepts and assumptions were given in Chapters 1 and 2,
and those particular to the graded response level were given in Chapter 4,
and discussions will be based on these concepts and assumptions in this
chapter.
As we have seen in Section 4.1, the homogeneous case is characterized
by the formula

(4-1-7) P%(6) = M,(6 — \.,)
for the z,’s, 1 through m, , where
(4-1-8) 0=\ <A< vovmen < Ay < .

An additional assumption particular to the homogeneous case is that
M,(6) is strictly increasing in 0. Since P, (0) equals zero for all 6 for the
categories, 1 through (m, — 1), if M,(8) is constant, as is obvious from (4-1-4)
and (4-1-7), this assumption may reasonably be acceptable. From this
assumption and (4-1-7) Pk (6) is also strictly increasing in ¢ for the z,’s,
1 through m, .

5.1 Asymptotic Basic Function

It has been demonstrated by Samejima [Samejima, 1969, pages 31-33],
that in the homogeneous case of the graded response level the asymptotic
formula of the basic function, 4.,(68), when A, .1, tends to A, is given by

- ; =& ps /i s
(5-1-1) mA.0) = 55 PO [ 55 PLO)

for the z,’s, 1 through (m, — 1), provided that

[

-1- 9 px
(5-1-2) 35 £5(©) >0

for all 6. In fact, if the first derivative of P¥ (6) equals zero at a certain point
of 6, then it takes a local minimum, which means that the second derivative
of P*(§) is also zero at that point, and consequently the right hand side
of (5-1-1) is 0/0. We can easily see from (4-1-7) that (5-1-2) is equivalent to

(5-1-3) % M.(6) > 0.

The right hand side of (5-1-1) can also be defined for z, = m, , and
hereafter we shall call this term defined for each z, , 1 through m, , the

37



38 PSYCHOMETRIKA MONOGRAPH SUPPLEMENT

asymptotic basic function of category z, , and denote it by 4,,(8). Thus we
can write from (4-1-7)

(5-1-4) AVXV(O) = 55: P* (0)/60 PE(8

- —~; S M8 — N, / Mi(6 — Ny,

provided that 31,(6) satisﬁes (5-1-3). Thus, in order for the m, score categories
to have their asymptotic basic functions, not only M,(8) should be strictly
increasing in 6 but also its first derivative should not equal zero at any
point of 8. Although the homogeneous case is defined without this restriction,
the asymptotic basic function is defined only for the case where (5-1-2),
or (5-1-3), is true.

The sign of the asymptotic basic function is determined by the sign of
the second derivative of M,(8 — 1A.,), by virtue of (5-1-3). Since M,(6) is a
bounded function and three-times differentiable, its second derivative
necessarily has both positive and negative values for certain intervals of 6
respectively, and takes zero at least at one point of 6, and so does the asymp-
totic basic function.

It is easily seen from (5-1-4) that the asymptotic basic function has an
identical curve for the categories, 1 through m, , except for the positions on
the trait continuum. This leads to the fact that all of them have the same
limits when 6 tends to negative and positive infinities respectively. It is worth
noting that the two limits of the asymptotic basic function coincide with the
limits of the basic functions for the categories, 1 through (m, — 1). To prove
this, by Cauchy’s mean value theorem we can write

(5-1-5) A, () = — = Ai()
5 M,(6) -
for any category, 1 through (m, — 1), where ¢ is some value of 8 which
satisfies
(5-1-6) 8 — )\(1,4—1) < ( < 0 — )\Za .

It is easily seen that { tends to negative infinity as 6 tends to negative infinity,
and to positive infinity as 8 tends to positive infinity. Thus we obtain

lim 4,(6) = lim A,(6) = --- = lim A4,.(9)
fo—c - §——co
(5-1-7) ) =Cup=Cup= = Coens
lim 2{,(0) = lim A,(0) = -+ = lim /T,,,”(G)
f—co f-—co -0
=Ci=0C5= "= Clmonri
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where C., ¢ and C,, ; are the limits of the basic function 4,,(6) when 6 tends
to negative and positive infinities respectively. If we have

lim M6 — \,) =1
(5-1-8) hagmoe
lim M, (6 —X\,) =0

Az

y

the first and second formulas of (5-1-7) include C,,, s and C, ; respectively.
The proof is easily obtained by expanding (5-1-5). In order that (5-1-8)
should be true, it is necessary and sufficient that the lower and upper asymp-
totes of M,(6) should be zero and unity respectively. In any case, both
Cy.e and C,, ;5 are zero.

For the purpose of illustration, suppose three formulas, the normal
ogive function, the logistic function, and the square-logistic function, are
given as P¥ (6), such that

(5_1_9) P;ka(o) = @(b,, y l/ai)
1 ag(0—bg,) s
- \/2__'/. e dt,
n
(5-1-10) Px(0) = [1 4 ¢ P07t
and
(5-1-11) Pi(6) = [1 + 7],

where a, (>0) is an item parameter, b, is a parameter assigned to the score
category z, , and D(>0) is a scaling factor. Then the asymptotic basic
functions are given by

(5-1-12) A.,00) = —a(6 - b.,),

Dag[]. _ eDa,,(G—bz,)]

(5‘1‘13) g:,(g) —ﬁ. + Dag(6-bz,)
and

Dag(0-bsz,)
(5-1-14) Z,6 = Bul2=c ]

l-l-e Tt

respectively. Thus we can easily see that the asymptotic basic function
derived from the normal ogive function is a straight line with positive and
negative infinities as its asymptotic values, whereas the other two asymptotic
functions are curves with finite values, Da, and — Da, , and 2Da, and —Da, ,
as their asymptotic values respectively. It also is easily seen from these
formulas that the asymptotic basic functions derived from the normal ogive
and logistic functions have (b,, , 0) as their centers of symmetry, whereas
the asymptotic basic function derived from the square-logistic function has
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ormol ogive

Kxg(8)

togistic -

-5 G 5

Ficure 5-1-1

Three examples of the asymptotic basic function given by (5-1-12), (5-1-13) and
(5-1-14) respectively. P ,(6) for these examples are the normal ogive functlon, the logistic
function, and the square loglsmc function, which are given by (5-1-9), (5-1-10) and (5 1-11)
respectively, with parameter values, ¢ = 1, b;, = 0, and D = 1.7,

(b., , Da,/2) as its center of symmetry. Figure 3-1-1 presents these three
. asymptotic basic functions with the parameter values, a, = 1 and b,, = 0,
and the value of the scaling factor, D = 1.7. It is worthy to note that the
two curves derived from the normal ogive and logistic functions are remark-
ably different, in spite of the fact that I¥ (6) for these models are so much
alike when D = 1.7 {Birnbaum, 1968]. As another example, we shall consider
the case in which P} (6) is given by

(5-1-15) PE(9) = 1 — exp {—c,e™ ™"},

where a,(>0) and ¢,(>0) are item parameters, and b,, is a parameter assigned
to the score category z, . In this example, the asymptotic basic function is
given by

(5'1-16) ]{“(0) = a,[1 — ¢,

which provides a strictly decreasing and asymmetric curve, with a, and
negative infinity as its upper and lower asymptotes, taking a,(1 ~ ¢,) when
6 =b,.

8.2 Sufficient Condition for the Score Categories to be Syndrome Response
Categories

In the homogenedus case of graded response level, it is obvious that
Situation B (cf. Section 3.2) cannot occur, and Situation A is the sole pos-
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sibility for all the (m, + 1) score categories to item g to be syndrome response
categories, when m, is finite. Thus in this situation M,(#) has zero and unity
as its lower and upper asymptotes.

One characteristic of the homogeneous case is that all the (m, + 1)
score categories to item g are syndrome response categories, if M, (6), and
hence P#* (6) for the categories, 1 through m, , with these asymptotes satisfies
(5-1-3) and the asymptotic basic function, A,,(6), which was defined in the
preceding section, is strictly decreasing in 6, or

(5-2-1) 5‘95 4., <o,

where an equality holds at most at an enumerable number of points. The proof
will be obtained by replacing 6 for x and P¥ for f in Appendix. Thus if
(5-2-1) is true, the basic function A4, () is strictly decreasing in 8, i.e., it
satisfies (2-1). It is easily seen that, if (5-2-1) holds for any one category,
1 through m, , it also holds for all the other (m, — 1) categories, because of
the identity of their asymptotic basic functions except for their positions on
the trait continuum. In fact, we can conceive of infinitely many combinations
of m, P¥ (6)’s ,with a constraint (4-1-8).

Actually (2-1) implies (5-1-3), for, if /30 M,(6) = 0 at 8 = 6, , we also
have A4,(6) = 0at 6 = 6,, and, on the other hand, C, s = 0, as was mentioned
in the preceding section. As a result, 4,(6) cannot be strictly decreasing in 6.
Similar discussion can also be made for eategory m, . Thus (2-1) implies
(5-1-3), and Situation A cannot be reached unless the asymptotic basic function
exsts.

It is worth noting that (5-2-1) implies that the first derivative of M ,(6),
and hence of P¥ (6) for the categories, 1 through m, , should be uni-modal,
and, moreover, its second derivative should not equal zero except at the
modal point. For since 8/90 P (6) is positive and approaches zero as 6 tends
to negative and positive infinities respectively, it should have at least one
modal point, and at that point 8°/36° P¥ (6) equals zero; and if 8°/86” P* (6)
equals zero at more than one point of 6, 4,,(6) also equals zero at these points
of 6, and, therefore, A,,(6) cannot be strictly decreasing in 4.

Thus we have seen that the condition which makes all the score categories
of a specified item syndrome response categories is much simplified in the
homogeneous case. For the purpose of illustration, we shall consider the two
examples, in which P¥ (6) is given by (3-1-9) and (5-1-10) in the preceding
section, 7.e., the normal ogive and logistic funetions. It has been demonstrated
by Samejima [Samejima, 1969, Chapter 5] that in these two cases Situation A
is provided, by directly proving the satisfaction of (2-1) in each case. It is
also possible, however, to prove this through the satisfaction of (5-2-1) as
follows. Since the asymptotic basic functions are given by (5-1-12) and (5-1-13)
respectively, we obtain
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(5-2-2) 567, A0 = —a; <0
and

9 - —ap? jna,w—b,l)
(5-2-3) 20 A.(0) = [1 + ePrt—ve) <90,

which are satisfactions of (5-2-1). The proof is simpler in these two examples
if we use (5-2-1), instead of (2-1).

We shall further proceed in these two examples to find out what kinds
of functions for M, (6) these two models have. Since M,(6) equals P*%(6),
our interest is in the categories, 2 through m, . In the normal ogive model,
we can write from (4-5-1) and (5-1-9)

ag(f-bz,) ;
—(t2/2)
f eV dt
—o

ag(6~b(ey—1))
—(t2/2)
f e P qy
—»

ag(0-b(z,—1)) (t3/2)
—(t3/2
f e dt
a

1 — 2 (0—~bey)

ag(f=b(eyg—1)) ’
~(t3/2
f e dy
~»

Since the second term of the rightest hand side of (5-2-4) tends to zero as @
tends to positive infinity, the upper asymptote of M, (6) is unity, which is
consistent with the necessary condition for Situation A. The first derivatives
of the numerator and denominator of the second rightest hand side of (5-2-4)
are given by

(5-2-4) M. (6) =

i}

(5-2-5) {ag exp {—aj(6 — b,,)"/2}

a, €Xp {_a3(0 - b(z,—l))z/Q}
respectively, so that by L’Hospital’s Rule we obtain
(5-2-6) lim M,,(6) = exp {—a;(b, — bls,-1))/2}

f-—c

-[lim exp {a3(b., — be,-1))0}]

G~
= 0.

Thus, together with the observation made in Section 4.5, it has been made
clear that in the normal ogive model M., () is a strictly increasing function
of 6 with zero and unity as its lower and upper asymptotes for the categories,
2 through m, , as well as for category 1. The upper graph of Figure 5-2-1
illustrates with P} (6) by solid line and M ,(6) by dashed line with an exception
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of M,(6), for the case where m, = 6, a, = 1, and b,, = —5.5, —5.0, —4.0,
—2.0, 1.0, 5.0 respectively in the normal ogive model. Note that M,(8) = P%(6).
We can see in this figure that for the two categories, 5 and 6, M. () practi-
cally coincides with P¥ (8), which indicates that the normal ogive model
M., (6) practically equals P¥ (6) if the distance between b..,-1, and b,, is more
than 3.0 by the standard deviation unit.

In the logistic model, we can write from (4-5-1) and (5-1-10) that

(5_2_7) Mz,(O) — [l + e-Dua(G—bs,)]—l[l + e—Dua(G—bu,—x))]
—_ 1 _— [1 — e—Dap(bz,—b(:,—;))][l + eDa,(O—b,,)]—-l.
Thus the lower and upper asymptotes are given by

: , lim M,,(6) = exp {—Da,(b,, — beu,_,)]}
(5-2-8) oo
lim M, (6) = 1

6~

’

which indicates that in the logistic model the lower asymptote of M., (8) is
greater than zero, except for category 1. This value is a strictly decreasing

Normol ogive modal

o5

00

+0 4 Logistic model

P8)

0-51 Ma(8)

©-0

e 7 € g 4 3 R [} ) 3 q 3 6 7 8 R
Ficore 5-2-1
The normal ogive model (the upper graph) and the logistic model (the lower graph)
of the graded item response, where m, = 6, and @, = 1, b,, = —5.5, —5.0, —4.0, —2.0,

1.0, 5.0, and D = 1.7 respectively. In both graphs, P (6) for the categories, 1 through 6,
(solid line), and M, 4(6) for the categories, 2 through 6, (dashed line) are presented.
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function of the distance, [b,, — b(,-1,], Which tends to unity as the distance
tends to zero, and tends to zero as it tends to positive infinity.

We have already seen in Section 4.2 that, in order to obtain Situation A,
the lower asymptote of M ,,(6) does not have to be zero, except for category 1.
Thus the logistic model in the homogeneous case is a typical example of
such a situation. The lower graph of Figure 5-2-1 presents P¥ (6) and M., (6)
in the logistic model by solid and dashed lines respectively. In this example,
the parameter values are the same as those used in the previous example of
the normal ogive model, and D = 1.7, which makes P* (6) very close to the
one in the normal ogive model with the same parameter values [Birnbaum,
1968, page 399]. The values of the lower asymptote of M,,(8) are approxi-
mately 0.427, 0.182, 0.033, 0.006 and 0.001 for the categories, 2 through 6,
respectively.

It is interesting to note that, in spite of the close similarity of P¥ (6)
between the two examples, M, (6) is remarkably different in the two models.
Similarities can be found only for categories 5 and 6, for which M,,(6) is
practically equal to P¥ () in the logistic model also. In both models 3., ()
tends to unity for all § as the distance between b,, and b,,-;, tends to zero.

A possible explanation of M., (6) in the logistic model may be that the
closer the psychological distance between two score categories the more
likely for the subject to be attracted by the higher of the two, if he has already
been attracted by the lower one. Since the model is of interest, we shall
further inquire into the components of the basic function in this model.
Since the lower asymptote of M, (8) is greater than zero for the categories,
2 through m, , the first derivative of log M, (6) cannot be strictly decreasing
in 8, though altogether they satisfy the first formula of (4-2-1) for syndrome
response categories. Then what kind of function does M, (6) provide for
these categories? Since, in general, we have

o 9 _9 — 9 oo p*
(5-2-9) 30 108 M=,(6) = 35 log P6) — 55 log P¥.,-1,(0),
we can write from (5-1-10) for the logistic model
(5-2-10) 2 log M.,(0) = DayPt, () — PL()].

Thus the first derivative of log M.,(6) turns out to be a unimodal and sym-
metric function of 6, with the modal point, 8,,, , such that

(5-2-11) Omax = 310z, + biao-n],

and its maximum value is given by

Da,[l — VGl + VG,

where (., is the lower asymptote of M., () given by (5-2-8). From the defini-
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tion of (., it is easily seen that this maximum value is a strictly increasing
function of the distance, [b., — b(.,-1,], with zero and Da, as its two limits.
It is also obvious from (5-2-10) that the two lower asymptotes of the first
derivative of log M,,(6) are zero. On the other hand, since we have from
(5-2-7)

(G212 M) = Dal - GIPLON — PO,

we can write from this and (5-2-7)

a
(5-2-13) 35108 (1 — M.,1,(8)] = —Da,PE.,.1)(6)

d
= 55 log []. - Pa(kz.ﬂ)(a)]

for the second formula of (4-2-1). Thus it is obvious that this component of
the basic function is strictly decreasing in 6 with zero and — Da, as its upper
and lower asymptotes. As for the first derivative of log M,(8), since M,(6)
equals P%(6), it is a strictly decreasing function of ¢ with Da, and zero as
its upper and lower asymptotes [Samejima, 1969, pages 34-35]. Figure 5-2-2
illustrates with a basic function and its components in the logistic model,
where m, is greater than 4, z, = 4, D = 1.7. a, = 1.0, and b, = —2.5,
—2.0, 0.0, 1.0, 3.0 for the categories, 1 through 5, respectively. The curve
drawn by dashed line is the basic function, .., the sum total of its five
components, each of which is drawn by solid line.

We shall observe the two other examples given in the preceding section.
For these examples, P¥ (6) are given by (5-1-11) and (5-1-15) respectively.
From (5-1-14) and (5-1-16) of the asymptotic basic functions of these exam-
ples, we obtain

‘ 3 --3D2 2 ,Dag(8~bey)
(5-2-14) 55 Z,,(G) = lmu-a.(a-b,,)]z 0
and

(5-2-15) 565 A,,(6) = —aj,e” " <0

respectively, which satisfy (5-2-1). Since P* (6) is strictly increasing in 6
with zero and unity as their lower and upper asymptotes in these two models,
we can conclude that these two models also provide Situation A. This con-
clusion has already been reached in the former example through the direct
satisfaction of (2-1) [Samejima, 1969, page 88].

It is easily seen that, if all the (m, + 1) score categories of item g are
syndrome response categories in the homogeneous case, M., (6) is strictly
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Fieure 5-2-2

A basic function (dashed line) and its five components (solid line) of the .logistic
model of the graded item response, where D = 1.7, a; = 1.0, and b;, = —2.5, —2.0, 0.0,
1.0, 3.0 for the categories, 1 through 5. The first four components are the derivatives of
log M ,(6), through log M 4(8), and the last component is the derivative of log {1 — AMs(6)},
and the basic function is 4 4(6).

increasing in @ not only for category 1, but also for the categories, 2 through
m, . To prove this, we have from (4-1-7)

a J
(5-2-16) Y] log PP¥(6) = Y, log M.(6 — X\.,),
where A, satisfies (4-1-8), for the categories, 1 through m, . Since (5-2-16)

equals the basic function when z, = m, , it is strictly decreasing in 6 for all
these categories, 1 through m, . From this fact and (5-2-16) we obtain

_o_ i * _59_ o P*
(5-2-17) 96 108 Plo-1(0) ‘< 29 108 1. (6)
for the categories, 2 through m, , which satisfies (4-5-3), <.e., the necessary

and sufficient condition for M,,(6) to be strictly increasing in 6, which was
discussed in Section 4.5. Thus it has been proved that M., (6) is strictly
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increasing in @ for the categories, 1 through m, , provided that all the (m, + 1)
score categories of item g are syndrome response categories.

5.8 Orderliness and Reclassification of Syndrome Score Categories

As was observed in Section 4.3, in the heterogeneous case the modal
points of syndrome score categories are not always arranged in the order of
category scores, even in Situation A. As distincet from this, in the homo-
geneous case, since the asymptotic basic function always exists in Situation A,
if the asymptotic basic function satisfies (5-2-1), the above statement is
always true, t.e., starting from the terminal maximum at negative infinity
for category 0, (m, — 1) local maxima follow in the order of their category
scores, and finally comes the terminal maximum at positive infinity for
category m, .

The proof can be given from a more general standpoint. Suppose that
P* (0) is fixed for an arbitrary x, , which is greater than 1 and less than m, .
We can write from (1-2-5), (4-1-4) and (4-1-7)

' g2
j;_a é—tg P,’fy(t) dt

(5-3-1) A.,(0) = ——
- Px() di
Y
where
(5‘3“2) ﬂ = )\(z,+1) _ )\:q .

As was observed in the preceding section, if (5-2-1) is true, we can conceive
of infinitely many possible P% ,,,(8) by adjusting the value of A(,,+1) , which
uniformly provide a syndrome response category for z, . Let 8, and 8, be
arbitrary positive values satisfying

(5-3-3) B: > B

Hereafter, we shall denote the basic functions of category z, obtainable by
using B, and B, in (5-3-1) by 4,,(8; 8,) and 4., (8; 8,) respectively. By following
the logic used in Appendix, it is easily seen that

(5-3-4) C A8, 8) > A, (6; B)
throughout the whole range of 6. On the other hand, if we consider category

(x, — 1), we can write
0+ 2
d
— P*
./; at” 2(0) at

(5-3-5) A-1y(0) =

’

0+ ) .
[ 5P a
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where
(5-3-6) Y = Asy = Nggm1) -

In a similar manner, we shall define A ,-1,(6; v,) and A,,-,(8; v,) for an
arbitrary pair of positive numbers satisfying

(5-3-7) Y1 > v

Then, by following the logic used in Appendix again, it is easily seen that
(5-3-8) Ay-1(8;71) < Azpey (6 72)

for all 4. Since we have

(5-3-9) lim 4,,(6) = lim A,_,,(6) = 4.,(9),
B—0 -0

we can write from this and (5-3-4) and (5-3-8)
(6-3-10)  Ae-1(8;7) < Awep-n(0572) < A,,(6)
< A,,(6;8:) < A.(8; 80,
and from this, we obtain, in general
(5-3-11) Aoy (0) < A.,(0) < A,,(0).

In virtue of the fact that the modal point of P, (6) is the value of 8 at which
A.,(6) = 0, generalizing this to include cases where 8 and vy are positive
infinity, the orderliness of the modal points of P,,(f) has been proved com-
pletely. ,

The formulas (5-3-4) and (5-3-8) also have other implications. Suppose
there is a syndrome response pattern of n items. If we pick up one of these
items and change its scoring strategy, then what will be the effect on its
maximum likelihood estimate? Suppose that we pick up item ¢ whose score
category in the response pattern is z, . If we fix P¥ () and change the value
of B to a greater one so that P¥% ., () is shifted to the positive direction on
the trait continuum, the maximum Ulkelihood estimate of the new response
pattern is greater than the original one. On the other hand, if we fix P¥%,,,,,(6)
and shift P¥ (6) to the negative direction on the trait continuum so that a new
syndrome response category is provided for z, , the maximum likelihood
estimate of the resulting response pattern is less than the original one.

Figure 5-3-1 illustrates with three examples of 4.,(6) and A, -1,(6)
each when P*(6) is the standard normal ogive function, where g’s and v’s
are uniformly 2, 4 and 6, by solid line, whereas the asymptotic basic function,
A.,(0), is drawn by dotted line in the same figure. We can see that the effects
of B are conspicuous for the positive values of @ in this example, while those
of v are conspicuous for the negative values of 4.

As for the reclassification of syndrome score categories, it is obvious from
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FiGure 5-3-1

Three examples of A,(8) and A,—1)(8) each (solid line) when P;,( 6) is the standard
normal orgive function, where 8 in (5-3-1) are 2, 4 and 6, and v in (5-3-5) are also 2, 4 and 6
respectively. Also the asymtotic basic function (dotted line) is given.

the observation made in the preceding section that, if the asymptotic basic
function satisfies (5-2-1), any combination of adjacent syndrome score
categories provides a new syndrome score category. Thus in the homogeneous
case, if the asymptotic basic function is strictly decreasing in @ and P¥ (6)
has zero and unity as its lower and upper asymptotes, we can freely rescore
the data by combining two or more adjacent categories, while keeping
Situation A. In such a case, it is obvious from the earlier observation that
the maximum likelihood estimate will be shifted to the negative direction
if the original score category is combined with lower adjacent categories,
and it will be shifted to the positive direction if the original one is combined
with higher adjacent categories.

5.4 Positive-Exponent Family

So far we have observed various characteristics of the homogeneous case,
especially when all the score categories of item g are syndrome response
categories, and consequently Situation A occurs. We shall see in this section
that, given a specified function for P* (8) which provides Situation A, we can
generate a family of P* () all of whose members provide Situation A.

Suppose F'(8) is a three-times differentiable function of 8, which satisfies

d
(5-4-1) 28 F(g) = [(6) > 0
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and ‘
lim F(¢) =
(5-4-2) e
lim F(§) =
g

It is easily seen that this assumption implies

(54 3) F(o) = f " di
and
(5-4-4) ln_n 1(0) = lim f(6) = 0. 0

-Suppose, further, that
a?
(5-4-5) a5 log f(6) < 0,

where an equality holds at most at an enumerable number of points. From
this and (5-4-1) and (5-4-4) we obtain

ﬂljlri % log f(6) > 0

(5-4-6)
. 0
101_12 26 log f(6) < 0
For convenience, using the same symbol as in (4-1-4), we shall define P* (6)
such that

(5-4-7) PA() = [Fla,(0 — b.))]"
= [ oo ar

for

(5-4-8) s> 1,

where a, is a positive constant and b,, is a real constant, and call this family
of P¥ (6) a positive-exponent family. Thus given a F(#) which satisfies (5-4-1),
(5-4-2) and (5-4-5), we can generate a positive-exponent family, which contains
a non-enumerable number of members.

It is easily seen from (5-4-2) and (5-4-7) that

dim PX(6) =0

-

lim P%(0) =

f—c

(5-4-9)
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and

(5-4-10) 2 P3(6) = sa,[F(69)]"”'1(8"
>0,

where

(5-4-11) 6* = a,(8 — b,,),

which indicate that P* (6) defined by (5-4-7) is strictly increasing in 8 with
zero and unity as its lower and upper asymptotes. Since we have from (5-4-10)

1) 0 = a6~ 3 g P + 5 ox 109 | £ P20,

for the asymptotic basic function we obtain

G413 A.(0) = a,[(s — 1) 5oz log F(8%) + 305 log f(0*)]

It is obvious from this and (5-4-5) and (5-4-8), and the observation made in
Section 5.2, that this asymptotic basic function satisfies (5-2-1), i.e., it is
strictly decreasing in 6. As was observed in Section 5.2, this means that any
member of the positive-exponent family defined by (5-4-7) provides a set of
(m, + 1) syndrome score categories, for an arbitrary positive integer m, and
arbitrary values of distances between )., and A, .1, . The operating charac-
teristic of a score category thus obtained is given by

ag(f~bsgy)

(5-4-14) PO =s [ FOI 1) at,

2g(0—=b(sy+1))

and the basic function is, as defined, the ratio of its first derivative to P, (6)
itself. The asymptotic values of the basic function, C., ¢ and C., 7 , are
obtained from (6-1-7), (6-4-6) and (5-4-13) such that

8 = S0 [ log f(o)]
(5-4-15) ams T

Ceps = [llm 55 log f(0)]

2
[

with exceptions
(5-4-16) {C"-i =0
C.=20

It is worth noting that, if [F(6) — 0.5] is an odd function, <.e., if F(0) is
symmetric with (0, 0.5) as its center of symmetry, all the members of its
positive-exponent family are asymmetric except for the case where s = 1.
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Tor in such a case we can write from (5-4-7)

(5-4-17) Px(6) = [1 — Fla,(—6 + b.)}I’
# 1 — [Fla,(—0 + b))}’
=1 — Px(—6 + 2b,,),

unless s = 1. The square logistic function, which was used as an example of
asymmetric curves by Samejima [Samejima, 1969, pages 87-91] and also
used as an example in previous sections, is a typical example of members of
a positive-exponent family, when F(6) is a logistic function. As was pointed
out by Samejima [Samejima, 1969, Chapter 10], there exists a paradox when
we use a symmetric curve for the item characteristic function P,(§) of the
dichotomous case. This comes from the fact that, if we use a symmetric
function as P,(6), the likelihood functions with respect to a pair of symmetric
response patterns are also symmetric. For illustrative purposes, we shall
consider a simple case where three items are scored dichotomously, <.e.,
success or failure, and the item characteristic function of each item is a normal
ogive function given by (5-1-9) in which b,, is replaced by b, , and the param-
eter values are

a, =a, = a3 = 1

(5-4-18) by = -1
b, =0
b3 = 1

The six possible response patterns containing one or two successes will be
denoted by R0 , Rowo , Boor y K110 , Rio1 and Ro:; , where subseripts indicate
item scores arranged in the order of item numbers. Figure 5-4-1 presents the
likelihood functions for these six response patterns, which are the operating
characteristics of the response patterns themselves. We can easily see that
the likelihood functions are symmetric with each other for the three pa rs:
Ry, Riio ; Rowo , Rioy ; and Ry, , Rour ; respectively. This does not oceur if
we use an asymmetric function for the item characteristic function of each
item, and one of the utilities of the positive-exponent family is that it provides
asymmetric formulas.
If we have

62 62
(5-4-19) 35 log f(6) < 3q7 o8 F )

for a specified F(6), where an equality holds at most at an enumerable number
of points, its positive-exponent family can be expanded for the case where

(5-4-20) 0<s<1
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Ly(®)
= Py(6)

Figure 54-1

The likelihood functions for the six response patterns, Rico, Roro, Roos, R110, B101 and
Ry, to the hypothetical three items, based on the normal ogive model of the dichotomous
response. Three curves (dashed line) are symmetric with the other three (solid line). The
two curves with * represent the original values multiplied by 101

For, if (5-4-19) is true, the asymptotic basic function given by (5-4-13) is
strictly decreasing in @ for any s satisfying (5-4-20), since both sides of
(5-4-19) are negative, or equal to zero at most at an enumerable number of
points. In other words, in such a case P*(6) defined by (5-4-7) provides
syndrome score categories for any positive value of s.

For the purpose of illustration, we shall prove that, if the normal ogive
function or the logistic function is used as F(8), its positive-exponent family
can be defined for any positive value of s. Suppose that F(6) is glven by the
standard normal ogive function such that

]
e d.

(5-4-21) F(o) = \/1? )

Then we have

(5-4-22) 1(6) = —x—/lé—_e’“"”’
and

9
(5429 2 1) = —of(o,

and from these two formulas we obtain

(5-4-24) 5‘% log f(6) = —1.
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On the other hand, we can write from (5-4-23)
&’ §i0) [ f(ﬂ)]
- -2 —_
(5-4-25) 30 log F(6) = 0] 6+ F(6)
Now let us consider the truncated standard normal distribution by cutting
off and ignoring the part of its probability density function lying to the right
of 8, and let () and ¢°(6) denote its mean and variance. We can write

[

(5-4-26) u(6) = F%S (1) dt
_ _1®
F(9)’
and
§ _ 1/ _ :
(5-4-27) o*(6) m) £ dt — ()]
2 L " @~ v a+1 - Lor
I () 1(6)
=1- H®[6+FMJ

Since the variance of the truncated standard normal distribution is positive
for all 9, the rightest hand side of (5-4-27) is also positive, and from this
and (5-4-24) and (5-4-25) we obtain (5-4-19) with a strict inequality. Thus
the positive-exponent family can be defined for any positive s, if F(6) is given
by (5-4-21), 7.e., the standard normal ogive function.

Figure 5-4-2 presents twelve members of the positive-exponent family
defined for (6-4-21). In these examples .

s =&, 1, % 3, 1,2 3,4, 5, 6, 10, 20 respectively.
In the case where F(6) is given by a logistic function such that

(5-4-28) F() = 1+ "7,

where D > 0, we have |

(5-4-29) " {(8) = DF(6) [1 — F(6)]

and

(5-4-30) 216) = D1 — 2F(@))(©).

From these formulas we obtain

(5-4-31) 56—;2— log F(6) = —Df(6)
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Ficure 5-4-2

Twelve members of the positive-exponent family, where F(8) is given by (5-4-21),
i.e., the standard normal ogive function, and s = &, 1, 4, 4, 1, 2, 3, 4, 5, 6, 10, 20
respectively.

and
(5-4-32) 2 10g 1(0) = ~2Df(0,

which satisfy (5-4-19) with a strict inequality for all 6. Thus the positive-
exponent family can be defined for any positive s, if F(6) is given by (5-4-28),
i.e., the logistic function.

The discussion of the positive-exponent family is also applicable for W(6)
introduced in Section 3.2. Thus we can generate R,,(6) and U,,(6) on the
nominal response level from any member of the positive-exponent family
of W(6), which will be obtained by substituting W for F in (5-4-7), as well
as M,,(6) in the heterogeneous case of the graded response level, so that
these functions should provide syndrome response categories in their own
respective situations.



CHAPTER 6

THE DICHOTOMOUS RESPONSE LEVEL

The dichotomous response level is a special case of the graded level
situation, in which m, = 1. Thus M,(6), and hence P*(8) by virtue of (4-1-2)
and (4-1-5), is the only function we should consider on this response level.
Let P,(6) denote this function, which is called the item characteristic function
[Lord & Novick, 1968] in the mental test theory, and the trace line [Lazarsfeld,
1959] in the latent structure analysis.

We can rewrite (2-1), which gives the definition of the syndrome score
category, for categories 1 and O respectively, such that

i ‘
552' log P,(6) < 0
(6-1)

?

2 log — P L0

where an equality holds at most at an enumerable number of points of 6 in
each formula. Note that this is the direct translation of (4-2-7), which was
discussed in Section 4.2 of the heterogeneous case of the graded response level.
Thus the lower and upper asymptotes of P,(f) should be zero and unity
respectively, in order for P,(f) to provide syndrome score categories for
categories, 0 and 1.

It is worth noting that the item characteristic function of the multiple-
choice item, which is widely used in mental measurement [Birnbaum, 1968,
pages 404-405] and takes the form

(6-2) Pt(o) =c, + (1 - C,)P,(G),

where P#%(0) is the item characteristic function of the multiple-choice item
and ¢, is a positive constant less than unity, can never satisfy the first formula
of (6-1), since its lower asymptote is greater than 0. It provides a syndrome
score category for category 0, but not for category 1, provided that P,(6)
satisfies (6-1). Detailed discussion concerning this sub]ect is made elsewhere
[Samejima, in preparation [a]].

Since the dichotomous response level can be considered as a special case
of the homogeneous case of the graded level situation, some of the important
results in the homogeneous case are also valid in the dichotomous response
level. If the asymptotic basic function, which is defined for P,(8) with zero
and unity as its lower and upper asymptotes, satisfies (5-2-1), syndrome
response categories are provided for both categories 0 and 1. All the members

57
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of a positive-exponent family can also be P,{(8) which produce syndrome
response categories on the dichotomous level.

One of the Rasch models of the item characteristic function [Rasch, 1960}
is given by

b% |7

(6-3) Prn = |1+ 2
where 7 is the trait in this case, having the domain
6-4) 0<7< .
Transforming the variable 7 into 8 by
(6-5) 6 =1logr

it is easily seen that (6-3) is the transformation of a special case of the logistic
model, in which the diserimination index is assumed to be constant for all
items [Birnbaum, 1968, page 402]. Thus by virtue of the transformation-free
character of the maximum likelihood estimator this Rasch model also provides
syndrome response categories for both categories 0 and 1, since the logistic
model does.



CHAPTER 7

DISCUSSION

Throughout this paper a general model for free-response data was
presented and discussed. First, it was emphasized that free-response data
should be identified in terms of their contents rather than in terms of their
formats. Then basic concepts and assumptions were given and syndrome
response patterns and categories were defined. Three different levels of response
categories, i.e., the nominal response level, the graded response level, and the
dichotomous response level, were specified and discussed separately. The graded
response level was categorized into two cases, heterogeneous and homogeneous,
and characteristics of each were observed. Conditions with which a given
response category, or a set of (m, + 1) score categories, should be a syndrome
response category or categories, were investigated on different response levels.
In so doing two tendencies, being attracted by and the rejection of a given
item response category, were taken into consideration, and fundamental
formulas were established on them.

The graded response level is distinguished from the nominal response
level in the sense that the distribution functions of the item score can be
stochastically ordered. To be more precise, such a distribution function is
given by

1- P?‘z,+l)(0)

for a fixed value of 6, and this is strictly decreasing in 8 for a fixed value of z, ,
provided that P%,.,,(6) is strictly increasing in 6. This is true for both the
homogeneous and heterogeneous cases. The modal points of the operating
characteristics of syndrome score categories revealed themselves, however,
possibly to be conspicuously disordered in the heterogeneous case, as distinct
from those in the homogeneous case. This may be a characteristic difference
between the two cases of the graded response level.

The present model can be considered as an expansion of the latent trait
model, and terminologies were used in line with the latent trait theory. As
the title shows, however, this model is fairly general, and the reader must not
confine his imagination to a limited area of hypothetical constructs. We may,
for instance, adopt our model in the study of memory using a one-to-one
mapping of time as 0, the discussion of which will be made elsewhere.

59
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APPENDIX
Suppose f(x) is three-times differentiable for the range

(A-1) —o <z< ™,
and strictly increasing, and its first derivative satisfies
d
(A-2) . f(x) > 0.
Let us define two other functions, u(z) and v(z), such that
d d
—He—+ a) — - f(z)
(A-3) ulg) = dz dz
e+ o) — f(2)
and
2 f(@)
(A-4) @) = &
d
@

where « is any finite positive number.
If »(x) is strictly decreasing in z, or we have

(A-5) C%v(x) <0,

where an equality holds at most at an enumerable number of points of z, then
u(z) is also strictly decreasing in z, or we have

(A-6) £ 4@ <0,

where an equality holds at mcst at an enumerable number of points of z.
Proof:
Let us define g(z) and %(z) such that

@ 00 = Zia+ 9 — £1@
- j L 10 ar

and

(A-8) @) = e+ O — @)

83
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rte d
- [ Gioa

where e is any positive number.
Since we have (A-2), by Cauchy’s mean value theorem we can write

g} _ 9@
(4-9) o) = 5
for some value { satisfying
(A-IO) T < ¢ <z e
and also

(z— ¢
(A-11) o = FE—=2
—hix = €

for some value ¢ satisfying
(A-12) rT—e<E<

From this and (A-5) we can write

) _ gz — ¢
(A-13) vz — ¢ > v b — o > v(z)
s 9@
h(x) > + 6.

Replacing (z + se) for z in (A-13) where s is an integer, we have

A-14 _ o> It =19
(A-14) vz + (s ))>l E 9

> flztsd

h(z + se)
On the other hand, from (A-3), (A-7) and (A-8) we have
[ g a
(A-15) u(@) = —d————
[ Gioa

> v(x + se)

vz 4+ (s + 1)e].

'2 glx + re)
mz—: h(z + re)

by setting € and m so that they should satisfy

(A-16) € =

3R
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In a similar manner we can write

2 9(x + 7¢)
(A-17) ulx + ¢ = S

2 ki + re)

re=1
From (A-2) and (A-8) it is obvious that h(z) is positive, and then we have
from (A-14)

(A_18) M S ; g(x + Té)?géx—!— o) |
h(x) Z_:l Wz + 1o hzx + @)

and from this and (A-15) and (A-17) we have

3 0w + 1o
(A-19) ul@) > = > u(x + o).

m—1

> h(z + re)

r=1

Since € can be as small as we wish, from (A-19) we can finally conclude that
u(x) is strictly decreasing in z. Thus the proof has been completed.
It should be noted that, if we define ¥*(z) in such a manner that

d d
THS — e —a)

@) — 12— o

instead of u(z) in (A-3), the same conclusion will be reached. For, if we define
variable ¥ such that

(A-20) Yy =1z+ q

we can rewrite (A-3) and (A-4) in the forms

(A-3)* u*(z) =

%m—%m—m

A-21 ' = u* =

(A-2D ) =) = e = @

and
LB

. 2 J\Y

(A-22) oz + o) = o(y) = L
")
dy Y

and the range of y is given by
(A—23) —o Ly < o,
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In a special case where f(z) has an upper asymptote, C(< «), we have

(A-24) lim f(z) = C
and

. d
(A-25) lzljg Ir f(x) = 0.

From this we can easily see that, if « tends to positive infinity, f(z + «) tends
to C, and its first derivative tends to zero. Defining w**(z) such that

~4
(A-26) wt*(@) = lim u(z) = C—_”?(—x) :

we can prove that, if (A-5) is true, we obtain
y .
(A-27) Iz Y@ =0,

where an equality holds at most at an enumerable number of points of z.
For, by following a similar logic as before, we can write

}i gz + re)
(A-28) wrk(g) = S
Z;) hix + re)
and
2 g(x +re)
(A-29) Wz 4 = S—
_; hx + re)
and also
i glx + re)
(x) r=1
(A-30) = e
* > b+ 9
Thus from (A-28), (A-29) and (A-30) we obtain
i g(x + re)
(A-31) W) > T = u**(z + o),
2 h(z +re)

r=l

and the proof has been completed.
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In another special case where f(z) has a lower asymptote, C(> — »),
we can write

(a-52) lim 1) = ¢
and
(A-33) lim ix f(z) = 0.

From this fact it can be seen that, if a tends to positive infinity, f(z — @)
tends to C, and its derivative tends to zero. Using (A-3)* instead of (A-3)
and defining #***(z) such that

d
i@
(A-34) u***(z) = lim u*(z) = ,
e fz) = C
we can see that, if (A-5) is true, we obtain
(A-35) 4 rex(y) <0
dx -

where an equality holds at most at an enumerable number of points of z.
For, in the same way as before, we reach

> 9@ — o
(A-36) ur*(g) = S
> hix — re)
and
> g — 19
(A-37) W 4 g =
go Wz — re)
and also
> 9@ —ro
(A-38) = > %
> h(x — re)

r=1

Thus from (A-36), (A-37) and (A-38) we obtain
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g(x — r¢
(A-39) wFRH(r) = TTh——s > (3 4 ),

- i h(z — ré)

r=1

and the proof has been completed.
If f(z) has unity and zero as its upper and lower asymptotes, we have
from (A-26) and (A-34)

~2 i)
(A-40) u**(x) = g
and
2 i
(A-41) urH*(z) = W
It is obvious from (A-3), or (A-3)*, and (A-4) that
(A-42) }11211 u(z) = v(x).

From this fact we can conclude that, for (A-6) to be true for any positive
number «, (A-5) is the necessary and sufficient condition.
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