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CHAPTER 1

INTRODUCTION

1.1 Multiple Regression and Cross-Validation

A problem common to many areas of psychology is the prediction of a
person’s score on one variable from his scores on a number of other variables.
The variable that is to be predicted is called the criterion and the other
variables are called predictors. 5~any methods have been developed to
combine predictor scores in order to optimize the prediction of the criterion.
A common procedure is to obtain a sample of subjects with known pre-
dictor and criterion scores (the derivation sample) and to calculate the
linear combination of the predictor scores that best predicts the criterion
scores. By "best" is usually meant "least squared error," which means that
the sum (over subjects) of the squared deviations of the observed from the
predicted criterion score is a minimum. The optimizing coefficients of the
predictor scores are called the multiple regression weights and are calculated
from the normal equations which express the minimization conditions
[Anderson, 1958; Kendall & Stuart, 1961].

When multiple regression is used to compute predictor weights, a
multiple correlation may be calculated. The multiple correlation is the
Pearson product-moment correlation, in the sample, between the optimal
linear combination of the predictors and the criterion variable. The multiple
correlation is thus a measure of the degree of relationship between the pre-
dictors and the criterion. However the multiple correlation is a biased esti-
mate of this relationship and is generally larger than the true population
multiple correlation. The bias occurs because the process of minimizing the
average squared error in prediction is equivalent to maximizing the correla-
tion between the linear combination of the predictors and the criterion.
Due to the finite size of the sample, the optinxizing linear combination will
be fitted to the idiosyncracies of the sample and will generally result in a
higher multiple correlation than the population multiple correlation.

One problem in th6 application of multiple correlation techniques is
therefore the estimation of the true multiple correlation from the biased
sample multiple correlation. In the next section it will be shown that there
are two population correlations which must be distinguished. A number of
formulas for correcting the sample multiple correlation is known. However
these formulas require assumptions which are often difficult to satisfy and,
therefore, many early investigators estimated the population correlation by
applying to a second sample the regression weights calculated in an original

1
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sample. They found that the correlation between the regression function
and the criterion in the second sample was less than the original sample
multiple correlation. This technique became known as cross-validation of
the predictor weights or simply as cross-validation [Mosier, 1951]. The
correlation in the second sample is called the cross-validity. The first sample
is known as the derivation sample; the second is the validation, sample. An
obvious addition to the cross-validation method is to repeat the calculations,
interchanging the roles of the first and second sample. We shall call this
technique double cross-validation.

This study was designed to investigate:

(a) the accuracy of the cross-validity as an estimate of the populatiou
correlation,

(b) fhe effectiveness of two reduced rank methods for estimating predictor
weights, and

(c) the effect of the variation of some parameters of the population distri-
bution on the results of (a) and (b).

The estimation of the population correlation is described in more detail in
Section 1.2. The reduced rank methods are introduced in Section 1.3. Finally,
the study of the effect of variation of population parameters by a simulation
technique is introduced in Section 1.4.

1.2 Estimates o] Validity

Let the predictor variables be x~, x2, .-. , xn and let the criterion
variable be y. Then the regression function in the population is

(1.2.1) f~lxl + fl2x~ + -.- + 3,~xo + 3o.

The constant term in the equation is 3o; the 3~ are called the regression
weights. Two models for the predictors are possible, the regression model
and the correlation model [Ezekiel & Fox, 1959, pp. 279--281]. In the re-
gression model, the values of the predictor variables are fixed and only the
criterion is a random variable. A more realistic model for most multivariate
work in psychology is to assume that both the predictors and the criterion
are random variables (the correlation model). Under the null hypothesis 
zero multiple correlation the distributional theory is identical for the two
models. However when the null hypothesis is not true the distributions are
different under the two models. Since the distributional theory is much more
Complicated under the correlation model, most investigators in psychology
[e.g. Burket, 1964] have continued to use the regression model hoping that
there will be little practical difference between the two models.

Regression equations can also differ in whether the constant term, ~o,
is included. In the case of the regression model, the constant term is really
indistinguishable from the other terms in the equation since a predictor
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variable, Xo, may be defined as the constant 1.0. Then the constant term
may be written as ~oxo ̄  Therefore, formulas developed for the constant = 0
case

(1.2.2)

may be modified for the constant ~ 0 case (1.2.1) by simply replacing n 
n%l.

In the correlation model this simple correspondence between the zero
and non-zero constant cases does not hold since xl, .-- , xn are random
variables while Xo is fixed. Inclusion of a constant term does not ’affect the
multiple correlation or the correlation between the regression function and
any other variable. Thus in studies such as the present One which emphasize
correlation measures, it is simplest to set the constant term to zero. How-
ever if the mean square error of prediction is used as a measure of accuracy
of prediction, it is very important to stute whether the constant term is
included in the regression.

Let p be the population multiple correlation, ~ the population standard
deviation of y, and ~(~_~ the population standard deviation of the error in
prediction (y - :~) where :~ is the regression function (1.2.1) with weights
calculated from the normal equations. Then

(1.2.3)

A similar equation holds in the sample, relating the squared sample correla-
tion, r ~, to the mean squared error of prediction, MSE, and the standard
deviation of the sample, s~ :

M SE
(1.2.4) r

Sy

The first estimation of p~ in the psychological literature [Larson, 1931] is
by the following formula:

N (1 -- 2)
(1.2.5) E~ (p~) = 1 N -- 

where N is the sample size. Larson does not give a derivation of this formula
but Wherry [1931] showed that it follows (in the regression model) from

2 2~ and estimating ~(~_~) by (MSE)N/(N - n). The estimating a, by s~
stitution of these two estimates into (1.2.3) and the use of (1.2.4) gives

~ by(1.2.5). In order to improve this estimate, Wherry estimated ~ 
N/(N - 1) rather than by s~. The resulting formula 

N-- 1 (1 --r~).(1.2.6) Est (p~) = 1 N - 
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Larson and Wherry compared their estimates with cross-validities and
Wherry showed that (1.2.6) is superior to (1.2.5).

It is not entirely clear how Larson and Wherry handled the constant
term in the regression function. Formula (1.2.6) is strictly applicable to 
zero constant term. When the constant term is not zero, the unbiased esti-
mate of ~_~> is (MSE)N/(N -- n - 1) so that the estimate of p: 

N-1
(1.2.7) Est (p-~) = 1 N -- n -- 1 (1 -- r2).

Formula (1.2.7) is often referred to as Wherry’s formula even though his
original formula was (1.2.6). Formula (1.2.7) is not an unbiased estimate 
p2 since the ratio of two unbiased estimates is not unbiased. However, un-
biased estimates of p~ are not always desirable, for, if the true p~ = 0, an
unbiased estimate must take on both negative and positbm values even
though a multiple correlation ~s always positive.

The multiple correlation, p, -is the correlation, in the population, of the
criterion and the regression function calculated in the population. In appli-
cations, the population regression function can never be known and one is
more interested in how effective the sample regression function is in other
samples. A measure of this effectiveness is ro, the sample cross-validity. For
any given regression function, re will vary from validation sample to valida-
tion sample. The average value of ro will be approximately equal to the
correlation, in the population, of the sample regression function with the
criterion. This correlation is the population cross-validity, p~. Wherry’s
formula estimates p rather than po. Lord [1950] and Nicholson [1960] derived
an unbiased estimate of the population mean square error of a sample re-
gression function. Using this estimate of 5ISE, an estimate of p~o is

N-- 1 N +n+ 1 (1 -- 2)
(1.218) Est (p~) = 1 N - n -- 1 "

This formula applies to the regression model with a constant term. Darlington
[1968] modified this formula for the correlatio~ model with a constant term.
His formula is

N- 1 N- 2 N + 1 (1 (1.2.9) Est(p~) = 1 N-n- 1N--n- 2 N 

This formula is based on the assumption that the predictors and criterion
have a multivariate normal distribution.

It would be possible to derive a similar formula for Est(p~) in the multi-
vuriate normal case with no constant term. It is not, however, the purpose
of this study to derive the best estimate of p~ for it is not clear what proper-
ties such an estimator should have, particularly since an unbiased estimator
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has the defects mentioned above. It is more interesting to study the accuracy
of the cross-vMidity as an estimate of po and p.

Returning to estimating p, Wishart [1931] calculated the moments of
the distribution of r~ for the multivariate normal distribution. The expected
value of r~ is

(1.2.10) E(r "~) = 1
N- n- 1

N -- 1 (1 -- p~)F(1, 1, (N + 1)/2,

where F(a, b, c, x) is the hypergeometric function. Using the first two terms
of the exp.~nsion of this function, (1.2.10) reduces to

(1.2.11) E(r :) = 1
N--n-- 1 (1-- p’~) N--n- 1 2

N- 1 N- 1 NA-lP~(1- p*).

Olkin and Pratt [1958] showed that an unbiased estimate of p: is

N-3 (1-r:)F(1,1,(N-n4-, 1)/2, 1-r~),(1.2.12) Est (p~) = 1 N -- n 

which, neglecting tcrms in l/N:, is

(1.2.13)
N-- 3 (1 --r ~)- N-- 3 2 (1 - r~)~.

Est.(p=) = 1 N--n-- 1 N --n-- 1N - n-t- 

The Wherry estimate (1.2.7) is almost identical to the first two terms 
this series.

Darlington [1968] has e:~refully distinguished the four correlations
po, r, and r~. The smallest of these, p¢ and ro, are the validity of the sample
regression function in the population and another satnple, respectively. The
average, over ma.ny samples, of the cross-validity, ro, will be approximately
equal to po. The next smallest correlation is p, the population multiple
correlation or the wflidity of the population regression function in the popu-
lation. On the average, the largest correlation is the sample multiple corre-
lation r, which is the wdidity of the s:m~ple regression function in the deriva-
tion sample. The l’ch-~tionships ma.y bc summarized as follows:

(1.2.14) E(r,) ~ p~ < p < E(r).

Empirical confirmation of (1.2.14) is presented in Section 3.3.

1.3 Improvement o] Prediction

It is well known that adding predictors to a regression equation in-
creases both the sample and population multiple correlations. However, the
greater the number of predictors, n, the more unstable are the sample re-
gression weights and the lower are the sample cross-validity, ro, and the
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population cross-validity, po. The decrease in estimated po follows from
(1.2.9).

A second difficulty with a large number of predictors in multiple regres-
sion is that a subset of them would probably do just as well, if the subset
could be determined. For predictions in applied psychology, e.g. personnel
selection, it is undesirable to have to make a large number of measurements
on each individual in order to make accurate predictions. Furthermore, the
weights for a subset of predictors would be more stable in future samples
due to the smaller n.

There are several ways to select a subset of predictors. The best selection
procedure is stepwise regression in which predictors ~re udded to the regres-
sion, one at a time, until there is no significant additional prediction. Other
selection procedures are shown by D~rlington [1968] to be inferior to the
stepwise method.

Another way to reduce the number of predictors in the regression func-
tion is to use a few linear combinations of the predictors rather than the
predictors themselves. Two such methods, called reduced rank methods, are
considered in this study. In the first method [Horst, 1941], the largest princi-
pal components of the predictors [Anderson, 1958] are entered in the regres-
sion function. Since the principal components may be expressed ~s linear
combinations of the predictors, the regression function may be transformed
to ~ linear combination of the predictors. Hence the full set of predictor
variables is used but only through the intermediary of a few principal com-
ponents. These compone~ts may be interpreted psychologically, and it may
be possible to select predictors loading highly on the components as a subset
to use in future prediction. In this way reduced rank prediction can lead to
a reduction of the size of the predictor battery.

In his 1941 paper, Horst also suggested that the predictors could be
represented as a linear function of common and unique factors rather
as a linear function of the princip~d compo~mnts. This factor analytic model
is more difficult to treat because of the dii~icuity of estimating the factors
as linear combinations of the predictors. Unlike Horst’s first method, factor
analysis is not a reduced rank method. The factor analytic model for regres-
sion calculations was studied by Leiman [1951] with some success but will
not be considered further in this study.

Before outlining the second reduced rank procedure, let us consider
study by Burket [1964] comparing a number of regression methods in a large
data sample. He compared two stepwisc selection procedures [Efroymson,
1960; Horst & 5[acEwau, 1960], the largest principal components method,
the smallest principal components method [Guttman, 1958] and the criterion-
related principal components method [Hotelling, 1957; Massy, 1965]. Gutt-
man proposed the use of the smallest principal components since the solution
for the multiple regression weights depends on the inverse of the predictor
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intercorrelation matrix, and the largest components of the inverse are the
smallest components of the original matrix. Hotelling and Massy suggested
that the principal components which are entered into the regression function
should be those components correlating maximally with the criterion rather
than those of largest variance. Burket compared these five methods for
several criteria and in several subsamples of his total sample. He found that
the largest principal components method was consistently superior to the
other four methods. One purpose of the present study is to show under what
conditions this superiority can be expected to hold.

The second reduced rank method, prediction from the principal predic-
tors, was developed from the following considerations. The principal com-
ponents of the predictors may not be highly related to the criterion since the
components are determined solely from the intercorrelations of the pre-
dictors. It would be desirable to find linear combinations of the predictors
which are strongly related to the criterion. The Hotelling and 5.~assy method
employed by Burket finds these linear combinations by computing the corre-
lation of each principal component with the criterion and entering into the
multiple regression only those components with the highest correlations.
However a more effective procedure might be to find those linear combina-
tions of the predictors (not necessarily the principal components of the
predictors) which are maximally correlated with the criterion.

In the single criterion case, this problem is trivial since there is only
one linear combination of the predictors maximally correlated with the
criterion and all other orthogonal combinations are uncorrelated with the
criterion. This combination is simply the regression function, i.e. the pre-
dicted criterion, using multiple regression on all the predictors. Therefore,
in the single criterion case, nothing new is found by considering linear com-
binations of the predictors maximally correlated with the criterion.

Consider, however, prediction of several criteria from a common set of
predictors. Examples of such multiple criteria are the prediction of success
in several academic curricula by using a battery of aptitude tests or the
prediction of a number of social criteria using scales from a personality test
[Hase & Goldberg, 1967]. In particular, let us suppose that we wish to pre-
dict each of the criteria equally well. Then Tucker [1957] has developed a
method which discovers those linear combinations of the predictors maxi-
mally related to the set of criteria. These combinations are called the prin-
cipal predictors. The largest of the principal predictors may be entered into
the regression equations for each criterion. The principal predictors have
the property that, for a fixed number of linear combinations entered into
each regression, the average squared multiple correlation is greater for the
principal predictors*than for any other linear combinations entered into the
regression.

The principal predictors were developed by Tucker as a convenient way
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to summarize a large number of predictor scores by a few criterion-related
predictor scores. The principal predictors also provide a useful conceptuali-
zation of the relationship of a set of predictors to a set of criteria. In the
present study, on the other hand, the principal predictors are compared with
the principal components as reduced rank prediction methods.

In any prediction calculation, each criterion variable may be divided
into two parts--one part is predictable from the set of predictors and the
other part is unpredictable from these predictors. When there are several
criteria the predictable parts of the criteria are themselves a set of variables
which have principal components. These principal components are the
principal predictors. It is important not to confuse the principal components
of the predictors, previously discussed, with the principal components of
predictable parts of the criteria; which are called the principal predictors.
The largest principal predictor accounts for the largest portion of the pre-
dictable variation in the criteria. The next largest principal predictor ae-
count~ for the next largest portion, and so on. Therefore a few of the principal
predictors account for most of the predictable variation in the criteria.

The largest principal predictors may be used as predictors themselves.
Then the principal ’predictors, like the principal components of the predic-
tors, can be expressed in terms of the original predictors. The weights for
the original predictors can therefore be calculated. Also, the principal pre-
dictors may be interpreted psychologically, which may lead to greater
understanding of the relationship between the predictors and the criteria.
The principal predictors, unlike the principal components of the predictors,
are criterion-related so that variation in the predictors which is unrelated to
the criteria is not represented in the principal predictors. In some cases, the
predictor variation which is unrelated to the criteria could be large enough
to dominate the principal components of the predictors. But this variation
is not useful for prediction. This is the reason that prediction from the largest
principal predictors may be superior to prediction from the largest principal
components.

The two methods, prediction from the principal components of the
predictors and from the principal predictors, arc called reduced rank methods
since, in both cases, a correlation matrix may be approximated by a matrix
of lower rank using the largest principal components or the largest principal
predictors. In the first method, the correlation matrix of the predictors is
approximated, while in the second method, the correlation matrix of the
predictable parts of the criteria is approximated. These statements are made
more precise in Chapter 2.

Of the prediction methods discussed in this section only three will be
considered further in this study:

prediction from the full set of predictors,
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(b) prediction from the largest principal components of the predictors, and
(c) prediction from the largest principal predictors.

The last method is possible only when there are several criteria. The first
two methods may be used for one or several criteria.

1.~ The Comparison o] Prediction Methods

In order to evaluate and compare the prediction methods described in
the preceding section it would be desirable to employ mathematical tech-
niques. However the problems are so complex that multivariate statistical
theory is unable to solve most of them.

Another approach to these problems has been to apply the different
prediction methods to a common body of data and to compare the results
[Burket, 1964; Leiman, 1951]. There are definite advantages to this ap-
proach. Any conclusions are based on real data and do not depend on the
assumptions in a theoretical development being valid. However, there is a
major drawback to such empirical techniques. If two or more studies, using
different data, disagree in their conclusions, it is difficult to determine what
properties of the data sets differ enough between the studies to produce the
varied conclusions. Similarly, it is difficult to evaluate the generality of con-
clusions found in a single study using one set of data.

It is therefore desirable to compare the prediction methods on a wide
variety of data sets, differing in a known way in certain parameters. Since it
is hard to satisfy this condition with real data, it is proposed that ~ome
useful conclusions may be made from the study of artificial or simulated data
sets. Such data sets can be readily generated on a computer. The parameters
specifying the properties of a data set can be input to the computer and a
wide variety of data sets can be generated by varying these input parameters.
The prediction method can then be compared in these data. Such a simula-
tion procedure is described in this study.

The simulation experiments consist of four stages of calculations:
Generation o] the model. A combined predictor and criterion population

covariance matrix is generated subject to certain input parameters. The
population model and its parameters are described in Sections 2.2 and 2.3.
In the model the predictors and criteria are expressed in terms of the prin-
cipal predictors.

Generation of two samples. Two samples, each of size N, are obtained
from the population generated in the preceding stage. The samples are
obtained by generating sample covariance matrices; the method is outlined
in Section 2.4. The two samples are used in double cross-validation.

Calculation of predictor weights. The predictor weights are calculated,
h~ each sample, by one or more of the following methods--(a) multiple
regression on the predictors, (b) multiple regression on the principal com-
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ponents, and (c) multiple regression on the principal predictors. The calcu-
lation of these weights is described in Sections 2.5, 2.6, and 2.7, respectively.

Cross-validation o/the weights. The weights for each sample (and each
method) are cross-validated on the other sample (r,) and on the population
itself (po). The formulas for the validities are presented in Section 2.8.



CHAPTER 2

THE MATHEMATICAL MODEL AND SAMPLE CALCULATIONS

2.1 Notation

Scalars are denoted by lower case letters (m, p). The only exceptions 
this convention arc N for sample size and the elements of matrices. Scalars
may be either numbers or random variables. Column vectors are denoted by
lower case italicized letters (x, a). These vectors may be either random
variable vectors or vectors of numbers. Row vectors are transposed column
vectors, transposition being indicated by priming (x’, a’). Matrices are
denoted by upper case letters (A, 2;). Transposed matrices are indicated 
a prime (A~, 2V). The (i, j) element of a matrix is denoted by Aij 
The identity matrix is I.

The matrix consisting of the first t columns of a matrix A is denoted
by (A)~. The first t rows of A ~re ~(A). The vector consisting of the first 
elements of a vector b is denoted by ~(b).

The population covariance matrix of two random vectors x and y is
denoted by ~.~. The corresponding sample covariance matrix is C~.~. When
y is kno~vn to have only one component, the covariance matrices are column
vectors denoted by z~ and c~. The w~riance of a scalar y is denoted by
a~ or c~. The abbreviation Var( ) is used to denote the vari.’mce of the
random variable enclosed in parentheses.

The univariate normal distribution with mean = m aud variance = v
is denoted by N(m, v). The multivariate normal distribution with mean
vector = a and covariance matrix = 2~ is represented by N(a, 2:). Fisher’s 
distribution, Student’s t distribution and the chi distribution are denoted
by F(n~, n,), t(n), ×(n), respectively, with the indicated degrees of freedom.
The chi distribution is the square root of the chi-squared distribution.

2.2 The Ge~eral Model ]or Predictors and Criteria

Let x (n components) be n random variables, called predictors, and let
y (m components) be m random variables, called criteria. Let m be less than
n as is usually the case in practice. For convenience, normalize all variables
x ~nd y to unit variance. Let x and y have a joint multivariate normal distri-
bution with null mean vector and arbitrary cow~riauce matrix

(2.2.1) Z = ~

11
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It can be shown [Herzberg, 1967] that x and y can be written in a special
way in terms of (n q- m) independent unit variance random variables 
Let w be partitioned as

(2.2.2) w’ = (w;w~w~)

where wl has m components, w2 has (n - m) components and w3 has 
components. Then

(2.2.3)
m (n--m)m [wl]

I./) 2 ¯

(The number of rows or columns
to the matrix expression above).

in the partitioned matrices are appended

Thus the submatrices forming 2: may be written as

(2.2.4)

(2.2.5)

(2.2.6) 22,., = FF’ -t- EE’.

This representation of x and y may be understood in the following way.
Let y be written as the sum of two terms

(2.2.7) y = ~) + e,

where ?~ is the linear least squares prediction of y from the predictors
That is,

(2.2.8)

The weight matrix is written as B’ rather than B so that when m = 1, B’ = b’,
the transpose of
is the best predictor of the corresponding component of y. Now the variables
~ may be transformed to independent unit wwiaace variables w~, by

(2.2.9) ~ = Fw~

where F is orthogonal by columns, so that

(2.2.10) F’F = D2 (diagonal)

with the diagonal elements of D
are called the principal predictors and are, except for normalization, the
principal components of 7). The diagonal elemeuts of ~ are t he eigenvalues
of Z;.~ and are

(2.2.11) ])~ = ~ F~k 
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The variables e may also be transformed to independent unit variance
variables w3 by

(2.2.12) e = Ew.~.

This latter transformation may be done in ma~,,y ways. The representation
of y is now complete.

The predictors x are also represented as the sum of two terms,

(2.2.13) ~ = x A- d,

where ~ is the part of x linearly predictable from the principal predictors wl.
The relationship of ~ to the principal predictors is

(2.2.14) 2 = S,wl.

The residual vector d is related to (n -- m) independent unit variance vari-
ables w~ by

(2.2.15) d --- S~w~.

The fact that the n-vector d is of rank (n - m) is shown in Herzberg [1967].
In summary then, the criteria y are written as the sum of a linear trans-

formation of the principal predictors w~ and a transformation of m other
independent wri~bles wa. Similarly, the predictors x are written as the sum
of a linear transformation of the s:~me principal predictors w~ and a trans-
formation of (n - m) other independent variables w~. The association
between y and x is expressed through their dependence on the principal
predictors u’~. The non-associated p~rts of x and y are expressed in terms of
independent variables w~ (for x) and w,~ (for y). The total set of variables
w’ = (w~u~w~) are independent unit variance normal.

The matrices S~ and F are central to the description of the dependence
of the criteria on the predictors. Let us first consider F. The squared multiple
correlation of the jth criterion y) with the n predictors is (recall that y~ has
unit variance)

(2.2.16) p~ = Var (~) = (B’2;~B)~ = (FF’)~ 

The average, over criteria, of the squared multiple correlation is

p~= (l/m)~ p~ = (l/m)~ ~ 

(2.2.17) ~=1 ~-~ ~:~

= (l/m) ~ D~-

using (2.2.11). The size or importance of the kth principal predictor for
predicting the criteria y can be measured by the sum of squares of the co-
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(2.2.19)

Thus

efficients of the ltth principal predictor in (2.2.9). The coefficients are the
kth column of F. The sum of squares is

(2.2.18) ~ F~ = D~k .

Hence the eigenvalues D~k can be interpreted as the total variance of the
criteria accounted for by the kth principal predictor. The D~k are, by defini-
tion, decreasing with k, so that the first principal predictor accounts for
more of the variance of the criteria than any other principal predictor. If,
in a certain population, the first eigenvalue D~, is very large and the others
small, this indicates that most of the prediction of y from x is derived from
only one linear combination of the x variables, namely the first principal
predictor. On.the other hand, if several of the I)~k are large, then several
independent linear combinations of the predictors are needed in order to get
maximum prediction of y from x.

The relation of x to the principal predictors wl through the matrix $I is
quite independent of the matrix F and the quantities D~. Let us define the
(n X n) matrix S as the super matrix

S = (8182),

(2.2.20) x =.~ :-kd= S,wl + S~w: = S]w’|¯

LW_oJ

Since the variables ~t’ :~re independent and of unit variance, and the pr~
dictors x are of unit variance, the sum of squares of each row of S is 1.0.
The sum of squares of the ith row of S~ is then less than 1.0 and is Var(xi),

the magnitude of the dependence of the ith predictor on the principal pr~
dictors:

(2.2.21) Var (:~,) = ~ S~ 

Turning to the columns of S, let q~(k = i, ¯ ¯ ¯ , m) denote the sum of squares
of the kth column of S:

q~ is a measure of the tottal dependence or relation of the predictors x to ~he
kth principal predictor. The q~ are analogous to the D~ since they represent,
respectively, the total dependence of the predictors and ~he criteria on the
kth principal predictor. (Var(k~) and p~ are also analogous.) We may average
the Var(~) in the same way as the ~ were averaged in (2.2.17):
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= (l/n) £ q~.

~r~ is the average, over predictors, of the predictor variance related to the
principal predictors. It is a measare of the dependence of the predictors on
the principal predictors. For brevity, ~r~ will be called the average criterion-
related predictor variance. This description should not imply that ~2 is an
aver~ge multiple correlation of x predicted from y (roles of predictors and
criteria reversed). ~r2 is, however, the average multiple correlation of the x
variables predicted from the principal predictors wl. Note that ~r~ is also
the average of the q~ (but the division is by n, not m, so that r2 has a maxi-
mum value of 1.0).

Consider now two populations, each with the same average squared
multiple correlation 02. One population might h~ve a small value of ~r2 and
the second ~ large value of r2. In the first population the predictors depend
very little on the principal predictors while in the second the dependence is
greater. Nevertheless the prediction of the criteria is the same in each popu-
lation. This paradoxical situation can be understood by first noting that we
~re considering for the moment prediction in the population, not in finite
samples. The prediction of y is solely via the principal predictors wl and the
random vector w~ is an e.ract linear combination of the predictors x since S
is square and non-singular:

(2.2.24)

As additional verification that the average multiple correlation is inde-
pendent of ~, note that ps depends only on F in (2.2.17).

The parameter ~-~ t,:ill have au effect on prediction in finite samples
however. Consider prediction from the principal components of the pre-
dictors. When
the space of the principal predictors and will contribute to prediction. How-
ever, when ~ is small, the first principal component will be unrelated to the
principal predictor space and will be a very poor predictor. The effectiveness
of prediction from the principal components will thus depend on the size
of r2. Empirical confirmation of this phenomenon will be demonstrated in
Section 3.4.

2.3 Computer Generatio~ o/the Model

Since any set of n predictors and m criteria may be written in the form
(2.2.3), it is possible to generate an arbitrary population distribution 
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specifying the matrices S, F, and E. The covariance matrices ~x~, Zzy, and
Z,~ may then be calculated by (2.2.4) to (2.2.6) where S is related to $1 
$2 by (2.2.19).

Rather than allowing the matrices S, F, and E to be completely arbi-
trary, a few basic parameters may be fixed arbitrarily and the matrices then
generated essentially randomly subject to these given parameters. These
arbitrary parameters are called "input parameters" since they are input to
the computer program that generates the model.

The major input parameters are:

1. n = number of predictors.
2. m = number of criteria.
3. (D~k, k = 1, --. , m), the eigenvalues 
4. (q~, k -- 1, -.. , m), the dependencies of the predictors on the

principal predictors.

Note that once D~k and q~ are specified for all k, the average squared
multiple correlation p2 and the average criterion-related predictor variance
~r* are fixed by (2.2.17) and (2.2.23). In particular, when m = 1 as in Chapter
3, p~ = D~, and ~ = (1/n)q~.

Two additional parameters, related to n and m, are:

la. n, = number of columns of S.
2a. m~ = number of duplicate criteria.

In the model described in Section 2.2, S = (S1S~) is an (n X n) square matrix.
S~ has m columns and S~ has (n - m) columns. In some of the experiments
described in Sections 3.1 and 3.2, S has more than n columns, namely
columns, so that S~ has (n. -- m) columns and.S~ still has m columns.

All the experiments in Chapter 3 involve only one criterion (m = 1).
However several duplicate criteria are allowed and the number of such
duplicate criteria is denoted by m~. Duplicate criteria are described further
in Chapter 3.

Four minor parameters are needed to complcte the input for the model:

5. v, = variance of the generated Var(~i).

6. e~ = tolerance on this variance.
7. v~ = variance of the gener:~ted multiple c()rrclations p~.
8. e, = tolerance on this variance.

The computer program generates matrices F and E so that the m
squared multiple correlations p~ calculated from them have mean exactly
equal to the average of the D~ and variance equal to v~ within a maximum
error of ey. That is,

(2.3.1) p~ = (l/m) ~ p~ = (l/m) 



PAUL A. HERZBERG 1~

and

(l/m)(2.3.2)

MatrLx S, composed of $1 and S~, is generated so that the mean of ~he wri-
~nees of ~ e~leul~ted from S~ is exactly equal to (l/n) ~;.~ q~ and the
v~rianee of these v~fi~nces is equal to v~ witMn
That is,

(2.3.3) ~ = (l/n) ~ Var (i,) = (l/n) 

and

(2.3.4) ~V~r [V~r (~)] -- v~] < e~.

The two occurrences of "V~r" in the preceding formul~ refer to d~erent
types of variances. V~r(~) means the v~ri~nce of the r~ndom v~riable
the population. Let the constants V~r(~) = v~ temporarily. Then V~r(v~)
is simply sho~h~nd notation for

(~.~.5) v~ (vi) = 0/n) ~ (v~ ~)~.
i~l

Note that r~ is the mean of the v~ .

Ge~eration o] F

Since F is orthogonal by columns (equatioa (2.2.10)), it m~y be written
~s a product of ~n orthonorm~l m~trLx V ~nd ~ diagonal m~trix D consisting
of the squ~re roots of the eigenv~!ues D~ :

(2.3.6) F = YD.

The m~trix D~ is input so that generation of F reduces to the generation of
~n orthonormal V s~tisfying the two restrictions (2.3.1) ~nd (2.3.2) on 
squared multiple correlations p~. p~ m~y be expressed in terms of V and D by

~
= (~D X )~(2.3.7)

p~ = V~r (~) = (FF’)~

When p~ is calculated in this way with V orthonormal, (2.3.1) is au~mati-
cally satisfied. The restrictions on V are then

(a) V must be orthonormal,
(b) all p~ calculated from (2.3.7) must be less than 1.0, 
(c) the variance of the p~ must satisfy (2.3.2).
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An algorithmic procedure to generate a V satisfying these three conditions,
for arbitrary parameters m, (D~k, k = 1, .-- , m), vy, and ey, is outlined
in Herzberg [1967].

Generation o] E

The elements of the (m X m) matrix E are first generated randomly
from N(0, 1) and then the rows of E are normalized so that, for all 

(2.3.8) (EE’)~j = ~ E~k = 1 -- 

where the p~ are calculated from (2.3.7). This normalization ensures that the
criteria y are normalized to unit variance. The methods used to generate
normal random numbers as well as other random numbers discussed in this
chapter follow Box and Muller [1958] and are described in Herzberg [1967].

Generation o] S

Two different methods for generating S were developed for the experi-
ments described in Chapters 3 and 4. The first is called the e~ = 0 method
since the variance of Var(~) is exactly equal to v~. This method was used
for the single criterion case (m = 1) in Chapter 3. The method does not
generalize well to the m > 1 case and therefore a second method, called the
e~ ~ 0 method was used for the several criterion calculations in Chapter 4.
This latter method could have been employed in Chapter 3 except that e~
cannot be set to zero in this method.

When m = 1, ~ c,%n be calculated directly from the input parameters as

(2.3.9) ~= (1/n)q~.

Then, in the c~ = 0 method, n numbers are generated randomly from
N(~", v.) subject to the restriction that no number be more than 1.0 or less
than 0.0. The numbers are rescaled ~fter generation so that their mean is
exactly ~r~ and their variance is v~. If one of the nmnbers is now more than
1.0 or less than 0.0, the number is discarded and a new attempt is made to
satisfy the conditions. These n numbers are the variances of ~ , denoted by
v~ = Var(~) in (2.3.5). When this step is completed, (2.3.3) and (2.3.4) 
exactly satisfied with e~ = 0.

Now S~ is a single column, s~, and its elements are defined as the square
roots of (vi , i = 1, .- ¯ , n), with their signs chosen randomly. The elements
of the last (n, - 1) columns of S, namely S: , are generated randomly from
N(0, 1) and rhea rescaled, by rows, so th~’tt the row sum of squares of the
whole S matrix is unity. This resctding e~sures that all x variables have unit
variance. The ge~mration of S by the e~ = 0 method is now complete.

The e~ ~ 0 method of generating S is very similar to the method of
gencr~ting F. In analogy to (2.3.6) in which all matrices are (m X m), S~ 
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written as

(2.3.10) S, = TQ

where $1 and T are (n X m) and Q is diagonal (m X m) with diagonal 
ments = (qk, k = 1, ... , m). T (like V) is orthonormal by columns. 
Var(~i) may be written in terms of T and Q 

=S’ = (TQ 

Since T is orthonormal it follows that the average of these variances is
exactly (l/n) ~ q~ = ~ sothat (2. 3.3) is exactly sat isfied. The remaining
restrictions on T (as on V) are then

(a) T must be orthonormM by columns,
(b) all Var(~) calculated from (2.3.11) must be less than 1.0, 
(c) the variance of the Var(~) must satisfy (2.3.4).

The algorithmic procedure for generating V may be also used to generate a
T satisfying the ~bove three conditions for arbitrary n, m, (q~, k = 1, ¯ ¯ ¯ , m),
v~ , and e~ .

After S~ is generated, S2(n X (n~ -- m)) is generated in the same 
as in the e. = 0 method. First the elements of S, are generated as N(0, 1)
random numbers. The rows of $2 are resealed so that each row sum of squares
of S = (S~$2) is unity, resulting in unit variance x variables. This completes
the e. # 0 method for generating S.

2.4 Comrputer Generation o/Data Samples

x and y are (n + m) random variables with a joint multivariate normal
distribution. The mean vector is the null vector and the covariance matrix
is ~ as given in (2.2.1). In order to draw samples from this distribution, 
would be a straightforward procedure to use (2.2.3) which expresses x and 
in terms of independent N(0, 1) variables w. For each simulated subject 
would be necessary to generate (n + m) independent N(0, 1) numbers 
to place these in (2.2.3) as the w values. The sample x and y vectors would
then be found by matrix multiplication.

This procedure, while conceptually simple, has the disadvantage that
that the computer time required increases linearly with N, the sample size.
The method is thus costly to use for all but small sample sizes.

Another procedure was chosen instead. It is not based on generating
sample vectors x and y at all but on generating a sample covariance matrix
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The method is the Bartlett decomposition of the Wishart distribution
[Bartlett, 1933; Kshirsagar, 1959; Wiisman, 1957]. The covariance matrix C
has a Wishart distribution depending solely on the population covariance
matrix 27, the sample size N, and the number of variables which is (n + m).

Let the population covariance matrix ~ be written as

(2.4.2) Z = ftff.

This may be done in a variety of ways. The Gauss-Doolittle method for
computing a triangular ~2 was used.

Let an ((n + m) × (n + m)) matrix A be defined 

(2.4.3) A = (1/IN)TT’

where T is a lower triangular ((n -t- m) X (n -t- m)) matrix whose 
triangular elements are independent random variables:

(2.4.4)

Then, if we compute

(2.4.5)

Tij(i > j) are N(0, 

Tii are x(N - i)

T. = 0 (i < j).

C = ~Aft’ = (1/iN)flTT’ff,

C will have a Wishart distribution as desired. Equation (2.4.5) is the
Bartlett decomposition of the Wishart matrix C. A is a s~mple covariance
matrix from a population with identity covariance matrix. The letter A is
used as a temporary symbol in this paragraph and is reserved for another
use in Section 2.6.

2.5 Multiple Regression o~ the Predictors

The most widely used method for prediction is multiple regression. This
least squares method ensures that, in the derivation sample, the correlation
between the predicted score and the observed criterion score is a maximum.
The maximum correlation is the multiple correlation.

Let the covariance matrix of the n predictors in the derivation sample
(of size iN) be C~(n X n) ~nd let the column vector c~(n X 1) be the 
variance between each predictor and the single criterion (m -- 1). Let the
coefficients of the multiple regression combination of the predictors be
b~(n × 1), the subscript indicating that the first method of prediction,
multiple regression on the predictors, is being used. The linear combination
of the predictors is then b,x.

The solution for b~ is well known to be

(2.5.1)
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The correlation between ~. = bIx and y is the multiple correlation. The
square of this correlation is

(2.5.2) r~ -
Cyy

where c,,, is the sample variance of the criterion. The subscript on r~ is used
only in this chapter to distinguish the three methods of prediction. The
subscript is dropped in later chapters.

2.6 Mvltiple Regressio~ o~ the Pri~cipal Compo~e~ds

As an alternative to the original predictors one can use the largest
principal components of the predictors in the regression function. The scores
on the principal components are first estimated from the predictor scores.

The following calculations are made in the derivation sample. The
characteristic roots and vectors of the cov~riance matrix of the predictors,
C,~(n × n), are calculated. Let the roots be written in descending order 
the diagonal of a diagonal matrix U~ and the vectors in corresponding order
as the columns of an orthonormal matrix W. Then C~ may be written as

(2.6.1) C~. = WU2W’

where all matrices are (n X n). The characteristic vectors are the coefficients
for relating the principal components, ], to the predictors, i.e.

(2.6.2) ] = W’x

where x is the (n X 1) column vector of one subject’s scores on the predictors
,’rod ] is the (n X 1) column vector of the principal component scores
[Anderson, 1958, pp. 273-277].

We wish to use the t lt~.rgest principal components in the regression
function. From (2.6.2), the scores on these t principM components are esti-
mated by

(2.0.3) ,(/) = ~(W’)~

where ~(]) is (t × 1) and is the vector of the first t elements of ]. ~(W’) 
the matrix consisting of the first t rows of W’.

The prediction equation, using the t largest principal components, is

(2.6.4)

where d is ~ temporary symbol representing the t-vector of weights for the
principal components. The multiple regression solution for d is

(2.6.5) d =
in analogy to the solution (2.5.1). In (2.6.5), C~ is (t X t) and cf~ is (t 
The cow~ri~nce matrix of the t principal components is, from (2.6.3), (2.6.1),
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and the orthonormality of W,

(2.6.6) C~,-~ t(W’)C~.(W)t = t(U~)t

and the covariance of the t principal components and the criterion is

(2.6.7) c,y = ~(W’)c.~.

Therefore the weight vector is

(2.6.8) d = ~(U-~)t

Substituting (2.6.3) and (2.6.8) into (2.6.4), we find 

(2.6.9) :~(~’ = c~.(W)~ ~(U-2)~ ~(W’)x

is the equation for predicting y from x using regression on the t largest
principal components of the predictors. This equation may be simplified
slightly by writing

(2.6.10) A = WU

so that (2.6.1) becomes

(2.6.11) Cx, = AA’.

Then (2.6.9) becomes

(2.6.12) ytt’ = c~’y(A’):’ t(A-’)x.

Equation (2.6.12) is the formula for predicting y from x using regression
on the t largest principal components. If we express the right hand side of
this equation as [b~)]’x, then the weight vector is

(2.6.13) b(~~)= (A’):’ ~(A-’)c~.

It can be shown [Herzberg, 1967] that the squared multiple correlation is

r(t)(2.6.14) [2 ] -
Cyy

which is identical in form to (2.5.2) but of course involves (~) instead ofb,.
It is important to note that r~(~) is not the multiple correlation of y with the
predictors x. The l~tter multiple correlation is r,. The symbol r~(t) represents
the multiple correlation of y and the t largest principal components of the
predictors and therefore r~(~) must be less than r~ unless t = n. The sub-
script 2 is dropped in later chapters when the context makes clear which
method of prediction is used.

Multiple regression on the principal components may be called a re-
duced rank method since the use of the t largest principal components in-
stead of the original predictors is equivalent to approximating the matrix
C~ by the matrix
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(2.6.15) (~,x = (A), ,(A’).

The matrix (~,, is of reduced rank t < n.

~.7 Multiple Regression on the Principal Predictors

Another method of calculating independent scores in the derivation
sample is the method of principal predictors. Scores on the largest principal
predictors are used in the regression equation. The method is only applicable
if there are several criteria (m > 1).

Let the scores of a subject on the m criteria be yt, ¯ ¯ ¯ , ym, which may
be placed in a column vector y (m X 1). Each criterion, y~ , has a part, ~ 
linearly predictable from the n predictors, x, in the derivation sample:

(2.7.1) ~ = c~C:~x

where cxyj (n)< 1) is the covariance of yj with the n predictors x and C~, 
the covariance of the predictors. The m predictable parts of the criteria may
be written as a column vector #(m X 1). Then (2.7.1) may be rewritten 

(2.7.2) ~ = C~yC~x = C~C~t~x

where C~(m X n) is the covariance matrix of the m criteria with the n pre-
dictors. The covariance of the predictable parts is the (m × m) matrix C~ 

(2.7.3) C~ =

Let us diagonalize C~. in analogy to the way that C~ was written in
(2.6.1) and (2.6.11):

(2.7.4) C~ = VD~V’ = GG’.

The matrices V and D2 are sample estimates of the corresponding population
matrices denoted by the same symbols in Sections 2.2 and 2.3. The eigen-
values D~,~ are written in decreasing order in the diagonal of D~ and the
eigenvectors are written in the corresponding order as columns of V. The
rows of G are the coefficients for relating the predictable parts of the criteria
and the principal predictors, i.e.,

(2.7.5) ~) = Gw.

Thus the equation for estimating the scores on the m principal predictors
(column vector w (m × 1)) from the predictable parts 

(2.7.6) w = G-~

which, combined with (2.7.2), gives

(2.7.7) w = G-~C~C:~x

as the equation for estimating w from
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The equation for estimating the t largest principal predictors t(w) 

(2.7.8) t(w) = t(G-1)C~,~C~1~x

where ~(G-~) is the first t rows of G-~.

Note that w is a vector of numbers which can be calculated for each
subject. The use here of w for the estimated principal predictor score vector
should not be confused with the use of w, in Section 2.2, for the principal
predictors, a random vector in the population.

Since the principal predictors are uncorrelated in the derivation sample,
the multiple regression weights for predicting each yi from the principal
predictors are simply the rows of the pattern matrix G as shown in (2.7.5).
E~ch row of G is the weight vector for one criterion variable. The coefficients
G ~re still the correct weights ~vhen only some of the principal predictors
are included in the regression. If the t largest principal predictors are in-
eluded, the predicted parts of the criteria are

(2.7.9) ~) = (G)~ ~(w).

In order to express this equation in terms of the original predictor scores as

(2.7.10) ~)~(~) B~x,

(2.7.9) and (2.7.8) may be combined, yielding

(2.7.11) B~ =.C:~C,~(G’):~ ~(G’).

It can be shown [Herzberg, 1967] that the squared multiple correlation of
the jth criterion variable y) is

B’
(2.7.12) trait (t)~2j _ ( 3Cxy)ii

which is identical in form to (2.5.2) and (2.6.14) except that there is 
such equation for each criterion variable y~ . As was the case with regression
on the principal components, the multiple correlation r~) is not the multiple
correlation of y) with x but is the multiple correlation of y~ and the t largest
principal predictors. The correlation r~;) is always less thegn or equ,~l to r~.
The subscript 3 is dropped in later chapters.

Multiple regression on the principal predictors, as on the principal
components, is a reduced rank method. The use of the t largest principal
predictors instead of all m principal predictors is equiwtlent to approxi-
mating the matrix C~.~ by the matrix

(2.7.13) (~.~ = (G), ,(G’).

The matrix ~ is of reduced rank t < n.



PAUL A. HERZBERG 25

It was pointed out after (2.7.4) that the eigenvalues of C~ are estimates
of the population parameters (D~k, k = 1, --. , m). In order to estimate
and (q~, k = 1, ..- , m), it is natural to require that the covariance matrices
be changed to correlation matrices. The correlations of the predictors x and
the principal predictors w are given by the (n X m) sample matrix St = C~w 
$1 may be written as

(2.7.14) $1 = Cx~ = Cx~C]~C~y(G’)

by equation (2.7.7).
The sample quantity q~ is the total dependence of the predictors on the

kth principal predictor and is therefore, since the predictors have unit vari-
ance by the use of correlation matrices, given by

(2.7.15) sample q~ = ~ S~k ¯

Similarly the sample estimate of z~, the average criterion-related predictor
variance, is the sum of the squares of all the elements of S~ divided by n
and is

sample ~2 = (l/n)
(2.7.16) ~-~ i=l

= (l/n) ~ sample q~, 

2.8 Cross-Validities

The calculation of correlations in the validation sample is identical for
all three weight computational methods. Given the weight vector b from the
derivation sample, the square of the correlation between b’x and a criterion
variable y in the validation sample is

(b’c.)~
(2.8.1) r~- (b’C,~b)cy~

where cx~, C~ and c~ are covariances computed in the validation sample.
The quantity ro is called the sample cross-validity and may be negative or
positive. The sign of ro is equal to the sign of b’c~,.. The sign of ro is also
affixed to r~ when averages of several r2o are taken.

The predictor weight vector b, calculated in the derivation sample, may
also be applied to the population itself. The square of the correlation be-
tween b’x and the criterion variable y in the population is

~ (b%~)~
(2.8.2) po = , ¯

(b Zx~b)~y



PSYCHOMETRIKA MONOGRAPH SUPPLEMENT

This formula is identical to (2.8.1) except for the use of population covari-
ances instead of sample covariances, po is called the population cross-validity.
A sign is affixed to p~ in the same way as to r~.

The three statistics, r 2 (in its several forms), r~, and p~ are called the
correlation statistics. These statistics are the principal quantities computed
in the experiments described in Chapters 3 and 4.



CHAPTER 3

SIMULATION RESULTS WITH ONE CRITERION VARIABLE

A number of experiments was performed using a single criterion
variable. The two methods of prediction used were multiple regression on
the predictors and on the principal components of the predictors. The model
and sample generation methods described in Sections 2.2 and 2.3 are appli-
cable to the single criterion case (m = 1). However, in order to generate
many samples without excessive use of computer time, a special procedure
for the m = 1 case was developed. This procedure, described in detail in
Herzberg [1967], allows any number of criterion variables to be generated,
each with the same population multiple correlation and each with the same
relation to the predictors. The criterion variables are thus all duplicates of
the single criterion of interest. The number of such duplicates is denoted
by md.

As an example, suppose that there are five predictors and ten duplicate
criteria. Then, in a sample, one can compute ten multiple correlations, one
for each criterion. These ten correlations are all based on one sample (size N)
of five predictor scores but on ten different samples of single criterion scores.

Each calculation described in this chapter is based on one or more
populations (Z) generated for each combination of the input parameters.
For each 2~ that was generated, sample covarianc~ matrices were generated
in pairs (C1, C2), representing the two samples needed for double cross-
validation. 2~, C1, and C2 are the covariance matrices of (n -~ rod) variables--
n predictors and md duplicate criteria. Except in Section 3.4, at least two
such pairs of sample covariance matrices were generated. This allowed
variation in the predictor sample covariance matrices.

The results using the simulation program described in this chapter are:

(a) When p -- 0, the sample multiple correlation and cross-validity follow
the known theoretical law. (Section 3.1)

(b) When p ~ 0, variation in Z~, produced by change in the number of
columns of S does not affect the correlation statistics r~, r~, and p~.
(Section 3.2)

(c) The correlation statistics depend on n, N, and p~ in theoretically under-
standable ways. Tables are presented which may be used to interpret
sample multiple correlations and cross-validities. (Section 3.3)

(d) The optimum number of principal components to include in the regres-
sion function depends on the parameters n, N, p~, and ~r:. (Section 3.4)

27
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3.1 Distribution o] the Correlation Statistics When, p = 0

It is useful to study populations in which the multiple correlation (p) 
zero even though such populations are of little practical significance. Firstly,
the distributions of the correlation statistics when p = 0 provide a baseline

¯ against which to compare the distributions obtained for non-zero p. Secondly,
some properties of the distributions for p -- 0 are known theoretically and a
comparison of the distributions obtained from the computer model for p -- 0
with the theoretical predictions provides a check of the model and the com-
puter calculations.

Fisher [1928] showed that, if r is the sample multiple correlation,

r 2 N-n- 1
(3.1.1) 1 - r2 n

is distributed as F(n, N - n - 1) when p = 0. This distribution has the
important property that it is independent of the covariance matrix of the
predictors, 2~x,. The distribution of the sample cross-validity, r~, is the
distribution of the sample correlation of two variables whose population
correlation is zero. Therefore, from (3.1.1),

{N - 2V2
(3.1.2) r4,~_ r~}

is distributed as t(N - 2) when p = 0. This distribution is also independent
of 2~x. Finally, the population cross-validity, po, is exactly zero since azy -- 0.

An effective simulation of multiple regression should be able to repro-
2duce these properties. The distributions of r2 and ro were studied for two

different sample sizes, N, and for predictor covariance matrices, 2~, varying
in two ways, namely in the values of the parameters ~r~ and n,. ~ is the
average of the variances of the part of each predictor dependent on the
principal predictor; n. is the number of columns of the S matrix. Two values
of n. were used--n~ = 10 implies a square S mutrix since n = 10 and n, = 20
implies a non-square S matrix.

The input parameters which were constant for all the c~lculations in
th~ section ure shown in Table 1. Table 2 shows the variable model p~r~m-
eters and s~mple sizes ~nd ~lso the total number of populations and samples
culculated for each model. According to T~ble 2 four d~erent Zs were gen-
erated for e~ch model, und for e~ch Z generated, three double cross-valida-
tio~ were performed. Since ten duplicate criteri~ were used throughout
(m~ = 10), there were altogether 10 X 4 X 3 X 2 = 240 sample multiple
correlations and cross-v~liditics computed for euch model. The final factor
of two in the preceding expression represents the two s~mples (C~, C~)
which were generated for euch double cross-validation.

In order to test whether r~ satisfies the Fisher distribution l~w (3.1.1),
it is necessury to have a tabulation of F(10, 39) for Models 1 and 2 and
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TABLE I

Constant Parameters for Section 3.1

n= I0

md = l0 (m = l)
2p = 0.0

v = 0.01
X

e = 0.0
X

Vy, ey inapplicable since m = 1

F(10, 130) for Models 3 and 4. These distributions were obtained directly,
or by interpolation, from Owen [1962]. From (3.1.1), 2 i s distributed a s

,~F(n, N -- n -- 1)
(N- n- 1) +nF(n,N--n- 

The percentage points used (those available in Owen) and the corresponding
percentile points of the F and r" distributions are shown in Tables 3 and 4.

The four Zs and associated samples for each model were divided equally
into two sets, chosen in the order that they were computed. The cumtflative
frequency distribution of the 120 sample squared multiple correlations, r~,

are presented in Tables 3 and 4. Each set of 120 squared multiple correla-

TABLE 2

Variable Parameters for Section 3.1

Model 1 Model 2 Model 3 Model

ns 10 20 I0 20

2~ .2 02 .5 .5

number of Zs 4 4 4 4

N 50 50 131 131

number of Cl, C2
pairs per Z 3 3 3 3
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TABLE 3

Distribution of r 2 for Models 1 and 2

Prob- F(10, i9) 2

abil-
ity

Cumulative Frequencies

Model 1 Model 2
Expected Set 1 Set 2 Set 1 Set 2

1.000 1.000
¯ 975 2.401 .381
.95 2.086 .348
.90 1.769 .312
.75 1..329 .254
.50 .951 .196
.25 .664 .145
.io .469 .107
.05 .375 .0878
.025 .307 .0729
.000 .000 .0000

120 12o 320 120 12o
117 117 116 i17 117
114 115 114 115 114
108 103 107 108 112
9o 85 8O 98 91
60 50 52 60 59
30 25 23 30 26
12 16 12 Ii 9
6 5 6 5 6

3 1 ,3 4 4
0 o 0 o o

MD = maximum absolute difference
(observed - expected) I0 I0 8 ~

Kolmogoroy-Smlrnov D = MD/120 .083 .083 .067 .033

TABLE 4

Distribution of r 2 for Models 3 and 4

Prob- F(10,120) 2

abil-
ity

Cumulative Frequencies

Model 3 Model 4
Expected Set 1 Set 2 Set I Set 2

1.000 1.0000
¯ 975 2.157 .1524
¯ 95 1.911 .1373
.90 1.652 .1210
¯ 75 1.279 .0963
.50 .939 .0726
.25 .670 .0529
.lO .480 .o385
.o5 .B88 .OBIB
.025 .318 .0259
.000 .000 .0000

120 120 120 12G 120
ll7 120 ll5 ll9 117
ll4 ll9 lll ll3 113
108 114 107 106 109
9O 95 96 88 95
60 65 69 60 69
3O 27 39 33 32
12 7 18 13 13
6 6 9 7 5
3 4 2 5 3
0 0 0 0 0

MD = maximum absolute difference
(observed - expected) 6 9 3 9

Kolmogorov-Smirnov D = MD/120 .050 .075 .025 .075



PAUL A. HERZBERG 31

tions originated in six sample ccvariance matrices for each of two Zs. There
were ten duplicate criteria in each sample.

The observed frequency distributions were compared with the expected
distributions by the Kolmogorov-Smirnov one sample test [Siegel, 1956].
MD is the maximum absolute difference between observed and expected
cumulative frequencies and D = MD/120 is the Kolmogorov-Smirnov
statistic. Both values are presented in the tables. The critical D for the one
sample, two tailed test is 0.12 (a = 0.05, 120 observations). None of the 
in Tables 3 and 4 exceeds this value. There is therefore good evidence that
the multiple correlations generated by the simulation program s~tisfy the
Fisher law.

The observed distributions of ro were compared with the expected dis-
tributions. From (3.1.2), ro is distributed 

t(N -- 2)
(3.1.4)

(N - 

The percentile points of ro are shown in Tables 5 and 6. In these t&bles the
2 in order to emphasize thatdistributed variable is, for simplicity, ro, not ro,

ro is distributed about zero. If, consistent with all the other frequency tables,
~ (with the sign of ro) were chosen, the distribution would, of course, ro

TABLE 5

Distribution of r for Models 1 and 2
C

Prob- t(48) r Cumulative Frequencies
abi I- c

ity Model 1 Model 2
Expected Set 1 Set 2 Set 1 Set 2

1.000
¯ 975 2.012
95 1.678
9o 1.3o0
75 .680
5O .o00
25 -.680
IO -1.30o

05 -1.678
025 -2.o12
o00

120 120 120 120 120
.2789 ll7 ll8 ll9 ll6 ll4
.2354 114 109 116 114 !Ii
.1855 108 96 112 102 103
.0977 90 81 86 85 91
.00o0 6O 54 55 59 61

-.0977 30 28 23 32 30
-.1855 12 15 3 ll 16
-.2354 6 ii I 7 8
-.2789 3 7 i 4 5

0 0 0 0 0

MD = maximum absolute difference
(observed -expected) 12

Kolmogorov-Smirnov D = MD/120 .I00

9 6 5

.075 .050 .042
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TABLE 6

Distribution of r e for Models 3 and 4

Prob- t(129) c Cumulative Frequencies
abil-
ity Model 3 Model 4

Expected Set 1 Set 2 Set 1 Set 2

1.000 120 120 120 120 120
¯ 975 1.979 .1716 ll7 ll9 ll4 ll8 ll6
¯ 95 1.657 .1444 114 116 ii0 114 114
.90 1:288 .1127 108 114 !01 109 112
¯ 75 .677 .0595 90 lO3 82 99 97
.50 .000 .0000 6o 73 49 77 76
.25 -.677 -.0595 30 37 22 37 35
.I0 -1.288 -.1127 12 14 ii 13 16
.05 -1.657 -.1444 6 5 4 6 I0
.025 -1.979 -.1716 3 2 2 4 5
.000 0 0 0 0 0

MD = maximum absolute difference
(observed - expected) 13

Kolmogorov-Smirnov D = MD/120 .108

ll 17 16

.082 .142 .133

identical. The expected and observed frequency distributions and the
Kolmogorov-Smirnov statistics are presented in these tables. The critical D
(=0.12, as before) is exceeded in two cases. This result might be interpreted
as failure of the simulation to produce truly independent derivation and
validation samples. However, in 15 further models described in Section 3.3,
all with p~ = 0.0 and varying n and N, none of the 15 Kolmogorov-Smirnov
Ds was significant at the .05 level. (In these models only 40 cross-validities
were obtained for each Z). Therefore it may be concluded that the two
significant Ds in the present section are chance results.

The calculations in this section h~ve shown that when the population
multiple correlation is zero, the sample statistics obey the theoretically
known distributions. The function (3.1.1) of the sample multiple correlation
has an F distribution and the function (3.1.2) of the sample cross-validity
has a t distribution.

3.2 Dependence of the Correlation Statistics on Z~x When p ~ 0

It was shown in Section 2.2 that the average squared population multiple
correlation, p", depends only on the D~k (equation (2.2.17)) and not 
matrix S. In particular, when there is only one criterion (m = 1), the squared
population multiple correlation "of the criterion with the predictors is

(3.2.1)
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Sb~ce D~ is an input parameter, it is therefore straightforward to specify
an arbitrary p~ for a desired population.

Unfortunately this simple specification of p~ is only possible when the
matrix S is square. When S is non-square, say with n, columns, then / is
given by

(3.2.2) p~ ~ ’ ’-~= Dns~(SS) 

which depends on the matrix S. The vector s~ is the first column of S (equa-
tion 2.2.19). Since S is generated to some extent randomly by the population
generation procedure, it is impossible to specify by input parameters what
the population multiple correlation will be. This is a severe limitation on the
model if S is not square.

Because of the ease in specifying p~, the models in the remaining sections
of this study all employ square S matrices. In order to show, at least to a
certain extent, that this does not effect the generality of the conclusions, some
experiments are described in this section which compare the correlation
statistics of square S and non-square S models. A further comparison is made
of two models which differ only in the parameter ~.

The input parameters which were constant for all the calculations in
this section are shown in Table 7. Table 8 shows the variable parameters and
the total number of populations and samples calculated for each of the ten
models. Models 5 and 6 are square S models differing only in v~. Two popula-
tions were generated for each model and three sample pairs for each popula-
tion. This results in 10 X 2 X 3 X 2 = 120 sample correlations for each
model.

Each of the four remaining model pairs differs only in ns ; one model of
each pair has square S and the other model has non-square S. The squared
population multiple correlation, /, is identical for the model in each pair.
The identity holds to sLx or seven decim~d places even though only three are

TABLE 7

Constant Parameters for Section 3.2

n=5

md = i0 (m = i)

v = 0.01x
e = 0.00x

Vy, ey inapplicable since m = 1

N= 40
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TABLE 8

Variable Parameters for Section 3.2

Model

5 6 7 8 9 I0 Ii 12 13

ns 5 5 5 i0 5 I0 5 i0 5 I0

p2 .5 .5 .234 .234 .311 .311 .438 .~38 .495 .495

~2 .2 .5 .2 .2 .2 .2 .5 .5 .5 .5

number of Zs 2 2 1 1 1 1 1 1 1 1

nu~,ber of Cl, C2
pairs per Z 3 3 6 6 6 6 6 6 6 6

shown in Table 8. The identity was produced in the following way. As
explained above, p2 is not an input parameter. The input D~I is equal to ps
only for square S models. The non-square S Models 8, 10, 12, and 14 were
generated using D~I = 0.5. The population squared multiple correlation,
was calculated for each model by (3.2.2). These are the values in Table 
These computed values were used as the input D~, for the square S Models
7, 9, 11, and 13. Since only one Z could be generated for each set of param-
eters, six C1 , C2 pairs were generated instead of three. This means thst
10 X 1 X 6 X 2 = 120 sample correlations were generated, the same number
as for Models 5 ~nd 6.

The frequency distributions of the 120 correlations for each model are
presented in Tables 9 (r~), 10 (r¢~), and 11 (p~). Recall, from Section 2.8, 
a negative ro results from a negative ro. The maximum absolute difference,
I%{D, and the Kolmogorov-Smirnov statistic D are also presented for each
pair of models. The critical D for the two sample test, two tailed, is 0.18
(~ = 0.05, 120 observations). None of the sample values exceeds this value
although two approach it. It c~n be safely stated that for these examples
the variation in Z.. has not produced differences in the observed distributions
of the correlation statistics.

In the simulation model, the population multiple correlation is inde-
pendent of ~r~, the average predictor variance related to the criteria. The
comparison of Models 5 and 6 confirmed that the sample statistics are inde-
pendent of ~r~. Even though the population multiple correlation does depend
on the matrix S if it is not square, it was shown that the correlation statistics
are not affected by the matrix S for the models considered in this section.
All further calculations in this study employ square S models only.

3.3 Dependence o/the Correlation Statistics on n, ~q, and p

The cross-validation technique was developed as a way to correct
sample multiple correlation [Mosier, 1951]. The purpose of the calculations
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TABLE 9

Cumulative Frequency Distribution of r
for Models 5 to 14

Model

r2 5 6 7 8 9 l0 ll 12 13

.85 120 120

.80 120 120 120 119 ll9
¯ 75 ll9 ll8 ll9 ll9
.70 108 lll 120 120 115 119 113
.65 101 93 120 119 119 102 114 9~
.60 76 68 119 120 116 ll5 90 97 68
.55 4~ 48 118 ll7 lll Iii 73 73 49
.50 31 29 115 ll3 99 96 48 50 27
.45 18 17 104 105 69 77 30 30 13
.40 8 4 89 92 53 60 13 20 5
.35 3 1 74 85 28 41 4 12 4
.30 1 0 45 66 15 28 2 7 1
.25 0 26 46 i0 21 i 4 !
.20 II 21 4 lO 0 1 0
.15 9 12 I 6
.I0 2 3 0 1
.05 0 1 0
.00 0

14

MD 8 21 13 12 6

D .067 .175 .109 .I00 .050

120
119
115
109
98
71
51
29
19
10

3
1
0

described in this section was to investigate empirically the relationship of
the sample multiple correlation and the cross-validities to the population
multiple correlation.

The parameters which were constant for all the calculations in this

section are shown in Table 12. Table 13 indicates the values of the three
parameters which were varied. All possible combinations of squared multiple
correlations, p2, number of predictors, n, and sample size, N, were used except
for those combinations with (n, N) = (15, 16). A different model was 
erated for each combination of (p2, n, N) so that the models for combinations
differing only in N are different models.

In all cases 40 sample correlations were obtained. The means of the 40
correlations of each type (r ~, r~, and p~) are shown in Tables 14 to 17. The
expected values E(r ~) as calculated from (1.2.10) are also shown in these

tables. The standard errors of the correlation means range from 0.01 to 0.02
for r 2 and r~ and somewhat less for p~¢. However, this standard error does
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TABLE l0

2Cumulative Frequency Distribution of r
for Models 5 to 14

c

Model

9 l0 ii 12 13 14

¯ ?5 120 120 120
.70 120 I19 i19 117
.65 i19 ll5 120 120 120 I15 ll5
.60 ll2 105 119 112 114 l!G 106
¯ 55 102 83 120 119 120 99 108 91 93
.50 72 68 120 119 116 118 85 94 66 71
.45 55 56 i18 ll8 ll3 ll0 74 82 51 47
.40 38 29 ll2 ll3 104 100 59 61 26 32
¯ 35 2? 18 106. IIi 88 86 43 42 13 24
.30 14 I0 99 102 64 68 25 26 8 15
.25 8 4 88 98 44 53 13 17 4 8
.20 2 2 66 81 22 35 7 7 2 3
.15 0 0 54 52 12 25 5 3 0 0
.lO 31 36 7 18 3 0
.05 15 16 3 6 0
.00 2 1 0 2

-.o5 o 1 0
-.I0 0

MD 19 15 13 9 II

D .158 .125 .109 .075 .092

not take into account variation which would be produced by another popu-
lation generated from the same parameters. Table 13 indicates that only
one Y. was generated for each parameter combination. Nevertheless the tables
give a useful picture of the dependence of the three correlation statistics on

/, N, and n.
The following observations may be made from the tables:

(a) The squared sample multiple correlation, r=, is an overestimate of/. The
expected values of r=, E(r2), from (1.2.10) match the observed 2 values
very well. The first two terms of the expansion (1.2.11) may be re-
arranged to show that the bias in E(r =) is a simple function of n, N,
and

(3.3.1) E(r =) _ p= _ n (1 -- p’~).N--1

The match of E(r ~) and r~ shows that formulas (1.2.13) and (1.2.7),
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which are essentially backward solutions of (1.2.10), provide reasonable
estimates of the squared population multiple correlation.

(b) The squared sample cross-validity, r~, is generally an underestimate of
p2 and this bias (except for p2 = 0.0) tends to be approximately the same
for all values of p2 for fixed (n, N). As with ~, the bias of t he cross-
validity decreases with N and increases with n for fixed p2.

(c) The squared population cross-validity, p~., is the squared cross-validity
using the derived weights on a validation sample of infinite size. The

2 and the same commentstables show that p~. has similar values to ro
apply to p~ as were applied to r~ ~bove. Looked at another way, r~ is an
unbiased estimate of p~.

TABLE ii

Cumulative Frequency Distribution of p
for Models 5 to 14

2

Model

5 6 7 8 9 i0 ii 12 13 14

.500 120 120

.475 82 93

.450 53 56 120

.425 31 33 113
.400 18 16 78
¯ 375 13 7 "~7
.350 8 3 28
.325 6 2 120 120 14
.300 3 0 108 114 9
.275 1 82 81 4
.250 I 120 120 57 52 1
.225 1 118 113 24 32 1
.200 ! 88 91 14 14 I
.175 1 65 65 5 10 0
.150 1 37 45 2 5
.125 0 18 32 2 3
.lOO 9 15 1 3
.o75 4 i0 0
.050 3 4 1
.025 2 4 1
.000 0 1 0

-.025 0

MD ll 14 8

D .092 .117 .067

120
107
71
37
21
Ii
6
3
1
0

10

.083

120
94
59
29
18

9
4
2
2
0

120
99
61
26

6
3
1
0

12

.I00
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TABLE 12

Constant Parameters for Section 3.3

m=l

n = n (square S matrix)
S

~2= 0.5

vx = 0.01
e = 0.0

X

Vy, ey inapplicable since m = 1

The tables confirm the known properties of multiple regression and cross-
validation as summarized in (1.2.14). The sample multiple correlation is 
overestimate of the population value since the sample weights are chosen to
optimize the correlation in the derivation sample. These weights are not the
optimum weights in either the population or another sample and the conse-
quence is that both p~ and rE are biased low. With repeated samplings the
values of rE cluster around p~ since some weights are better for the validation
sample than the population (r~ > p~) and other weights are worse (rE < p~).

These tables can, perhaps, be useful in estimating the population p2
from sample r2 and rE values obtained from real data. If the values of (n, N)

TABLE 13

Variable Parameters for Section 3.3

md

number of Zs

number of Cl, C2
pairs per Z

n = 2, 5, i0, 15

p2 = 0.0, 0.i, 0.25, 0.5, 0.75

N = 16, 26, 50, 131

models with (n, N) 

(15, 16) (10, all others

5 I0

not done 1 1

4 2
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correspond to one of the tables and if r2 and r~ match the values in the tables
for a value of p2, then this value of p2 is the estimate of the population mul-
tiple correlation.

3.4 Prediction ]rom the Principal Components

Burket [1964] showed that cross-validities can be increased by using only
a few principal components of the predictors in the prediction function. The

TABLE 14

Correlation Statistics for Sample Size N = 16

2 .00 .lO .25 .50 .75

n= 2

E(r 2) .133 .211 .331 .541 .763

r2 .160 .189 .329 .593 . .805

r2 .029 .121 .217 .534 .763
C
2

Pc .000 .056 .191 .468 .731

n--5

n = I0

E(r 2) .667 696 .743 .823 .909

r2 .680 .666 .744 .821 .908

2
rc -.035 .003 .047 .300 .523

p~ .000 .009 .041 .217 .489

E(r2) .333 .393 .485 .647 .818

r2 .307 .409 .450 .669 .866

r2 .014 .086 .104 .372 .691
C

2
Pc

.000 .027 .107 .351 .648
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TABLE 18

Constant Parameters for Section 3.4

md = I0 (m = I)

n = n (square S matrix)
s

v = 0.01x

e = 0.0x

Vy, ey inapplicable since m = i

number of Zs per model = I

number of Cl, C2 pairs per Z = I

formulas for such prediction were presented in Section 2.6. The calculations
described in the present section demonstrate the improvement of prediction
by using the largest principal components in the simulation data and show
how variation in some parameters can change the effect.

Sixty models were generated varying in four parameters: n, the number
of predictors; p:, the squared multiple correlation; ~r2, the average criterion-
related predictor variance; and N, the sample size. The constant parameters
are listed in Table 18. All combinations of the variable parameters listed inTable 19 were used. A new model was generated for each (n, p2, ~r2, N) com-

bination so that here, as in Section 3.3, combinations differing only in N are
different models.

For each simulation model two sample covariance matrices, C1 and C~,
were generated, both with the same sample size N. The covariance matrix
of the first sample predictors, (C1)=, was diagonalized and the weights for
predicting each of the ten duplicate criteria from the largest principal com-
ponents were calculated. These weights were validated on Cs, and the cross-
validities r~’~ were calculated for each criterion, the superscript (1) indi-
cating that one component was included in the regression. The weights were
then recomputed for prediction from the two largest principal components

TABLE 19

Variable Parameters for Section 3.4

5, i0

0.25, 0.50, 0.75

0.20, 0.35, 0.50, 0.65, 0.80

20~ I00 for n = 5 and N = 25~ 105 for n = i0
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resulting in cross-validities r(o ~). This procedure was continued until
components had been included in the regression. In general, the t largest
principal components resulted in ten cross-validities r(c t) for each t(t 
1, ... , n). The average of the squares of the ten cross-validities for each t
was calculated. The largest of these averages is called r~(m"~) and occurs for
t = t .... The symbol tm,x represents the number of components producing
the largest average squared validity. (When r(o t) was negative, a negative
sign was affixed to its square before the averages were calculated.)

The above procedure was repeated for validating the principal com-
ponents of (C2)x~ on C~ . The averages of the squares of the ten cross-validities
for each t as well as r2~(m~) and tm.~ were again calculated for each model.

In Section 3.3 it was shown that the squared cross-validity r~ (when all
variables or principal components are included in the regression) under-
estimates the squared population multiple correlation p~. The result was
confirmed with the 60 new models since only 14 out of the 120 values of

2 (max)(") 05. (") is the same as ro. The were less[r~ ] exceeded Recall that ro
biased as 30 out of 120 values exceeded p~. Thus r~( .... ) is still an underesti-
mate of the squared population multiple correlation.

Averaging the squared correlations be]ore calculating tm:~, has the dis-
advantage of reducing r~(~’~) from what it would be if the maximum r~ was
found for each criterion and then these maxima averaged. These maxima
will occur for different t for the different criteria, in general. In several cases
which were examined, however, it was found that most maxim~ occurred
for the same t. Since some averaging had to be done to comprehend the re-
sults, the method previously described was used for simplicity.

The results from these experiments will be displayed in two ways--
first, by t~.~ (Table 20), and, second, by the average squared cross-validity
(Figures 1 to 10). Table 20 shows how t ..... varies as a function of p2, ~, and
N for each of the two values of n. For example, the first section of Table 20
shows that, for all ten models with p~ = 0.25 and n = 5 (two values of t~
per model), t .... = 1 occurred five times, t .... = 2 occurred four times, etc.
This section of the table shows that t~.~ te~ded to increase ~s p~ increased.
This effect is stronger when n = 10. On the other hand, the effect of in-
creasing ~ is to decrease the value of t ..... . Hence for larger values of ~r~, a
smaller number of principal components produce maximum cross-validities.
This is true for both wdues of n. Finally, there is a tendency for larger values
of N to lead to larger values of t .... As N increases, more principal compo-
nents are needed to maximize the cross-validity.

Figures 1 to 6 illustrate these results in ,~ different way. In these figures,
the average squared cross-validity is shown as a function of t, the number
of principal components included in the regression. Each point in Figures 1
and 4 is the average of 12 cross-validities; e:~ch point in Figures 2 and 5 is
the average of 20 cross-validities; and each point in Figures 3 and 6 is the
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TABLE 20

2

~requencles of tmax for Cross-Valldltles rc

45

n=5

.25 5 ~ ~ ! 2 8
02 .5O 6 I 0 3 I0

¯ 75 3 1 4 0 12

.20 0 0 0 0 12
¯ 35 0 2 2 2 6

z2 .50 3 1 0 0 8
.65 a 1 3 2 2
.8O 7 2 0 1 2

N I00 Q 2 2 l 21

n= I0

tmax

1 2 3 4 5 6 7 8 9 1O

.25 16 1 0 0 0 0 0 0 1 2
02 .50 9 ¯ 2 0 0 0 0 3 2 3

.75 3 2 ¯ 0 0 ~ 2 0 2 9

.20 2 0 1 0 0 0 0 2 2 5

.35 3 1 0 0 0 0 0 1 3 4

.50 8 0 0 0 0 1 0 0 0 3

.65 8 2 0 0 0 0 0 0 O 2

.80 ? l 2 0 0 0 2 0 0 0

N 25 17 3 3 0 0 1 0 3 2 !
105 ii 1 0 0 0 0 2 0 3 13

The cell entry is the frequency that the value of tmax occurred for models
with the row value of the parameter.

I I I I I I I 1 I ~
~ r[2= ,80

- ---.c H== .50 ~..a~.,~.~*~’~- -
.-e--- U2=.35

Numbe~ o~ P~inci~l Components - ¢

Fmu~ 1 (Left)
Prediction from principal components, v’ w~ing (n = 5)

FIGURE 2 (Right)

Prediction from principal components, p~ varying (n = 5)
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I

I I I I I I I I I I I I I I I

---- : 17 ~= .80 -¯ N=IO0
.--<>--- 172=.50z~ N= 20 ---e--- T[2-.35
--o--- Uz=.20

I I I I I ~ ~ ! ~ ~ ~ ~ ~ ~ t

Number o~ Prlncip~l Components - t

Fmc~ 3 (Left)
Prediction from principM ~mponents, N v~ing (n = 5)

Fmc~ 4 (Right)
Pr~iction from p~ncipM components, ~= yawing (~ = 10)

I I I I I I I I I I
J

. ~’- _

_ ¯ ~o2=.75 __
o p~ =.50

I I I I I I I I I I

¯ N= IO:g _
z~ N=25

NumSer o¢ Principol Components - 1;

:FIGURE 5 (Left)
Prediction from principal components, p* varying (n = 10)

FmuR~ 6 (Right)
Prediction from principM components, N varying (n = 10)



PAUI~ A. HERZBERG 47

I ~ I I I I, I I I I I
¯ TT~ = ,80

~ ~=,50
-..~-.- 7f== .:35
--o--- 7T~= ,20

2 3 ~ S I 2. 3 ~ S
Number o1~ Principal Co~ponen~ -~

Fmu~ 7 (Left)
Prediction from principal components~ ~ yawing (n ~ 5~ ~ ~ 20)

FIGURE S (Right)
Prediction from principal components, ~ varying (~ ~ 5, ~ ~ 100)

average of 30 cross-validities. (The results for w~ = 0.65 have not been in-
cluded in Figures 1 and 4 in order to avoid crowding the figures. In Figure 1,
the r-" = 0.65 curve would fall between the curves for ~ = 0.5 and ~r2 = 0.8.
Iu Figure 4, the ~’~ = 0.65 curve would fall slightly below the x2 = 0.5 curve.)

Each figure shows that there is an inter~tction between the number of
principal predictors (t) a.nd the v:~riable p~rameter (~, p~, or N). This 
counts for the results of T:~ble 20. For example, when ~r~ is small, an increase
in t produces ~n iz~crease in the average r~. Hence for small ~r~, the number
of principal components producing maximum cross-validity is n or almost n.
However, for l:trge ~, the average cross-validities are constant or slightly
decrc:~sing as a function of t. Therefore there is a tendency for one component,
or at most a few components, to produce ma~ximum cross-validity. Iu a
similar way, the effects of p’~ and N can be compared in the figures and Table
20. The interaction of p~ and t is quite small and will not be further discussed.

The present results may be compared ~vith a previous major study of
reduced rank prediction [Burket, 1964]. In Burket’s Table 1, the prediction
method 3 is prediction from the principal components of 29 predictors. Iu
Burket’s table it is clear that when the sample size is large (N = 255, 210,
165), the cross-validities decrease only very slowly as the number of principal
components increase, while when the sample size is small (N = 75, 30~, the
cross-v~lidities decrease significantly with t. While it is impossible to make
a perfect comparison between Burket’s results and the simulations, some
similarity can be shown by considering Figures 7 to 10. These figures show
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the simulation results for the two sample sizes separately instead of averaged
together as in Figures 1 and 4. Now the experiments to be described later
(Section 4.2) show that real data have large values of ~2 (approximately 0.8).
It is reasonable to assume that Burket’s data also have a large value of ~2
since the predictors and criteria in both studies are simila.r (Burket: pre-
dictors-Edwards Personal Preference Schedule, High School Grade-Point
Averages, Test Scores, Age, Sex; criteria--Grade-Point Averages in Various
College Course Areas; Herzberg: predictors--Sequential Tests of Educational
Progress, School and College Ability Tests, Tests of General Interest; cri-
teria-Scholastic Aptitude Tests, College Entrance Examination Board,
Rank in High School Class). In Figures 7 to 10 it is seen that, for ~ = 0.8,
r~ decreases only slightly when N is large but decreases much more rapidly
when N is small, particularly when n = 10 (Figure 9). This corresponds 
the results in Burket’s Table 1.

Both Burket’s study and the present one confirm that reduced rank
prediction is of maximum benefit when the sample size is small. The present
study ~lso shows the great effect that the parameter r~ has on prediction
from the principal components. When ~r~, the average criterion-related pre-
dictor variance, is small, r~ incre.~ses rapidly with the number of principal
components. However when ~ is large, r~ is constant or slightly decreasing
as t increases. This result is easily understood, for, when ~ is increased, one
linear combination of the predictors, namely w~, the first principal predictor,
is increased in wriance. The result is that the largest principal component
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of the predictors becomes increasingly collinear with wl as ~2 increases. This
me,~ns that a single principal component can produce better prediction than
several components. Hence r~ decreases slightly as t increases and therefore
t ...... the value of t giving maximum rE, tends to be near 1 as ~ increases.
(Note again that the results for v~ = 0.65 have not been included in these
figures. In Figures 7 and 8, the ~2 = 0.65 curve would almost coincide with
the v2 = 0.8 curve. In Figures 9 and 10 the v2 = 0.65 curve would fall slightly
below the ~ = 0.5 curve.)



CHAPTER 4

STUDIES WITH SEVERAL Ct~ITERIA

The generation of populations with several criterion variables permits
the principal predictors to be used in multiple regression. In the first section
of this chapter, simulation experiments with several criteria are described.
The two reduced rank methods of prediction (multiple regression on the
principal components and on the principal predictors) are compared. In the
next section, some studies are described using real data from high school
students. Finally, in the last section, an attempt is made to simulate the
real data with the computer program.

~.1 Simulation Results

The purpose of this section is to compare the principal component and
principal predictor methods of prediction in a number of models which
differ in the distribution of (q~, k = 1, -.. , m) and 2. The importance of
the parameter ~", the average criterion-related predictor variance, in pre-
diction from the principal components of the predictors, has already been
shown in the single criterion case (Section 3.4). When m -- 1, there is only
one q~ and it is directly related to ~r~(q~ = n~). However when the~e are
scver~l criteria, there are several q~, each q~ representing the total depend-
ence of the predictors on the kth principal predictor. The sum of the q~ is
equal to n~~.

Similarly, the (D~, k = 1, -.. , m) are the total dependence of the
criteria on each principal predictor. Since the D~ are eigenvalues (of
they are always considered in descending order. In this section, the D~
distribution was kept constant. By varying the order of the q~ it is possible
to vary the relative dependence of the predictors on the principal predictors.
This variation will produce differences in the effectiveness of the two methods
of prediction.

Eighteen models were studied. The constant input parameters are shown
in Table 21 and the variable parameters in Table 22. For each value of v~,
three different q~ distributions were used, called decreasing, level, and in-
creasing. The same distributions, except for scaling by ~r2, were used for all
three values of vs. Two models, differing only in sample size, were generated
for each combination of ~ and q~ distribution. A pair of samples of size 20
(small N) was generated from one model and a pair of samples of size 
(large N) was generated from the second model.
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TABLE 21

Constant Parameters for Section 4.1

n= I0

m= 5ns = 10

p2 = 0.6

2 2 = 0.8, 2 = 0.6
D! 1 = 1.2, D22 D33 ,

~ 2 = 0.i
D 4 = 0.3, D55

vx = 0.01

e = 0.005X

Vy = 0.01

ey = 0.005

number o£ Zs per model = 1

number of CI, C2 pairs per Z = 1

In the decreasing q~, distribution, half the dependence of the predictors
on the principal predictors is dependence on the first principal predictor.
When ~r2 = 0.8, this means that 40~0 of the total variance of the predictors
is linearly dependent on the first principal predictor. The contribution of the
succeeding principal predictors is progressively smaller. When ~ = 0.2
and the q~ are again decreasing, the first principal predictor accounts for
only 10% of the predictor variance and the other principal predictors account
for less, with a. total of 20~o of the variance of the predictors explained by the
principal predictors.

In the level q~_ distribution, each principal predictor contributes equally
to the predictors, the contribution of each varying from 16% when ~r~ = 0.8
to 4% when ~2 = 0.2.

When the (q~, k = 1, ... , m) are increasing the dependence is exactly
reversed from the decreasing case. Most of the dependence of the predictors
on the principal predictors is dependence on the fifth (last) principal pre-
dictor. The dependence on the first principal predictor is very small.

One change was made in the generation of samples for the calculations
in this chapter. The sample covariancc matrices, C~ and C~, were changed
to correlation matrices in order to make possible the calculation of a sample

2r and sample (q~, k = 1, ... , m).
The calculations performed on the sample correlation matrices were

similar to the calculations in Section 3.4 except that two methods of pre-
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diction were compared and the criteria were no longer duplicate criteria.
Multiple regression on the principal components of the predictors was done
first. The correlation matrix of the predictors, (C1)z,, was diagonalized and
the weights for predicting each of the five criteria from the largest component
were calculated. The cross-validities for each criterion in the second sample
were calculated. The average, over criteria, of the squares of these validities
was calculated and is presented in Tables 23 to 28 in the "r~" columns under
"P. C." for t = 1 (one component). The weights were then recomputed for
the two largest components (t = 2) and the average squared cross-validity
calculated. This was repeated for t = 3, ... , 10. The whole procedure was
repeated again for validating the weights derived in C~ on C1, but these
results are not reproduced in the tables as they are very similar to the valida-
tion of C, on C~.

Prediction from the principal predictors was then performed following
the method given in Section 2.7. The weights in (2.7.11) were calculated 
the first sample for each value of t (t = 1, -.. , 5) and the weights were
cross-validated in the second sample. The average of the cross-validities for
each value of t w~s c~lculated ~nd is given in Tables 23 to 28 in the "r~"
columns under "P. P." for e~tch t. The validation of sample 2 on sample 1 is
not reported here. ,

In the derivation sample the following sample statistics were calculated:
sample (q~, k = 1, .-- , 5), s~mple u~, sample (D~, k = 1, .-. , 5), 
sample p~. For the calculation of the sample (q~_, k = 1, ... , 5) and the
sample ~r~, see (2.7.15) and (2.7.16). The D~,~ are the eigenvalues of C~.~ 
the s.~mple p~ is r :, the average squared multiple correlation using all predic-
tors. The smnple p~ is the average of the (D~, k = 1, ..- , 5).

TABLE 22

Variable Parameters for Section ~.I

~2 = 0.2, 0.5, 0.8

2
qk distribution--decreasing, level

as shown below

N = 20, 75

decreasing level increasing

2 ~ ~2 2
ql 5.0 ~- 2.0 0.625 ~

q~ 2.5 ~2 2.0 w2 0.625 w2

2 ~2 w2 w2
q3 1.25 2.0 1.25

2 ~2 w2. ~q4 0.625 2.0 2.5 .,.

q~ 0.625 ~2 2.0 ~2 5.0 ~2

, increasing
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TABLE 26

2 Distribution DecreasingSeveral Criteria (N = 75) 

55

~ = .2 w2 = .5 ~2 = .8

P,C. P.P. Sample P.O. P.P. Sample P.C.P.P. Sample
tork r2 2

D~k q~
r2 r2 2 q~ r2 r2

o rc c c Dkk c C D~k q~
.19 .27 1.2 2.1i -.00 .15 1.5 I.i

2 .07 .21 .9 .7
3 .07 .27 .6 .3
4 .07 .32 .2 .3
5 .15 .33 .i 1.4
6 .26
7 .29
8 -37
9 .44

i0 .33

Sample p2 .65

Sample ~2 .38

.26 .42 .9 1.7

.27 .53 .6 .5

.37 .54 -3 .3

.40 .56 .I .8

.52

.54

.56

.63

.54

.22 .23 1.3 4.1

.38 .34 .6 1.7

.46 .44 .5 1.4

.48 .45 .4 .6

.51 .45 .1 .7

.50

.51

.53

.53

.45

.58

.85

TABLE 27
2 Distribution LevelSeveral CritePia (N = 75) 

t opk

~2 = .2

P,C. P.P. =~ample

r2 2 2
c rc Dkk qk2

1 .02 .12 1.3 .5
2 -.02 .26
3 -.O1 .32 .7 .7
4 .03 .37 .4 .4
5 .07 .38 .1 .5
6 .12
7 .22
8 .34
9 .33

10 .38

Sample 02 .69

Sample ~2

~r2 = .5

P.C. P.P. Sample

r c r e Dk2k qk2

=2 = .8

P.C. P.P. Sample
2 2 D2kk

qk

.0o .21 1.3 1.0
.06 .33 .7 .7
.10 .41 .6 1.1
.11 .46 .3 .9
.22 .48 .2 .9
.34
.40
.43
.48
.48

.26 .46

TABLE28

Several Criteria (N = 75) q~ Distribution Increasing

~2 =

P.C. P.P. Sample

2
r~ r2c D~k qk

-.0O .26 1.4
.04 .33 .8 .5

.09 .21 1.3 1.7

.19 .33 1.0 1.7

.33 .39 .6 1.9

.46 .45 .2 1.2

.49 .45 .Z 1.5

.52

.52

.52

.45

.64

.82

~2 = .2

P.O. P.P. Sample
t or k

2
r2c r2c Dk2k qk

I -.01 .17 1.2 .2
2 .o0 .~o 1.0 .7
3 .01 .27 .5 .8
4 .01 .34 .4 1.1
5 .05 .36 .£ .7
6 .08
7 .13
8 .26
9 .39

I0 .36

Sample 02 .65

Sample ~2
¯ 35

.08 .43 .7 .7

.i0 .46 .3 1.7

.16 .48 .i 2.2

.21
.28
.41
.46
.48

.67

.56

~2 = .8

P.C. P.P. Sample

r2c r2c Dk2k qk2

.02 .23 1.6 .8

.06 .39 1.0 .8

.17 .46 .6 1.3

.22 .51 .2 1.4

.47 .51 .1 2.6

.49

.53

.55

.53

.51

.70

.68
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Consider first N = 75 (Tables 26 to 28). When ~ = 0.2, th e fi rst fe w
principal predictors are far superior to the first few principal components in
average cross-validity. This is true whether the q~ distribution is decreasing,
level, or increasing. The reason is that the principal predictors account for
only 20% of the predictor variance wheu ~2 = 0.2. The largest principal
components therefore reflect variance mostly indepeudent of the principal
predictors and therefore the largest principal components are not good
predictors. The principal predictors, though of small v,~riance, are good pre-
dictors and multiple regression on them cross-validates well.

The situation changes, however, as r2 increases to 0.5 and 0.8. When
2v = 0.8 and the q~ distribution is decreasing or level (not increasing), there

is practically no difference between the two prediction methods in the aver-
age cross-validity for t = 1, ... , 5. When ~r2 = 0.8, the five principal pre-
dictors account for a total of 80% of the predictor variance and therefore the
principal components of the predictors are very similar to the principal
predictors. Therefore the principal components and principal predictors
cross-validate equally well.

An exception occurs for the increasing q~ distribution wheu ~r" = 0.8
(Table 28). Here the principal predictors cross-validate much better than the
first few principal components. The reason is that the first principal pre-
dictor (largest D~ and hence best predictor) is the smallest principal pre-
dictor in terms of associated predictor w~riance (q~ is the smallest q~). The
principal predictor method of regression properly picks this first principal
predictor as the best predictor. The principal component method of predic-
tion, however, chooses the principal predictors in reverse order, since the
principal predictor with largest predictor variance (40%) is the fifth princi-
pal predictor and the fourth principal predictor has the next largest v~riance
(20%), etc. Note that there is a large increase in average cross-validity
between t = 4 and t = 5 principal components in this case. The fifth prin-
cipal component is approximately collinear with the first principal predictor
which is the best predictor. On the other hand, when ~-~ -- 0.2, the large
increase in average cross-validity using principal components does not occur
until t --- 8 or 9.

The results when ~.o = 0.5 are intermediate between those for ~ = 0.2
~nd r~ = 0.8. Furthermore, the results for N = 20 (Tables 23 to 25) are
similar to the N = 75 results just described except that the effects are not
as clear due to instability of the weights with small N. An interesting effect
is shown in two cases, however (Table 23, ~r2 = 0.5 and Table 25, ~r~ = 0.2).
This effect is not dependent on sample size and could have occurred for
N = 75. In both cases the average cross-validity when all factors are in-
cluded in the regression is essentially zero, since the predictors are dependent.
The population 2;,~ which was generated in these two cases was almost
singular. This was shown by the difIiculty in inverting it. Every time a
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matrix is inverted in the simulation program, the result is checked by multi-
plying the inverse by the original matrix and comparing the result with the
identity matrix. The largest difference, in absolute value, between corre-
sponding elements in the two matrices is printed as WINV. Most ger~erated
Zxz matrices yield WINV = 0.00001 or less. In the two cases mentioned
above, WINV = 0.003 and 0.0001, respectively, indicating approximate
dependence of the predictors in the population. This dependence appears in
the generated samples as well.

In the two singular cases, prediction from the principal components, for
t ~ 10, is successful. However, for all values of t, the cross-validities using
the principal predictors as predictors are practically zero. The t largest
principal components (t < 10) are independent and their weights cross-
validate well. This is an advantage of prediction from the principal compo-
nents of the predictors--the effect of dependence of the predictors can be
eliminated. However, the weights on the principal predictors are not stable
in the singular case, regardless of the number of principal predictors included
in the regression.

Even though variation of the population parameters has an appreciable
effect on prediction by the two reduced rank methods, for practical applica-
tion of these results it would be necessary to determine from samples what
the population parameters are. Can these parameters be estimated? The
sample (q~, k = 1, ¯ ¯ ¯ , 5) and ~ are estimates of the corresponding popula-
tion parameters and are shown in Tables 23 to 28. In general the sample q~
distribution is similar to the population distribution. This is shown most
clearly for large sample size (N = 75). When the population q~ distribution
is decreasing, the largest sample q~ generally occurs for k = 1. When the q~
distribution is level, the sample values, q~, are approximately equal. When
the q~ distribution is increasing, the largest sample q~ normally occurs
for k = 5. It is therefore possible to decide, on the basis of the
(q~, k = 1, ..- , m) in the derivation sample, whether the principal pre-
dictors cross-validate better than the principal components or whether
there will be little difference between the two methods.

As an additional aid in making this determination, it is important to
estimate ~. This may be done from the value of r’~ computed in the deriva-
tion sample. It can be seen from the tables that the sample ~: is a rough
measure of the population value; there is a tendency for the sample value
to shift nearer 0.5 than the population value.

Since the population (D~_~, k -- 1, -.. , 5) were not varied in these
simulation studies, the sample values, D~, shown in the tables are relatively
constant from sample to sample. These parameters will be discussed further
in the next section.

This section has shown that prediction from the principal predictors is
an effective method of prediction, particularly when the q~ distribution is
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increasing or ~ is small. In other cases prediction from the principal compo-
nents is ahnost as successful as prediction from the principal predictors. The
only case in whichprediction from the principal components is superior to
prediction from the principal predictors is when the predictors are
dependent.

¯ 3.2 Study of Real Data

The calculations described in the preceding section were also performed
on some samples of real data. The data were collected in 1961 by the Educa-
tional Testing Service, Princeton, N. J., from 1205 boys in academic high
schools. The 21 variables employed in the multiple regression calculations
are listed in Table 29. There are two sets of eight predictors each and one
set of five criterion w~riables. The first set of predictors, called the S-predic-
tors, consists of six variables from the Sequential Tests of Educational
Progress (STEP) ~nd two variables from the School and College Ability
Tests (SCAT). The second set of predictors, called the T-predictors, consists
of eight variables from the Tests of General Interest (TGI). The criterion
variables are two variables from the Scholastic Aptitude Test (SAT), two
variables from the College Entrance Examination Board (CEEB), and the
rank in the high school class.

Eight samples were drawn at random from the pool of 1205 subjects.
Four of the samples were of size N = 20 (Samples 1, 2, 3, 4) and the other
four samples were of size N = 75 (Samples 5, 6, 7, 8). Four double cross-
validations were performed (two for each sample size) using the S-predictors.
Then the same samples were used in four double cross-validations using the
T-predictors.

Tables 30 (N = 20) and 31 (N = 75) are a summary of the calculations
made on these samples; the calculations were the same as those made on the
simulation samples in Section 4.1. Correl~tion matrices were used. Again,
only the validation of C~ on C~ is reported.

In most of the samples, the principal predictors (P. P.) validate more
poorly than the principal components (P. C.), and in the two cases ~vhere
the first principal predictor validates better than the first principal com-
ponent, the improvement is not great. Another feature of these data is the
nearly constant average cross-validity of the principal predictors for t =
1, ..- , 5. Even though, in some cases, a few principal components are far
superior to including all predictors in the regression, in no case is the first
principal predictor significantly better than all predictors.

These findings can be understood by considering the estimates of the
parameters p:, ~r-~, (D~, k = 1, ... , 5), and (q~, k = 1, ... , 5). In all 
derivation samples, the sample ~r: is at least 0.87 for the S-predictors and at
least 0.78 for the T-predictors. Therefore these samples correspond approxi-
mately to the ~r" = 0.8 cases of Section 4.1. Furthermore the sample q~
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TABLE 29

E. T. S. Variables

59

S-predictors

STEP Mathematics
STEP Science
STEP Social Studies
STEP Reading
STEP Listening
STEP Writing
SCAT Verbal
SCAT Quantitative

T-predictors

TGI Industrial Arts
T@I Home Arts
TGI Physical Education
TGI Biological Science
TGI Music and Art
TGI History-Literature
TG! Entertainment
TGI Public Affairs

Criteria

SAT Verbal
-SAT Hathematical
CEEB English Composition
CEEB American History
Rank in Hish School Class

distributions are i~1 all cases but one heavily weighted on q~, thus indicating
au extremely decreasing q~ distributiou. Returnir~g to the correspoading simu-
lation examples in Section 4.1, it is seen that the ETS results do not differ
greatly from the last columns of Tables 23 (N = 20) and 26 (N -- 75).

The failure of the principal predictors in the ETS samples can be
further explained by the s~mple D~ distribution. In aJ! ~cases, D~ is at
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TABLE 30

E. T. 3. Samples (N = 20)

t or k

Sample i validated
on Sample 2

P.C. P.~. ~ Sample

r2 r2 r, 2 2
c c ~kk qk

Sample 3 validated
on Sample 4

P.C. P.P. Sample

2

r2

2 2
rc c Dkk qk

1 55
2 55
3 56
4 53
5 52
6 52
7 51
8 44

2Sample ~

Sample w2

S-predictors

.41 3.15 4.68
.42 .4o .83
.46 .24 .59
.44 .!I .41
.4~ .o2 .46

.78

.87

.47

.47

.42

.44

.45

.44
.40
¯ 37

.42 3.93 5.83

.41 .28 .34
¯ 39 . ll ¯ 35
.36 .03 .43
¯ 37 .O1 .26

.87

1 26
2 27
3 27
4 27
5 15
6 13
7 12
8 08

2Sample p

2
Sample ~,

T-predictors

.09 2.!6 1.69

.06 .27 .68

.08 .16 1.93

.O7 .O6 1.57

.08 .O2 .37

.54

.78

28
31
33
32
32
30
32
34

.35 ~.5! 4.31

.32 .25 °42

.32 .09 .47
¯ 35 .04 .68
.34 .01 .51

.78

.80

]east 80% of the total predictable variance and therefore the D~k distribu-
tion in the ETS data is weighted more in favor of D~I than the populations
considered in Section 4.1. This means that the first principal component is
very similar to the first principal predictor and hence prediction from the
principal components is effective.

In the next section some simulation models will be considered that more
closely match the ETS data, particularly in the D~ distribution.

~.3 Simulation o] Real Data

The ETS data samples differ from the simulated data in Section 4.1 in
several respects. The (D~k, k = 1, ... , 5) distribution is much more con-



PAUL A. HERZBERG

TADLE 31

E. T. S. Samples (N : 75)

61

t ork

Sample 5 validated
on Sample 6

P.C.P.P. Sample

r 2 r2 2 2
c c Dkk qk

Sample 7 validated
on Sample 8

P. C. P. P. -Sample

r2 r2 Dk2k qk2
c c

1
2
3
4 64
5 64
6 64
7 63
8 63

2Sample p

2Sample ~

65 .61 3.28
66 .63 .13
66 .63 .07

.63 .02

.63 .Ol

.70

S-predictors

5.55 64
¯ 57 66
.40 67
.27 67
.24 67

68
68
69

.88

.66 3.29 5.87

.69 .09 .47

.69 .o6 .27

.69 .O3 .36

.69 .oi .2~

.7o

.9o

I 49
2 49
3 43
4 44

5 44
6 4O
7 3~
8 37

2Sample O

9
Sample ~-

T-predictors

¯ 37 2.47 3.54
¯ 37 .04 .82
¯ 37 .02 .62
¯ 37 .01 .64
¯ 37 .00 .62

.5i

.78

.48
.47
.45
.46
.46
.45
.44
.43

.46 2.09 4.15

.45 .O9 .53

.44 .04 .51

.43 .02 .76

.43 .01 .67

.45

.83

centrated on D~ in the ETS data than in Section 4.1 where the population

D~k distribution was fixed as (1.2, 0.8, 0.6, 0.3, 0.1). The distribution 
(q~, k = 1, ... , 5) in the ETS data is similar to the decreasing q~ distri-
bution in Section 4.1 although, in most cases, the ETS data had an even
larger q~.

The S-predictors were superior to the T-predictors; the approximate
population p2 for the S-predictors might be estimated to be 0.65 and for
the T-predictors about 0.45. Other parameters were roughly estimated for
the two sets of predictors and are shown in Table 32. These parameters
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TABLE 32

Estimated Parameters Used to Simulate E. T. S. Data

n= 8

vx = 0.01

ex = 0.005

Vy = 0.01

e = 0.005
Y

N= 75

number of Zs per predictor type = 2

number of C1, C2 pairs per ~ = 1

S-predictors (First Z and Second Z)

p2 = 0.65

~2
2 = 0.1, O~ = 0.05,D l = 3.0, D22

3

D 4 = 0.05, D55 = 0.05

~2 = 0.85

ql 2= 5.0, q22= 0.6, q~= 0.4, q~= 0.4, q~= 0.4

T-predlctors

p2 = 0.45

2 2
Dll = 2.0, D22

~2 = 0.75

(Third ~ and Fourth

= 0.i, D~3 = 0.05,

2 =’0.05
= 0.05, D55

= 4.5, q22 = 0.5, q~ = 0.4, q~ = 0.3,.q~ = 0.3
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TABLE 33

Si:uu!~.tion of E. T. S. Samples (N = 75)

t or k 2
r

First Z
Sample A validated

on Sample B

P.P. Sample

2 2
rc Dkk

S-predictors

I .56 .57 3.24
2 .5~ .58 .15
3 .60 .60 .12
4 .60 .61 .03
5 .61 .62 .02
6 .60
7 .6~
8 .62

2Sample p .71

Sample w2

2
qk

5.05
.44
.38
.45
.56

.86

Second z
Sample c validated

on Sample D

P.C. P.P. Sample

r2

r2

2
c c Dkk

.59 .57
¯ 59 .6O
.61 .59
.63 .6O
.64 .61
.61
.61
.61

3.27
.16
.ii
.05
.01

.72

2
qk

5.24
.56
.32
.41
.55

.89

T-predictors

Third Z
Smmp!e E validated

on Sample F

t or k
P.C. ?. P. Sample

2 2 D2 2
rc rc kk qk

i .39
2 .39
3 .40
4 .40
5 .41
6 .4_~
7 .44
8 . 39

2Sample ~

2Sample ~

.41 2.04 4.21
¯ 37 .34 .27
.36 .19 .51
.38 .12 .5~
¯ 39 .03 .57

.54

.76

Fourth Z
Sample G validated

on Sample H

P.C. P.P. Sample

2 2 2 2r r qkc c Dkk

51
51
52
52
51
52

.54 1.67 4I.l~

.55 .20 .4~

.53 .13 .86

.52 .09 .23

.52 .03 .35

.42
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were used to generate population and sample correlation matrices using the
simulation program. Two populations (First 2~ and Second 2~) were generated
for the S-predictor simulation and two populations (Third X and Fourth 2;)
were generated for the T-predictor simulation. One pair of sample correlation
matrices was generated for each population (N -- 75 in all cases). The re-
sults of the validation of C1 on C2 for each of the four populations are shown
in Table 33.

If these tables are compared with the corresponding Table 31 for the
real data, it will be seen that the real and simulation results correspond
closely. By adjusting the parameters it would be possible to make the match
even better, but the simulation using the parameters in Table 32 is presented
here, since this simulation was the first attempted. The close similarity of the
simulation results to the results from the ETS data shows that the simula-
tion model is basically sound.



CHAPTER 5

SUMMARY AND CONCLUSIONS

The several methods of multiple regression discussed in this study are
designed to provide optimal weights for predictor variables. The weights
are optimal in the sense that, in new samples, the weighted linear combina-
tion of the predictors has the highest possible correlation with the criterion
variable. By means of cross-validation, it is possible to estimate the correla-
tion in new samples using only data in a (divided) original sample.

For any given problem it is important to decide which prediction method
gives the best weights. If one exhaustively tries all prediction methods it is
straightforward, using cross-validation, to pick the best linear combination
of the predictors. But there are some disadvantages to this procedure. It is
lengthy even with a computer; there is capitalization on chance results; and
the procedure does not provide a way to generalize to new variables or new
populations.

It is apparent that no one method of prediction will be optimal for all
possible predictor and criterion distributions. Even if one method, for
example prediction from the principal components, were superior, it would
still be necessary to decide the number of components to include in the
regression. Burket’s [1964] work included the computation of statistics which
were of some assistance in deciding how many principal components to in-
clude in the regression. The present study considered some fundamental
parameters of the population distribution which are relevant to the choice
of prediction method and the number of components to include in the
regression.

In order to study the effect of these parameters on prediction, the dis-
tributions were simulated on a computer. The parameters were systemati-
cally varied and the prediction methods were compared for each parameter
set by applying the weights to cross-validation samples.

In Section 3.3 the accuracy of the sample multiple correlation and
cross-validity as measures of the population multiple correlation and cross-
validity were studied. The squared sample multiple correlation, r 2, is an
over-estimate of the squared population multiple correlation, p2. The bias
tends to decrease with increasing sample size and to increase with increasing
number of predictors and increasing p2. The bias is correctly estimated by
formulas of Wishart [1931] and Wherry [1931]. The sample and population
cross-validities are approximately equal and underestimate p2. The sample

65
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cross-validity is therefore a good estimate of the population cross-validity
but not of the population multiple correlation.

The dependence of the cross-validation of the principal components of
the predictors on the distribution parameters was considered in Section 3.4.
The technique used was to calculate the number of principal components
which produced maximum cross-validity. This number, called tin,x, was
studied as a function of four parameters--the sample size, N, the number
of predictors, n, the squared population multiple correlation, p2, and the
average criterion-related predictor variance, ~r2. It was fot~nd that tm~, is an
increasing function of N and p~ and a decreasing function of n and ~. This
means that a few (1 or 2, say) principal components will be more effective
than many components when N is small, n is large, p~ is small, and ~ is large.

Many prediction problems in psychology involve multiple criteria, no
one of which can be considered to be the criterion. A convenient way to avoid
choosing one criterion, and at the same time, achieve some synthesis of the
criteria, is to weight each standardized criterion equally and to optimize the
prediction of all criteria simultaneously. The effectiveness of any prediction
method can then be estimated from the average squared cross-validity.

Two prediction methods were compared ,in this way. The first, predic-
tion from the largest principal components of the predictors, does not use
criterion information in the selection of the components and may be used
for one or several criteria. The second, prediction from the principM pre-
dictors, uses criterion information to calculate the principal predictors them-
selves. This method optimizes the average squared multiple correlation in
the derivation sample.

It was found, for the distributions studied, that the principal predictors
had superior or equal cross-validities to the principal components except
when the predictors were approximately dependent. The st~periority of prin-
cipal predic.tors was particularly evident when ~r2 was small and the q~ dis-
tribution was increasing, meaning that the first principal predictor accounted
for much less of the predictor variance than the last principal predictor.
However this combination of parameters--~~ small and the q~ distribution
increasing--may occur rarely, if at all, in real multivariate distributions. In
the sample of real ability and interest data from the Educational Testing
Service, v~ was very large and the q~ distribution was decreasing with heavy
concentration on q[. In these data, as in the corresponding simulation data,
the principal components were superior to the principal predictors.

This result is similar to Burket’s [1964] finding that the principal com-
ponents correlating greatest with the criterion do not validate as well as the
largest principal components. It appears to be an advantage to select linear
combinations of the predictors independently of criterion information in
order to maximize cross-validity.

In order for the conclusions of a simulation study to apply to real pre-
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diction situations, it must be shown that the simulated distributions are
similar to real distributions in relevant cha~’acteristics. Several sections of
this study were concerned with this demonstration. In Section 3.1 it was
shown that, when the population multiple correlation is zero, the simulation
sample statistics (multiple correlation and cross-validity) obey known sta-
tistical laws. In Section 3.2 it was shown that changes in the covariance
matrix of the predictors, keeping the multiple correlation constant, have no
effect on the correlation statistics. Finally, in Section 4.3, several models
and samples were generated in order to match the ETS data more closely.
The results from this simulation were almost identical to the ETS results.

It would be interesting to determine if other real data have different
values of =2 and different q~ distributions from those of the ETS data and
to see if calculations using these variables obey the laws discovered in simu-
lation. It is also necessary to extend the c~Iculations to larger numbers of
predictors and criteria. Such work would be a further check on the effective-
ness of the simulation model which was used in this study.
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