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NOTE ON FORMAT AND NOTATION

Sections, equations, tables and figures, are numbered on Peano’s decimal
system. Thus, (4.8.2) means the second equation of section 8 of Chapter 
and similarly for tables and figures. The sections of Chapter 5 correspond to
some of the sections of Chapter 4, and are given section numbers identical
with those of the sections in Chapter 4 on which they are based.

An attempt has been made to conform to the preferred conventions in
mathematical notation. In general, capital Roman letters (in italics) denote
matrices, lower case Roman letters (in italics) without subscripts denote
vectors, and Greek letters denote scalars. The few exceptions should be clear
from the context. (For example, a script R (fit) is used for a covariance matrix,
and the corresponding correlation matrix is the ordinary R.)

A script E (5) is employed for the expectation operator.
A prime after a matrix or vector denotes transposition.

Significance levels: *P < .05, **P < .01, ***P < .001.
Glossary o] major symbols (with equation of first appearance).
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(2.1.3)

(2.1.4)

(2.1.4)

(2.1.6)

(2.1.7)

y ~ [y, -.. y,], observed random vector.

x =-- Ix1 "" xr], vector, standardized "factor scores."

e ~ [el ..- e,,], vector, unique deviations.

A, an r X n matrix, "common factor loadings."

U, an n X n diagonal matrix, "ur~ique factor loadings."

fit, an n X n matrix, observed covariances.

M, an r X n matrix, normalized latent vectors.

C, an r X r diagonal matrix, latent roots.

F =-- C~/2M, an r X n matrix, principal component loadings.

L, an r X r orthogonal matrix, rotation.
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(3.1.9)
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(3.1.20)

(3.1.20)

(3.1.20)

(3.1.25)

(3.2.1)

(3.2.3)

(3.7.1)

K, an n X n diagonal matrix, variances of y,, ¯ .. , y~.

z, vector obtained by standardizing y.

R, an n X n matrix, observed correlations.

](y), joint density function of yl, "’" , yn.

~b, unspecified latent "characterization."

g(~b), density function of ~b.

h(y I ¢~), conditional density function of y given

hi(yi [ ~), conditional density function of any yi given ~b.

p~ ] ~b, conditional probability that a dichotomous y~ = 1, given

if_N(’) m %/~-~ ~ exp -- dx,

the normal ogive function.

]~(~) ~ ~(y; ] ~I,), a prescribed function.

p~., probability of a "positive" response.

q~, probability of a "negative" response.

h~(x), p = 1, ... , n, orthogonal polynomials in x.

q -- [Q,(x, ... , x,) ... Qr(xl, "’" , x,)], a vector of r linearly
independent functions in t statistically independent variates x~..

T, an r X r nonsingular matrix.

h ~ qT ---- [h~(x, ... , x,) -.. h~(x, ... , x,)], a vector of r ortho-
normal functions in the x~.

B, an r X n matrix, "factor loadings."

v =- [v~ ... vr] = zF’C-~, a vector of "component variates."

w ~ [w~ ... wr] = hL, a vector of "true parts" of the "component
variates."

d =-- [d, ... d~] = eUF~C-~, a vector of "disturbances."

S, an r X r matrix, covariance matrix of d.

~ - ~(x~), moments of a single factor 

4~, p = 2, 3, -.. r, functions in the moments of w, and initially
unknown parameters comprising elements of a rotation-matrix and
the moments of the latent distribution.

c;,, Fourier coefficients defined by (3.7.2).



(4.4.1)

(4.8.3)

(4.8.3)

(4.8.3)

(4.8.7)

the normal density function.

Y, an n X m matrix of observations on n "individuals" under m
"levels of a quantitative treatment."

F(x), an s X m matrix.

E, an n X m matrix of "errors" in Y.

G(x), an s X matrix, ob tained byort honormalizing F(x).

(4.8.19) K, an n X (~ + 1) matrix of coefficients.
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GENERAL INTRODUCTION

The object of the following is to present an account of a general system
for nonlinear factor analysis, to illustrate its usefulness with the aid of a
number of empirical applications and some constructed numerical examples,
and to show how the concepts employed in the system lead to a degree of
theoretical unification of the field of psychometric models for the dimensional
analysis of data.

In a broad historical perspective, until the early 1940’s there was only
one model for the dimensional analysis of multivariate data. This was the
linear factor analysis model stemming from the work of Pearson and developed
further by Burr, Spearman and Thurstone, to mention only the most out-
standing names. About the only alternative approach to problems of
dimensionality, up to this time, concerned methods for constructing relatively
homogeneous tests. With few exceptions, such methods were so lacking in
rigor that they are best regarded as providing recipes rather than models.

A besetting problem of this earlier period concerned the application of
factor-analytic concepts and methods to "category" or "qualitative" data.
It was felt that factor-analytic concepts should provide a rational basis for
the construction of unidimensional tests. However, this would involve operat-
ing on observations obtained from multicategory or dichotomous items,
whereas the basic factor equations, it was thought, had been developed in
terms of continuously measurable observations. The issue of the applicability
of factor analysis to items became sharpened by the recognition that there
was a choice of coefficients of association between items, as against the
apparently God-given nature of the product-moment correlation coefficient
for "quantitative" variables. Within the traditional framework, this led
to a discussion of the relative merits of the alternative coefficients for items,
in terms of the possibility that factoring these would yield artifacts in the
form of "difficulty factors," or lead to embarrassments such as negative
latent roots and nonreal factor loadings.

More importantly, the problem of qualitative observations led to a
search for alternative methods of dimensional analysis, outside the factor-
analytic tradition. Maior developments were the refinement by Ferguson
and Guttman of existing notions of consistent answer patterns into the
concept of the perfect scale, and the development by Lazarsfeld, in a some-
what strange new language, of the concepts of latent structure analysis.
Latent structure analysis has provided a fairly general framework which
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can both subsume existing models as particular cases and proliferate further
models according to taste. Further, by a generalization on his work on the
principal components of the perfect scale, Guttman has more recently
developed some new models for quantitative observations (the radex theory),
which he contrasts with the Spearman-Thurstone model.

The present situation, then, is in marked contrast to the period up
to the early 1940’s. Whereas in the early period the research worker had one
model for the intrinsic analysis of his test data, applied with or without
misgivings to qualitative or quantitative observations, there is at the present
time a whole range of models to choose from. In fact we seem to have an
embarras de richesse. To take a particular example, consider a research worker
confronted with a matrix of observations consisting of dichotomous responses
from a large number of subjects to a questionnaire of, say, ten or twenty
items. He may consider at least the following modes of analysis, each requiring
a different treatment of the data right from the beginning of the analysis:
(a) scalogram treatment, (b) the latent distance model, (c) the normal 
(d) the latent linear model, (e) the latent hyperplane (an obvious generaliza-
tion of the latent linear model), (f) the latent class model, (g) Coombs’
nonmetric compensatory model, (h) Coombs’ conjunctive/disjunctive model,
(i) "conventional" methods of item analysis, (j) a "conventional" factor
analysis of one of several coefficients of association between items.

The primary object of the work to be reported here is to develop a
generalization of Spearman-Thurstone common-factor analysis, to allow of
nonlinear relations between observed variables and factors. It turns out
that the initial steps in the analytical procedure are identical with those
of linear factor analysis up to the point of obtaining an orthogonal factor
solution. Thereafter, further analysis can serve to fit to the data, and to
justify, the most appropriate linear or nonlinear model. From the theoretical
relations between such psychometric models as those mentioned above, and
the general model to be treated here, it is possible, at least in principle, to
convert the parameters of the nonlinear solution obtained into the param-
eters of an alternative model. The choice of the "best" alternative model is
determined by the nature of the initial nonlinear solution. In this sense,
it is a natural consequence of the present approach that it provides a con-
ceptual unification of the field of "dimensional" psychometric models, such
as latent structure analysis does. Further than this, it provides a single start-
ing point in a practical job of analysis, with a rational choice among the
alternative models at a late stage in the work.

In the chapter immediately following, the background of the present
work is sketched in. While part of the object of this chapter is to develop
in more detail the historical points that were so briefly indicated above, these
are only treated to the extent that they provide useful pointers to the present.
theory.
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In the third chapter, the general theory of nonlinear factor analysis
is developed. Following an account of the model in its most general form, a
complete theoretical account is given of the "single-factor" polynomial,
which may be thought of as a generalization, for quantitative observations,
on Lazarsfeld’s latent polynomial model for dichotomies, and includes the
latter as a special case. The multiple-factor polynomial is then treated com-
pletely for cases where no terms are present in the regression functions which
involve products of factor scores. Following this, an informal account is
given of the type of case where such product terms may occur.

Unfortunately, difficulties in the practical solution of problems by the
present methods increase as a positively accelerated function of the approxi-
mate ranl~ of the observation matrix. There is reason to be confident that
the system can be made practicable and comprehensive with the extensive
development of suitable computer programs. The present work should be
regarded as a foundation for future developments. On the other hand, the
empirical work to be presented will serve to show that the system is already
to the point of practical use on at least a limited range of problems. The
theory developed in the third chapter is there illustrated by artificially con-
structed examples only.

The fourth chapter provides a broad, though not exhaustive, sampling
of the relations of the system being presented to existing problems and
methods.

It may be noted that the theory is iust a piece of applied mathematics.
Hence it does not stand or fall according to what is the case in behavioral
nature. The empirical work presented in the fifth chapter serves to show two
things only: that nonlinear relations between "tests" and "factors" can be
found in behavioral data, and that the present system can be employed to
detect and fit functions to them.

Thus far, empirical examples for nonlinear factor analysis have been
sought where theory suggests that they are most likely to be found. Con-
sequently, each such example serves to illustrate one of the specializations of
the theory, as developed in the fourth chapter, as well as illustrating the
general methods as given in the third chapter. Accordingly, the sections’
dealing with empirical investigations are labelled in conformity with the
sections of the preceding chapter containing the appropriate specializations
of the theory.

In the final chapter, some attempt is made to take a broader view of
the preceding detail.*

* Since the date of writing this monograph, there have been some further developments.
These have not in any way outdated the theory given in the monograph, but they have
provided detailed algebra, and special computer programs, which make the theory appli-
cable to quite complex empirical data. The numerical results in chapters 3 and 5 remain
quite satisfactory for illustrative purposes, but see McDonald (1965a, 1965b, and in press)
for current recommendations as to computing algorithms and computer programs.



CHAPTER 2

GENERAL BACKGROUND

2.0 Introduction

Section 2.1 of this chapter is a review of certain aspects of linear fac-
tor analysis. Here we are concerned only with those features of the linear
model which have implications for the present nonlinear theory. These
include the basic equations of principal components analysis, the relations
between factor solutions for correlation and covariance matrices, and the
problems of estimating communalities and determining the approximate rank
of the reduced observation matrix. All of the considerations developed here
carry over to the analysis of the nonlinear models.

In sect. 2.2 the need for nonlinear models is discussed, with particular
reference to the problem of "difficulty factors." This leads on to an examina-
tion in sect. 2.3 of the principles of latent structure analysis (LSA) and 
Guttman’s radex theory. The major obiective here is to show that when
the basic principles of LSA are stated in a much more general form than
they have usually been given, the linear and nonlinear factor models can
readily be derived as particular cases.

It has been claimed by such writers as Guttman and Lazarsfeld that the
concepts of linear factor analysis are inappropriate to observations in the
form of response categories. The importance of this distinction between
"quantitative" and "qualitative" observations, in the context of factor
analysis, is implicitly questioned by the arguments of sect. 2.3. In sect. 2.4
an explicit examination is made of the relation between the observations
made on the real world and the data as recorded in a score matrix for the
purpose of factor analysis. Here it is shown that multicategory observations
can in fact be converted into data suitable for linear factor analysis. The
same conversion can be made in the nonlinear models in the sequel. Hence
the system being presented here can be taken to apply to multivalued observa-
tions, such as test scores; to dichotomous observations, such as test items
scored in terms of pass/fail; and also to multicategory items, whether or not
the categories of response can be ordered in some way.

In sect. 2.5, the immediate background to the present approach is
treated. This involves an examination of Gibson’s attempt to develop non-
linear models by an ad hoc adaptation of latent class analysis, followed by a
consideration of the analogy ~o the present problem that can be seen in the
methods of curve-fitting by orthogonal polynomials.
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The general intention of this chapter is to clear the ground for the theory
and practice presented in the sequel. Some of the issues raised here, such as
that of "difficulty factors" and the latent structure models, are dealt with
in the terms of the present system in the fourth and fifth chapters. Other
considerations, such as the procedure for determining the rank of the reduced
data matrix, are employed in the sequel without any need for further comment.

2.1 Linear Factor Analysis

There is an extensive literature dealing with the basis of the linear
factor models, with methods of factoring, and with criteria for testing the
fit of the model to observations. A full review of this literature is.unnecessary
here. The maior issues are covered by Holzinger and Harmaa (1941),
Thurstone (1947), Thomson (1950) and Harman (1960). The most rigorous
account of the fundamentals is given by Anderson and Rubin (1956). For
the present purpose, it will be sufficient to set out the basic equations of the
orthogonal factor model only. The question of oblique factor models will be
briefly referred to in the final chapter. The obiect here is to establish the
nature of the assumptions in the model and to indicate briefly the current
status of the main problems in applying it to observations, insofar as these
concern us in the sequel.

In practice, the starting point for a factor analysis is a sample matrix
of observations, of order N by n, let us say. In psychology, it typically
consists of measurements obtained from each of N subiects on each of n
tests, though other applications of the theory can be made. The first problem
is to specify the nature of the population with which we are concerned. In
relation to "subiects" and "tests" there are at least three models to consider.
In what may be called Model I we regard an observation matrix as a sample
of size N from an infinite population of subjects performing on n fixed tests.
In Model II we regard the observation matrix as a sample of one member
from an ensemble of conceptual replications involving the same tests and
the same individuals. This is analogous to the situation of fitting a functional
relationship to a single set of points, as in an individual learning curve,
where statements about "error" are concerned with expected fluctuations in
performance if this individual were "brainwashed" and his performance
repeated. Model II applies in the case of Tucker’s (1958; 1960) work on fitting
individual functional relationships by factor analysis (cf. sect. 4.8 below).
Model I and Model II are carefully distinguished by Anderson and Rubin
(1956). Model III is explicitly or implicitly recognized in the work of Guttman
(1950; 1955a) at least. In this model, an infinite universe of content, 
behavior-domain, is postulated, from which the n "tests" employed are re-
garded as a sample, though not, perhaps, a random sample. In such a case,
the observation matrix might be thought of as a sample both in terms of
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persons and tests. However, since there does not seem to be any means
whereby we can increase the size of a sample of tests without limit, yet be
assured that we are still sampling the same behavior domain, Model III
does not seem worth considering. For the same reason, we do not need a
converse to Model I, with individuals fixed and tests "random."

To anticipate a little, it is reasonable to consider transposition of the
basic factor equations, in the sense of intercorrelating persons instead of
tests, in Model II or III but not in Model I. It is generally asserted (cf.
Thomson, 1950; Thurstone, 1947) that factor loadings can be calculated,
whereas common-factor scores (given nonzero uniquenesses) can only 
estimated. Whittle and Wold (cf. Henrysson, 1957, pp. 133-134) point out
that errors of estimation of factor scores approach zero as the number of
tests increases without limit, iust as errors of estimation of factor loadings
approach zero as the number of subjects increases without limit. While
this theoretical symmetry of the argument can be admitted, it holds only
in Model III. For the present purpose it is best to consider Model I only,
in which factor scores remain undetermined in the population, as will be seen
shortly. Model II will be briefly treated in sect. 4.8.

Consider a random vector

Y ~ [Yl "" Yn]

whose expected value

~(y) = 
is not in general a vector of zeros. In the linear, orthogonal, common-factor
model we write

(2.1.1) y -- ~) = xA ~ eU,

where A is an r X n matrix (r _~ n) of rank r, U is an n X n diagonal matrix,

and

are random vectors, with

z = Ix1 .--zr]

e ~-- [el -..

(2.1.2) ~(x’x) = I, ~(e’e) = I, ~(e) 

and

~(e’x) = 
Since A is of full rank, it follows that ~(x) = 0. The vector y can be thought
of as a set of measures on n tests, or more generally as a set of observations
or manifest variates. The vector x is a set of r _< n unobserved orthogonal
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]actors, ]actor scores or latent variates. The matrix A represents common-
factor loadings, weights or saturations, analogous to regression weights in
multiple regression theory.

Given a sample of N observations of y, the primary object of factor
analysis is to estimate an A and U which "account for" the observations.
More rarely, estimates of the values of x in the sample are also desired.
A wide variety of methods for factoring has been developed (cf. tIarman,
1960). Here we consider only the principal components solution, which is
employed throughout the sequel.

From (2.1.1) and (2.1.2) we 

(2.1.3) 5~ ~ ~I(Y-- 9)’(Y-- 9)} = A’A + U2.

It should be noted that strictly (2.1.2) contains some redundancy. Working
straight from (2.1.1), we have

~{(Y - 9)’(Y - 9)} A’A + ~(Ue’eU) + ~(Ue’xA) + ~(A’x’eU).

It is sufficient in everything that follows to assume that

~(Ue’eU) + ~(Ue’xA) + ~(A’x’eU) ~,

rather than assume that the terms in e’x and x’e vanish individually as in
(2.1.2). The point is only worth mentioning because of the fact that while
the last equation can be deduced from the principle of local independence
in latent structure analysis, the full set of assumptions in (2.1.2) cannot.
The question arises in this form in section 2.3. Thus if the model holds, a
diagonal matrix U2 can be found such that the "reduced covariance matrix"
(R -- 2 i s of r ank r_<n. LetM bethe r X n matr ix whose rows are the
latent vectors of 5~ -- U2 corresponding to nonzero latent roots, and C be
the r × r diagonal matrix containing the nonzero roots. Then

(2.1.4) (R -- ~ =M’CM

and

(2.1.5) Mill’ = I.

If we write

(2.1.6) F =-- C1/~M,

then the matrix

(2.1.7) A = LF,

where L is any r × r orthogonal matrix, is an admissible solution to the
problem of determining factor loadings. The matrix F is the principal com-
ponents solution. Thus far, of course, problems of sampling and of finding
the matrix U~ have been ignored. Equation (2.1.7) represents the "rotation
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problem" of linear factor analysis, i.e., the fact that solutions to (2.1.1)
can be determined only up to an orthogonal transformation. Psychologists
have invoked criteria such as "simple structure" for A to reduce this in-
determinacy (Thurstone, 1947). In the sequel, a rotation problem of a rather
different kind arises.

Given a principal components solution for the population,

(2.1.8) Y - 9 = xF -~ eU,

by (2.1.5) and (2.1.6) we 

(2.1.9) x = (y - 9)F’C -1 - eUF’C-1.

Since e is an unobserved random vector, if n is finite and U contains nonzero
elements, there is a fundamental indeterminacy in x in the population.
It is in this sense, rather than in the sense of sampling theory, that for Model
I common-factor loadings can be "calculated" while common-factor scores
can only be "estimated." If, as in Model III, n can be allowed to increase
without limit, with no alteration of rank, the term eUF’C-1 will approach
zero. However, as pointed out above, it is difficult to believe that one can
ever draw on a "universe of content" or "behavior domain" in this way.
If one did operate in terms of Model III, expectations over the poulation
of tests could be written down for (y -- 9) (Y -- 9)’ as well as for (y -- 9)’(Y 
thus providing a sensible basis for what has been called Q-technique (Cattell,
1952) or P-technique (Burr, 1937). In Model I, this symmetry does 
strictly obtain.

In psychological work as a rule, neither the mean nor the variance of
a set of observations has any absolute significance. It follows that in finding
the matrices M and C required above, the research worker has at least the
choice of operating on an obtained covariance matrix, or on the correspond-
ing correlation matrix, or on the (raw) product-moment ~(y’y) without
applying the correction for means, as in the procedure given by Eckart and
Young (1936). Since in the sequel there are examples in which the first two
possibilities are employed, and one case (sect. 4.8) where the Eckart-Young
procedure might be considered, it is worthwhile to examine briefly the
relations to be expected between results from the three procedt~res. It will
first be shown that in general the effect of operating on the matrix ~(y’y)
instead of the deviation form is to yield an additional factor, and a rotation
of the matrix of factor loadings can be found such that one of its row vectors
is simply the vector 9.

We rewrite (2.1.1) 

(2.1.10) Y = (9 -~ xA) ~- eU.

In general the vector 9 will be linearly independent of the row vectors of A.
If in such cases we form the matrix A* by augmenting A with the row vector
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and write

(2.1.10) becomes

where

(2.1.11)

so that

(2.1.12)

x* ---- [lxlx~ "’" xr],

y = x’A* --~ eU,

8(x*’x*) = 

a(y’y) ~- A*’A* + ~,

where A* is of full rank, (r + 1). Thus, in general, with subtraction of the
same diagonal matrix U~ the matrix ~(y’y) is of rank (r + 1) given that the
covariance matrix is of rank r. The converse obviously holds also. Further,
given a factorization B of ~(y’y) -- ~, i .e., a matrix B oforder (r + 1) X n
and rank (r + 1) such that ~(y’y) -- ~ =BPB, there exists an ort hogonal
matrix L such that

(2.1.13) LB = A*,

i.e., such that one of the row vectors of LB is the vector of means, ?~. This
rather suggests that in general there is nothing to be gained from operating
on ~(yPy) as against the covariance matrix, and on the whole the latter
would be the preferable starting point, since it is easy to remove the vector
of means at the start, instead of letting it remain as a factor.

We consider next the effects of putting the observations in standard
form, i.e., with mean zero and variance unity. Writing

K -- diag {var (yl) "’" var (Yn)},

we have

(2.1.14) z -- (y -- ~)K-~/~

for the vector of standardized observations. Then the matrix of intercor-
relations

(2.1.15) R = ~(z’z) = K-’/~6tK-1/~.
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It follows immediately that if

~ = A’A + U~’ ,

then

R = K-1/2A’AK-1/’2 + K-’/’-’U2K

so that if A and U provide a factorization of 6~, AK-1/~ and UK-1/2 provide
a factorization of R. However, if we have a principal components solution
F, as above, for 6~ such that FF’ is a diagonal matrix as required by (2.1.5)
and (2.1.6), then FK-1/2 is not in general the same as the principal components
solution for R, but is related to it by an orthogonal transformation. Given
the rotational indeterminacy of factor analysis, it is sufficient to regard stan-
dardization of the observations as equivalent to multiplying A and U on the
right by K-1/2. Again, of course, these remarks apply only to population
values. In the sequel, the basic operations are carried out on either covariance
or correlation matrices according to theoretical considerations that are specific
to each case, but the choice is not of fundamental importance. It is true,
however, as Anderson and Rubin (1956) show, that sample estimates of the
covariance and the correlation matrices may not even yield the same decision
as to the rank of the reduced matrix.

We turn now to a brief survey of the current status of problems in
dealing with finite samples of observations. The main concerns are the inter-
related questions of the rank of the covariance matrix and the determina-
tion either of the matrix U2, or of the communalities which are the reduced
elements in the leading diagonal after subtraction of U2. Broadly, following
Wrigley (1957), one can distinguish a purely algebraic treatment on the one
hand, as in the work of Thurstone (1947) and Guttman (1954a; 1956; 1957a),
and a genuinely statistical treatment on the other, stemming from the clas-
sical work of Lawley (1940) on maximum likelihood estimation of factor
loadings. The second type of treatment is adequately reviewed by Burg
(1952), Maxwell (1959), Rao (1955), and Anderson and Rubin (1956). 
last two references cited also contain original contributions.

To consider the statistical treatments first, it may be sufficient to note
that methods such as that of Lawley (1940) rest on statistical assumptions
which cannot readily be justified in the extension of factor methods to non-
linear factor analysis. Hence the theory to be developed here cannot make use
of existing sampling theory. Nor has it been possible so far to develop sampling
theory appropriate to the nonlinear models. Consequently, practical applica-
tions must rest on algebraic criteria for rank such as those of Guttman
(1954a). It should be noted that there are still some problems and doubts
with respect to the application of the maximum likelihood methods. Thus,
Anderson and Rubin indicate that although a decision criterion now exists
for testing the hypothesis that the rank r of the reduced covariance matrix
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is ro against the alternative r > ro, there is still no rational multiple decision
procedure if the investigator has no a priori hypothesis as to the rank. This
is by far the most usual situation in practice. Wrigley (1958) has indicated
other "logical difficulties" with the method. It might even be argued that
if a factor is technically significant but trivial in the sense that it corresponds
to a very small latent root, it would be sensible in practice to ignore it. This
means that instead of asking whether a model such as (2.1.1) of some rank
r _~ n fits a given observation matrix, we ask whether a model like (2.1.1)
of "low" rank can give a "reasonable" fit to the data, where neither "low"
nor "reasonable" can be strictly defined.

The last point leads us to consider "algebraic" treatments of the practical
problems. In principle, Thurstone (1947) considered that the diagonal
entries of the correlation matrix should be so chosen as to minimize its
rank, though none of his practical suggestions could be guaranteed to do this,
even "approximately." Albert (1944) has provided an exact (and laborious)
algebraic solution for elements of U2 yielding minimum rank r provided that
r < n/2, a condition which is most unlikely to hold for exact rank in em-
pirical data, as Harman (1960) and others have pointed out. Guttman
(1954a; 1956) has provided theorems on lower bounds to the minimum rank.
Kaiser (1961) has extended the proof for one of these. Guttman (1954a)
shows that after subtraction of a diagonal matrix U2 from a correlation
matrix R, which leaves R - U~ positive semidefinite, the rank of R -- U~

is not less than the number of latent roots of R which are greater than or
equal to unity. He also deduces two stronger lower bounds. Ledermann (1937)
has supplied an upper bound formula. Wrigley (1948) questions its practical
usefulness. More generally, Wrigley points out that more than 20 criteria
for determining reduced rank have been suggested ("algebraic" or "sta-
tistical") as though it is easier to invent new procedures than to justify
existing ones. Much the same is true of the related communality problem.

It must be admitted, then, that a good deal of the practical side of
factor analysis is still in a parlous state. It is no part of the present work
to add further solutions (or complications) to these problems, but for the
practical aspects of the sequel it is necessary to employ one of the existing
procedures. For general convenience, Guttman’s weak lower bound described
above will be taken as the actual criterion for approximate rank in the
numerical examples given. It is particularly convenient in the present state
of the nonlinear theory to operate in terms of very low rank. As a rationaliza-
tion, it can be said that such a procedure should yield "low" rank with
"reasonable" fit, in the indefinable sense mentioned above.

A brief examination of the assumptions in the orthogonal linear model
will serve to conclude this section. These assumptions are completely ex-
pressed in (2.1.1) and (2.1.2), and there is little to be gained from restating
them in words. Guttman (1954a) has called the set of assumptions in (2.1.2)
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the ~-law of deviation, and he has considered the use of other "laws" of
which the a, f~, and ~, are individual parts of (2.1.2), while the e-law is defined
on the basis of Model III discussed above. For the present purpose, these
alternatives can safely be disregarded. The important points to note are
as follows:

Firstly, except for the purpose of making certain tests of significance,
no assumptions are made, in respect to the observations y, the factor scores x,
or the unique deviations e, about either their distribution functions Or their
measurability. The distributions, and the variate measures, can be continuous
or discontinuous, and in particular we could have the observations y taking
the values zero and one only, with specifiable probabilities. This point is
important because writers such as Guttman (1950) have claimed that factor
analysis is designed only for "quantitative" observations. Presumably this
means either continuously measurable observed variables or, at least, vari-
ables which can take a "large" number of distinct numerical values. This
matter will be considered further shortly.

Secondly, (2.1.2) sets down orthogonality relations only. There is 
requirement in the model that the factor scores or unique deviations be
mutually independent statistically. It would be possible to have curvilinear
relations between them, consistent with zero correlations. This point is of
fundamental importance, as it ~dll be shown in Chap. 3 that all of the rela-
tions given above for the linear model still hold in nonlinear models. The
essence of the present development is in a reinterpretation of the factor scores.

2.2 The Need ]or a Nonlinear Model

A priori, it may seem possible that behavioral data could turn out to
be quite persistently linear, or at least that linear models might serve to
describe behavioral data to a quite satisfactory approximation (cf. Cattell,
1960). It is well known, after all, that the size of a correlation coefficient
does not alter "much" under monotonic transformations of the metric of
the variables (cf. Mosteller, 1958). Provided, then, that behavioral variables
are monotonically related, a linear model may serve to describe the relations
within the usual limits of error in a factor-analytic investigation. Ahmavaara
(1957) claims, though without real argument, that nonlinear models are
unnecessary. Bargmann (1960), reviewing Ahmavaara’s book, implies that
nonlinear models can be avoided by some kind of normalizing or scaling of
the observations before analysis. He cites as an instance Thurstone’s (1947)
well-known treatment of the box problem. Thurstone constructed "observa-
tions" out of nonlinear but monotonic functions of the three dimensions of a
sample of boxes and recovered the dimensions by factor analysis, having first
normalized the observations. Provided that the relations between observed
variates are monotonic, it seems that one could apply transformations of
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metric such that mutual regressions are linear and then proceed to a linear
factor analysis. However, this is not possible in general, since there are
n(n -- 1)/2 such regressions to consider, for n observed variables. Further,
the nonlinear models considered below apply also to observed dichotomies,
for which we cannot consider the linearity or nonlinearity of the observed
mutual regressions.

Instances can certainly be found in psychological work of curvilinear
and nonmonotone relations between observations. Eysenck (1958) has drawn
attention to the limitations of factorial methods in work on anxiety, where
it is well known that certain performance measures are U-shaped functions
of anxiety, as expected on the basis of Hull-Spence theory. Another example
is the relation between intensity of attitude and position on the attitude
scale as studied by Suchman (1950). It might be possible to have measures
of intensity and measures of position included in a matrix of observations,
in a sufficiently subtle form to prevent them from being recognized as such.
In general, though, it can only be said that a great deal of work will have to
be done with the nonlinear models before it is established that they are
absolutely necessary.

The most persistent problem in the factor-analytic literature which
leads us towards nonlinear models might well be called "the mystery of
the difficulty factors." Guilford (1941) in a factor analysis of the Seashore
Test of Pitch Discrimination obtained a factor which was related to the
difficulty of the items. This might be taken to show that different abilities
were employed, respectively, in making easy and difficult discriminations
in pitch. Ferguson (1941) pointed out that whereas the generally accepted
notion of homogeneous or internally consistent tests was one in which the
interitem correlation matrix was approximately of rank one, it appeared
that a matrix of phi coefficients (product-moment correlations for dichotomies)
would be of rank greater than one if the items differed widely in difficulty
level. Ferguson’s argument was not, perhaps, as rigorous as might be desired.
He considered that the explanation lay in the fact that the maximum possible
value for phi is a function of the difference in difficulty level of the items,
but his discussion also assumed that one had a set of items concerned with
the same "content" in which a person passing any item necessarily passed
all easier items. This assumption characterizes the "ideal answer pattern"
of Walker (1931; 1936; 1940) or "perfect scale," as Guttman (1950) called 
Ferguson also considered the case of correlations between tests of differing
difficulty level and noted that these too should give a correlation matrix of
"spuriously" high rank. To illustrate, he presented an empirical correlation
matrix which may now be recognized as an additive simplex (cf. Guttman,
1954b, and see sect. 2.3, 4.1, and 4.7 below). Wherry and Gaylord (1944)
discussing Ferguson’s "dilemma," concluded that it is due to the use of the
wrong correlation coefficient, and recommended the use of tetrachorics for
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factoring dichotomous data. They also showed that in the case of tests of
differing difficulty one could expect their mutual regressions to be nonlinear,
but contented themselves with recommending in such cases the practical
measures of dichotomizing the test scores and again using tetrachorics.
As a result, it seems, attention moved from the basic equations of factor
analysis, in which the product moment correlation matrix or covariance
matrix is only an intermediate step in calculations, so to speak, to the ques-
tion of finding the best-behaved correlation coefficient (cf. Cattell, 1952,
pp. 321-327). Carroll (1945) and Gourlay (1951) indicated conditions 
which tetrachoric correlations might yield a "difficulty" factor. It is pre-
sumably known, too, that the substitution of coefficients other than product
moments in the correlation matrix will yield a matrix which is not necessarily
positive semidefinite; hence one can have the embarrassment of finding
negative latent roots and nonreal factor loading’s. (I have not seen this point
specifically discussed in the literature, but workers in the field seem well
aware of it.)

At the theoretical level the question has not been taken further, except
for claims by Gibson (1959; 1960) that difficulty factors, being due to mutual
nonlinear regressions between tests, can be further considered as due to
nonlinear regression of tests on factors. This is plausible enough, especially
when we consider that the original arguments of Ferguson, Wherry and
Gaylord, and Carroll all assumed a perfect scale, though they did not call
it that, and one interpretation of the perfect scale (cf. Torgerson, 1958, and
see sect. 2.3 below) is in terms of markedly nonlinear relations between items
and the latent variate or factor. However, a general account of the way in
which difficulty factors result from nonlinear regressions does not seem to
have been given yet.

On the empirical side, there is a curious situation. Dingman (1958)
compared phi coefficients and tetrachorics and felt that his results constituted
a disproof of Ferguson’s theory. Comrey and Levonian (1958) obtained 
many factors with phi, phi over phi-maximum, and tetrachorics, but obtained
anomalous figures with the second of these. They concluded that phi was
a much maligned coefficient. The point seems to have been missed, however,
that the earlier arguments rested on the assumption that one had scalable
data, i.e., data that conform to the perfect scale.

If these two investigations have failed to find difficulty factors, it may
simply be the case that the data employed were not remotely scalable.
On the other hand, there is any number of scales and quasi-scales to be
found in the literature, and any of these if factored in terms of covariances
or product-moment correlations (phi coefficients) will yield difficulty factors.
Similarly, Guttman (1957b) has listed a number of matrices which, on in-
spection, are found to have the simplex property, thus resembling Ferguson’s
early example of difficulty factors in tests as against items. Any of these may
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be further evidence in favour of the earlier arguments, though they are open
to an alternative interpretation (see below, sect. 4.7). In short, to anticipate
a little, the difficulty factors of these early discussions may turn out to be
components due to cu1"~ilinearity, of which the principal components of the
perfect scale (Guttman, 1950) are only a limiting case. One objective of 
nonlinear model would be to establish the existence of intermediate cases
between the linear model in a single factor, with a correlation matrix of
rank one, and the perfect scale, also involving only one factor, with a cor-
relation matrix of high rank.

In order to make these points clearer, however, it is necessary to make a
brief examination of the basic principles of latent structure analysis and of
Guttman’s radex theory. This is done in the section immediately following.

2.3 Other Relevant Models

In the more recent period there have been three maior developments
in the field of models for the "dimensional" analysis of data. These are,
respectively, latent structure analysis (LSA) (Lazarsfeld, 1950; 1954; 1960),
the radex models of Guttman (1954b; 1955b) and nonmetric factor analysis
(Coombs and Kao, 1954; Coombs and Kao, 1955; Torgerson, 1958). The
object of this section is to treat only the basic principles of the first two of
these developments insofar as they provide a theoretical background to the
present approach. A detailed account of some of the models will be given
in Chap. 4. Latent structure analysis is relevant because a proper statement
of the latent structure principle--the Principle of Local Independence--
enables one to derive both the linear and nonlinear factor analysis models
as particular cases, as well as a wide range of other models. The radex theory
is relevant, since although it contains no direct implications about the factor
composition of tests, there are certain interesting nonlinear factor models
which entail the radex properties. Nonmetric factor analysis is relevant,
since it can be thought of as the development of a particular class of latent
structures or nonlinear factor models. Consideration of this last, however
has been left to Appendix 3.4A, where certain generalizations on Coombs’
conjunctive/disjunctive models are developed.

There is a certain degree of inconsistency and confusion in the basic
statements of latent structure analysis. In his primary account of LSA,
Lazarsfeld (1950) introduced it in terms of three notions, viz., a unidimen-
sional continuum on which a single unobserved latent variate (i.e., factor
score) is distributed, a set of dichotomous items or mani]est variates, and,
for each item, a trace-line which is a function describing the conditional
probability of giving the designated positive response as a function in the
single latent variate.

Assuming polynomial functions for the trace-line, Lazarsfeld derived
from this an equivalent latent class model in which the very notion of a
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latent continuum, unidimensional or multidimensional, was dropped out. In
this rather restrictive form of LSA, the Principle of Local Independence is
as follows:

For a given position on the latent dimension, responses to the items are slatisEcally
independent.

A general formulation was given by Anderson (1959), and a closely
related treatment was used in a discussion of latent class models (McDonald,
1962a) which was developed in ignorance of Anderson’s work. The following
is an expanded version of the latter.

Consider a vector of observations, or manifest variates, y =- [yly2 ¯ ¯ ¯ Yn].
They may be continuous or discrete and in particular dichotomous. Let the
ioint probability density of the manifest variates be denoted by

f(Y) =- I[YlY2 "’" Yn],

taking nonzero values over the manifest domain M. Let there be a latent
variate system 9 whose density function g(9) takes nonzero values over
the latent domain L. This latent variate system may be a discrete or con-
tinuous latent variate (scalar or vector) characterizing the population 
individuals. Let the conditional density function of the manifest variates
for given latent charaterization be denoted by

h(y 19) =-- h[yly~ ... y, 19].

Let the conditional density function of any manifest variate y,., for
given 9 be denoted by h~(y~ I 9). In the following, all integrals are to be
understood in the Stieltjes sense, hence they are to be replaced by sums in
the discrete case.

In general we may write

(2.3.1) ~(Y) = fL h(y ¢)g(¢) d~.

The general form of the principle of local independence is that

(2.3.2) h(y l ~b) = ~I h,(y, I ~b).

In words, for a given latent characterization, the manifest variates are
distributed independently. Without any further assumptions, we can write
down a generalization on Lazarsfeld’s "accounting equations" (Lazarsfeld,
1950, p. 370). Substituting (2.3.2) in (2.3.1) yields

= f I(2.3.3)

The expected value of any product or continued product of the manifest
variates is a function of the density of ~b and of certain expected values of
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the conditional distributions h~(y~ I ~). Thus, for a manifest variate y~,

i=i s’=l

whence

(2.3.5) 8(y~) = ~ 8(y~ ¢)g(¢) de.

Now let 1-L Y~ be the continued product of ~ny stipulated subset consisting
of s of the n m~nifest variates y~. Accordingly, ~, (y~ ~ ~) represents the
corresponding continued product of the conditional expected vMues. Then,
in the s~me way,

(2.3.6) ~(~ Y~) = f H S(y~ I ~)g(~)d~.

Equation (2.3.6) is the most general form of Luzsrsfeld’s "accounting equa-
tions" for any kind of manifest variate or latent variate system.

The advantage of this formulation over those of L~zarsfeld is that it is
sufficiently general to contain, ss particular cases, linear und no,incur
factor analysis models and the lat~t profile model discussed by Gibson (1959)
and derived earlier by Green (1952), as well as including the recognized
models of LSA proper. We now consider briefly the basis of some of these
models.

It should be noted, to begin with, that the functioa 8(y~ ~ ~) is the
regression function, ss strictly defined, of the manifest variste y~ on the latent
~hsrscterization ~ (cf. Kendall, 1951). It can also be thought of as ~ gen-
eralization on Lazsrsfe]d’s trace-line. We follow the usual practice for a
manifest dichotomy of assigning to it s dummy vsri~te y~ which takes the
values zero or unity. Then in such s case

(2.3.7) p~ I ¯ ~ S(y~ ~)

represents the conditional probability that y~ = 1, for given ~. If, further,
¢ is a scalar latent v~riste ~, then

 2.3.s) = s(y 
is s function in x which is s trsce4ine in Lszsrsfeld’s sense. Thus, we muy
£uestion the fundamental character of the distinction between dichotomous
~and "quantitative" obse~ations that has been insisted on by Lazarsfe]d and
Guttman, us mentioned in the previous section. The basic kinds of model
~o consider are obtained, rather, by restrictions placed ca the latent ch~r-
~cterizstion ~, though it c~n be useful to write down the p~rticu]ar forms
for ms~fest dichotomies separately.

The first special cases to consider are those in which ̄  has a discrete
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distribution. If ~I, takes the values ,I,~ with probabilities g~ (i = 1, 2, -..),
(2.3.6) takes the form

(2.3.9) ~(~ yk)
s i s

Equivalents to (2.3.9) have been given by Green (1952) and by Gibson
(1959). The latter has named this case the latent profile model, and he obtains.
the equivalent to (2.3.9) by way of an extended geometrical proof that

(2.3.10)

Such a proof is unnecessary when we have the principle of local independence
in the form of (2.3.2) as our starting point. Moreover, if all the manifest
variates are dichotomies, (2.3.9) yields immediately

i k
(2.3.11)

where

represents the probability that simultaneously y~ -- 1 for s selected
Equation (2.3.11) is the equivalent in the present notation to Lazarsfeld’s
(1950, p. 370) "accounting equations" for the latent class model for manifest
dichotomies. In view of the above, it has been recommended (McDonald,
1962a) that the term latent class model be understood to cover the more gen-
eral case where the manifest variates are "quantitative" or a mixture of
"quantitative" and dichotomous variates, as well as the particular case where.
all members of the set are dichotomies.

The latent class models will be treated further in sect. 4.3 and 5.3.
For the present, it is sufficient to note that these models are essentially
"nondimensional" in the sense that although the latent classes can be thought
of as arbitrary partitions of a unidimensional or multidimensional continuum
(Lazarsfeld, 1950; Gibson, 1960), the classes as treated in the model are not
ordered or arranged spatially in any way. Although the latent class models~
can be related to the linear or nonlinear factor model (Green, 1952; Gibson,
1959; Gibson, 1960), they are in a sense the most remote development which
we will encounter.

We consider next the group of models in which the latent characteriza-
tion ¯ I, is represented as a single latent variate x with a continuous density
function. Subvarieties of this group have been identified by writing particular
expressions for p~ I x, the conditional probability of a positive response.
given the value of the latent variate. Here, in view of the above, these sub-
varieties can be taken to include any type of manifest variate for which
we can write functions ~(y~ I x) for their regressions on the latent variate.
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Among the models of this group we have

(2.3.12) 8(y~ Ix) = ~ a~x~,

the latent polynomial (Lazarsfeld, 1950);

(2.3.13) 8(y~ Ix) = a~o A- a,~x,

the latent linear model (Torgerson, 1958);

(2.3.14) ~(y~

where N(-) is the normal ogive function, i.e., the normal ogive model (Torger-
son, 1958); and

(2.3.15)

ilk, X > x~,

i.e., a "step" or "jump" function, known as the latent distance model (Torger-
son, 1958).

These models will be treated in the sequel. For the present, it is sufficient
to make two points. Firstly, in this more general form, the latent linear model
is precisely the single-factor case of the linear factor analysis model, and it
is no coincidence that, as Torgerson (1958) notes, the Spearman single-factor
formulae can be used to solve for the parameters in this model. Secondly,
as Torgerson further points out, in the latent linear model for manifest
dichotomies, one factors the covariance matrix formed from the elements
Pi~ -- PiP~ (where p; is the probability of a "positive" response, and p;~
is the probability of joint "positive" responses) to obtain the regression
slopes (or trace-line slopes ) a~l. More generally, in any of the models for
manifest dichotomies, factoring the covariance matrix by the methods given
below leads more directly to their parameters as commonly described than
if we operate on the product-moment correlation matrix (phi-coefficients).
This will be seen later (Chap. 4). However, the choice between covariances
and correlations is still not of fundamental significance (cf. sect. 2.1).

Next we consider the group of models in which the latent characteriza-
tion ~I, requires a multidimensional continuum. The linear factor model of
section 2.1 has the property

2.3.16) ~(y,. ] Xo, xl, x2, ..- , x~) = a~x~

where xo is by convention set equal to unity, corresponding to (2.1.10). For
manifest dichotomies, this model might well be called the latent hyperplane,
since it is the obvious extension of the latent linear model (2.3.13). In such
a case it is evident that the more general trace-hyperplanes corresponding
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to Lazarsfeld’s trace-line notion, can be fitted by multiple factor analysis
of the covariance matrix, up to an orthogonal transformation. The more
general multidimensional model, which provides the basis of the present
approach to nonlinear factor analysis, can reasonably be left to the next
chapter where it belongs.

One general aspect of this treatment of LSA remains to be considered.
We identify a specific LSA model by writing specific functions ]~(~), 
1, -..,n) in

~(y; IT) -- f;(T).

To link this kind of statement with the more usual statements for factor
models, we can define a unique deviate e; by the relation

(2.3.17) y; = ~(y;

where

= 1,.
Model (2.3.16) for example would then take the familiar form

(2.3.18) y~ = ~ a~,x,, q- u~e~

or, in vector form,

(2.3.19) y = x’A* .-{-eU,

as in (2.1.10). However, the complete set of properties in (2.1.2),

~(e’e) = 1, ~(x’e) 

is not strictly entailed by the principle of local independence. Comparing

(2.3.20) ~(y’y) = A*’A* + ~(Ue’eU) + ~(Ue’xA*) d- ~(A*’x’eU)

obtained from (2.3.19) with

Nondiag ~(y’y) = Nondiag A*’A*

obtained by applying (2.3.6) to (2.3.16), it is clearly implied only that 
nondiagonal elements of

~(Ue’eU) + ~(Ue’xA*) -5 ~(A*’x’eU)

be zero. Correspondingly, as pointed out in sect. 2.1, there is redundancy
in the conditions (2.1.2) for the development of the factor model. This holds
more generally for the nonlinear models to be treated. It would be overpedantie
in the extreme to insist on this, hence in the sequel the assumptions (2.1.2)
will be employed, purely to simplify the algebra.

We turn now to a brief examination of the principles of Guttman’s
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radex theory. This can be approached, in a limited way, as a natural develop-
ment from step-function models like the latent distance model, though this
is not the only interpretation. For manifest dichotomies, the latent distance
model of (2.3.15) has an interesting limiting case in which we set 7, equal
to zero and f~, equal to unity for all k. (The normal ogive model of (2.3.14)
can be considered to approach this limit by letting ~, approach zero for all k.)
Data conforming to this limiting case will form the ideal answer pattern
of Walker (1931), or perlect scale for dichotomies of Guttman (1950). 
such a response pattern, there is a unique ordering of the items such that a
positive response to any item entails a positive response to all items in one
direction from it. For the perfect scale, the correlation (phi) between two
items is given by

(2.3.21) ri~ .k/Pi /p~= - -- , P; < Pk,

where p~ is the probability of a "positive" response to item j. A correlation
matrix in which numbers ai exist such that

(2.3.22) r;~ -- ~/~, j < /c, j, k = 1, -.- , n,

for a specified ordering of the variables is called by Guttman (1954b; 1955b)
an additive simplex. For the case of quantitative manifest variates, Guttman
has developed a theory of the simplex and a further analogue, the circumplex,
out of the property (2.3.22) rather than from the point of view of the shape
of the regression function, as in (2.3.15). In his theory, the regression func-
tions are assumed to be linear and the whole theory is assumed to have
quite a different meaning from the mathematically identical theory for
manifest dichotomies (Guttman, 1954b, p. 323). In Guttman’s factorial
treatment of the simplex, the tests are considered to be ordered in respect
to their "complexity"--a property which can be represented in terms of
sect. 2.1 by stating that the matrix of factor loadings A is triangular, with
each "successive" test loading on one more factor than its predecessor.
Guttman (1954b; pp. 283-286) explicitly distinguishes the notion of com-
plexity from the notion of difficulty, denying that differences in difficulty
level could account for a simplex. This is rather curious, in a way, as we
have already noted in sect. 2.2 that Wherry and Gaylord (1944) accounted
for difficulty factors in tests, yielding a simplex matrix in Ferguson’s (1941)
paper, by mutual nonlinear regressions between tests. In fact, their illustra-
tion of the form of regression to be expected is a step-function. It seems,
then, that we have a second mystery, the "mystery of the simplex factors."
Most mysterious of all, the earlier "mystery of the difficulty factors" and
the present one may turn out to be, not two mysteries, but one only. Ac-
cordingly, one of the tasks to be undertaken (sect. 4.7) is to examine the
likely factor models corresponding to Guttrnan’s simplex model. It turns
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out that we can and should distinguish single-factor and multiple-factor
versions of it.

A further aspect of the simplex "mystery" concerns the theory of the
principal components of the perfect scale, given by Guttman (1950; 1954c)
and Suchman (1950). Guttman (1954c) has shown that a correlation matrix
whose elements are of the form (2.3.22) is of full rank and that the loadings
on principal components after the first can be written as "oscillatory" func-
tions in the first principal component. This statement needs qualification
in that DuBois (1960) has shown that a diagonal matrix 2 can be f ound
such that R -- U2 is of rank n/2. This point will be considered further in
section 4.7.

Guttman (1950) gives similar theory for the perfect scale, though operat-
ing on a somewhat redundant form of the observation matrix (cf. Lord, 1958).
In that case, the principal component scores (which are fully determinate
in this model) behave in a similar fashion to the principal component loadings.
In view of the preceding, we might be tempted to identify these components
with the difficulty factors, "one for each degree of difficulty," conjectured
by Ferguson (1941) to explain his simplex-like correlation matrix. However,
Guttman and Suchman have offered psychological interpretations of the
principal components in the context of attitude measurement, in which the
second principal component is identified as intensity of attitude, the third
as "involution," and the fourth as "closure" (Guttman, 1954c), on the grounds
that separately measured intensity, involution, and closure turn out to be
curvilinear functions of attitude position which resemble the "oscillatory"
functions obtained for the principal components. Burr (1953), in a long reply
to a short note by Guttman (1953) on the relation between the latter’s
scale theory and the former’s treatment of "qualitative" data by factor
analysis (Burr, 1950), notes that for a perfect scale the principal component
scores are proportional to orthogonal polynomials as tabulated by Fisher
and Yates. Burt’s discussion is not completely clear, but it seems to be implied
that the principal components are orthogonal components of curvilinear
regression lines.

In the treatment of the perfect scale given below (sect. 4.6) the principal
components are interpreted only as the harmonics of regression lines in the
form of a step-function, as in (2.3.15). In the more general simplex model,
a single-factor model with step-function regression lines will be distinguished
from alternative multiple-factor models.

2.4 Observations Versus Data

It has already been noted in the context of linear factor analysis (sect.
2.1) and LSA (sect. 2.3) that we can treat any dichotomous observation 
a random variable taking the value unity for a "positive" response and
the value zero for a "negative" response, where in general the designation
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of the response alternatives as positive and negative is quite arbitrary.
Further, if we do so, regression functions a(y~ I ~/) as discussed earlier can
be interpreted as the conditional probability of the response category labelled
"positive," given the latent characterization ~’. In this way, dichotomous
data can be treated as a particular case of "quantitative" data. In addition,
given ~(y; I ~I,) with this treatment of the response categories, the conditional
probability function for the "negative" response category can immediately
be written down as the probability complement of the given function. Thus,
although the treatment of the response categories is asymmetrical, there is
no loss of information and results can be written if desired in a symmetrical,
though redundant, form.

In the above treatment of linear factor analysis, and in the extension
of the notions of LSA, it has been assumed without careful examination of
the point, that our primary observations have been put into a form such
that they can be regarded as random variables, in subsequent developments
of the models. That is, our starting point is an "observed" vector of numbers.
Now it is not always obvious how a set of observations on the real world
becomes represented by a set of numbers.

A rigorous account will not be given here of the theory of measurement.
In the light of discussions by Torgerson (1958) and Coombs (1960) 
few distinctions we need may seem nonrigorous and perhaps question-begging.
Following Coombs, we distinguish between observations and data. Observations
are the events in the real world which we observe; data are such representa-
tions of the observed events as we subject to analysis. Thus, one way of
representing dichotomous observations as data is the method of (0, 1) scoring
considered above. For all purposes of factor-analytic theory, as dealt with
here, it appears sufScient to distinguish two types of data, viz., measured
data and category data.

In measured data, a single observation is represented by a single member
of the real number system, and in a vector of such data, the elements are
mutually independent ~unctionally, though not, in general, independent in
the probability sense. All discussion up to this point has applied specifically
to measured data.

When an observed event consists of the occurrence of one out of m(_> 2)
mutually exclusive and exhaustive events forming a class, we can represent
the observation as category data by stipulating a fixed order for the m categories
and representing this as a vector in which one of the m elements is set equal
to unity, corresponding to the occurrence of the corresponding event, and
the remaining m -- 1 elements are set equal to zero. That is, a single observa-
tion on one attribute having m categories is represented by a vector of m
elements as described. This method of representation has been used by
Burr (1950), and an equivalent method is involved in Guttman’s (1941;
1950) work on principal component theory. More generally, if we have 
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attributes, with m~ categories in attribute j, we can represent a set of observa-
tions by a row vector y of ~:-1 m~ elements, in which each subvector, of
m; elements, consists of a single unity and m; - 1 zeros, ordered as described.
Thus the elements in the vector are not functionally independent, in contrast
to the case of measured data.

The point of introducing the notion of category data is that it provides
for a further extension of linear factor analysis to cover multicategory observa-
tions. As Burr (1950) has shown, if we form an N X ~ mi matrix Y, from
N observations on y as just defined, then Y’Y is a Gramian matrix whose
submatrices can be recognized as contingency tables. Burr further shows that
it is quite a practical proposition to apply factor-analytic techniques to a
sample matrix of the type Y’Y. The only point which remains a little unclear
in Burt’s account of the matter is just what such an analysis means. Let us
write

if event k (k = 1, ... , m~) of event-class j occurs,

and

Then

y;, -- 0, otherwise.

y = [YnYl, "’" Y~,~, "’" yn~y~ ""

It is then immediately evident that

~(Y) = [P~IP~ "’" P.~, "’" Pn~ "’" Phi.J,

where p~.~ represents the probability of occurrence of event k in event-class
~, ~nd that in the language of the previous section

a(y -" I¢ "-" p~, I @ "" p~.

where p~ J ¯ represents the prob~bi~ty of occurrence of event k in event-class
i, for ~ given latent characterization ~. It follows that if multicategory
obse~tions are represented as category duta, the b~sic equatio~ of linear
factor analysis could be taken to apply, und the inte~ret~tion is analogous
to that for dichoto~es, represented by the (0, 1) scoring system. Becuuse 
the relations

m1

~.y~, = 1, for all

-there is some redundancy in t~s representution. In the case of dichoto~es,
of course, the redundancy is such that the (0, 1) representation as measured
¯ data is to be preferred. For the present purpose it is sufficient to establish
(i) the dual s~atus of dichotomous obse~ations as measured dut~ or cutegory
4uta, (fi) the fact thut finear factor analysis cun readily be extended to cover
multicategory obse~ations, by representing them as category duta,



BY RODERICK P. McDONALD 25

The further consequence, as will be evident later, is that the system
of nonlinear factor analysis to be presented in Chap. 3 is immediately
plicable to multivalued or two-valued measured data, and to multicategory
observations cast in the form of category data. The system can thus be
employed on a wide range of problems.

2.5 Towards the Present Approach

In the first section of this chapter we considered the minimum set of
assumptions in the linear factor analysis model, the relations between the
results of operations on correlation, covariance, and (raw) product-moment
matrices, and the outstanding problems of estimation and hypothesis testing
in this field. Most of the mathematics given carries over to the nonlinear
models treated in the next chapter. In the second section we noted some of
the situations in psychology which seem to demand the development of
nonlinear factor models. In the last section we have seen how a general
statement of the principle of local independence in LSA can lead to a whole
family of models according to the restrictive assumptions made as to the
distribution of the latent characterization, or the form of the regression
function, and we have noted the equivocal status of Guttman’s radex models
from the point of view of factor analysis or LSA. There was, however, no
discussion of methods of analyzing data in terms of these models. There are
two further considerations to set down to fill in the background completely.
These concern, respectively, explicit attempts to develop a nonlinear factor
analysis and some aspects of the general theory of regression.

Gibson (1959) has attempted an ad hoc adaptation of the general latent
class model, or latent profile model, to the problem of nonlinear regressions
of tests on a single factor or latent variate. In a second paper Gibson (1960)
has extended this treatment to the case of two factors. Ia this treatment
an initial analysis of the data yields an estimate of the number of latent
classes and an estimated matrix of expected values of the manifest variates
within each latent class. In effect, this is a tabulation of the regression function
~(Y I ~I,) in the present notation for each of a finite set of latent
tions ~I,. If these latent classes are thought of as obtained by an arbitrary
partition of a unidimensional or multidimensional latent continuum, it is
possible to make arbitrary assumptions as to the dimensionality of the
continuum and the arrangement and spacing of the classes within it. Then
plausible nonlinear regressions of the manifest variates on one or more latent
variates can be constructed. There is, however, a good deal of indeterminacy
in this method as Gibson himself points out, and the indeterminacy would
become increasingly worrying as the number of latent classes in the initial
analysis becomes large.

There is a close family resemblance between the linear factor model
and linear multiple regression. It has been noted earlier that Lazarsfeld’s
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trace-lines or trace-functions can be interpreted more generally as regression
functions of the manifest, or observed, variables on the latent, or unobserved,
characterization. This interpretation holds for dichotomous or quantitative
manifest variates and for any kind of latent characterization. To consider
this point in more detail, we note that the general definition of a regression
function, of a dependent variable y on any system of independent variables
x, would be

(2.5.1)

The great majority of psychometric applications of regression theory make
use of the linear multiple regression model

(2.5.2) ~) = ao A- alxl A- a2x2 A- ." + arxr.

A notable exception is Saunders’ (1956) discussion of a regression function
in the form of the quadric

(2.5.3) ~ = axl + bx2 -~ cxlx2,

to change his notation slightly. In this model, it is customary to think of one
of the independent variables as a moderator variable with respect to the param-
eters of the regression on the other variable. The model itself, however, is
symmetrical in the independent variables. A factor analogue of (2.5.3) 
treated in Chap. 3. This turns out to be formally identical with the model

(2.5.4) ~ = ax, - cx~ A- bx~ + cx~

obtained by rotating the quadric surface through forty-five degrees, Maxwell
(1957) has considered a regression surface in the form of the general quadric

(2.5.5)

A factor analogue of this model arises out of a combination of linear assump-
tions with Coombs’ basic concepts in the conjunctive/disjunctive model
(cf. Appendix 3.4A).

More generally, however, the feature of regression theory which points
the way to a corresponding development in nonlinear factor analysis is the
procedure of fitting single or multiple curvilinear regressions by orthogonal
polynomials (cf. Kendall, 1951). In the case of a single independent variable
x, a model of the form

(2.5.6)

can be rewritten in the form

(2.5.7) ~ = Co + c,h~(x) A- c2h2(x) + ... + c.hn(x),

where the functions h~(x) are orthogonal polynomials in x, i.e.,

(2.5.8) 8{h~(x)h~(x)} = 0, p ~ q.



BY RODERICK P. McDONALD 27

This immediately suggests a factor analogue in which the h~(x) are orthogonal
functions in a single latent variate. Bartlett (1962) has given examples 
factor models of this type and has indicated that functions of the type
h~(x) would behave just like further common factors with regard to the
correlation properties of the observations.

These last considerations lead directly to the method of analysis given
below. The whole conception of the method rests on a definition of latent
variates or factors, such that they are mutually statistically independent,
i.e., their joint density function can be written as the product of their separate
marginal density functions. The simple fact that if two variates are uncor-
related, or orthogonal, it does not follow that they are statistically inde-
pendent has not always been recognized by psychometricians. Thurstone
(1947) defines statistical independence by orthogonality. If the latent variates
are not taken to be statistically independent by defiifition, lhere is no dis-
tinction between linear and nonlinear ]actor analysis, in the sense used here.



CHAPTER 3

THE THEORY OF NONLINEAR FACTOR ANALYSIS*

3.0 Introduction

In sect. 3.1 through 3.3 of this chapter, a formal development is given
of the general principles of nonlinear common-factor analysis, up to the point
of a formal solution for a model in the form of polynomial regressions of
observed variates on a number of latent variates.

In sect. 3.1 we shall see that all the basic relations of orthogonal "linear"
common-factor analysis hold under very general conditions. We then es-
tablish a general principle for nonlinear models. An approximate statement
of this is that a particular nonlinear hypothesis amounts to an assertion
that the "factor scores" obtained in ordinary common-factor analysis are
distributed on a curvilinear manifold, i.e., a curved subspace which spans
the factor space.

In sect. 3.2 a complete formal solution is developed for a model in which
the regressions of the observed variates on a single latent variate take the
form of a polynomial. This can be thought of as a generalization on Spearman’s
general factor theory. In sect. 3.3, the same treatment is extended further
to cover polynomial regressions on a number of latent variates.

A formal development of the more general case where terms involving
products of latent variates occur in the regression function does not seem to
be feasible at present. In sect. 3.4, this type of case is considered, though
somewhat informally, and without any attempt at completeness.

In sect. 3.5, some general comments are offered on the theory of the
preceding sections, while sect. 3.6 contains some artificial numerical examples,
which serve to illustrate the more practical aspects of the problem.

In sect. 3.7, a scheme is set out for the classification of factor models,
with indications of the method for dealing with certain special cases not
already covered by the general theory. This provides a suitable background
to Chap. 4, where a number of existing models are treated in terms of this
theory.

* A part of the theory given in this chapter, illustrated and introduced by means of
the quadratic example in sect. 3.6, has been published (McDonald, 1962b) in a somewhat
less formal version. See also McDonald (1965a, 1965b, and in press) for practical computing
procedures.
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3.1 The General Theory

We consider the model

(3.1.1)

The z~ (i = 1, ... , n) are a set of n observed variates (r _< n). It is 
venient to suppose that they are in standard form, i.e.,

(3.1.2) ~(z,) -- 0, ~(z~) -- 1, i = 1,-.. 

The following theory is not, however, dependent at any point on the second
condition in (3.1.2). The x~ (m = 1, ... , t) are a set of t latent variates
which are statistically independent of each other and of the unique variates
e;, and the e; also are mutually independent. That is, the joint density func-
tion of the x~ and the e; in the population is given by

(3.1.3) dF = ~’~ ].(x,~) dxm g, (e;) de,.

We assume without loss of generality that

(3.1.4) ~(e;) = 0, E(e~) = 1, j ---- 1,..- 

The functions Q~(Xl, ... , x~), (t < r < n), are a set of r linearly independent
functions of the x~ and a finite number of parameters. We further assume
without loss of generality that the n X r matrix of parameters a;~ is of rank
r. Given a model of the form (3.1.1), it will always be possible to meet this
condition by suitably redefining the Q~ as linear combinations of the initially
given functions.

We first show that without loss of generality this model can be reduced
to the simpler form of (3.1.10) below, in which the linearly independent
functions in the latent variates are orthonormal.

On writing

z ~ [zl ..- zn],

A’ ------- [a~], an n )< r matrix of rank r,

e -= [el ... e~],
U ---- diag (ul "’- u.),

q ~ [Q,(zl, "" , x,) ... Q.(z,, ... , z,)],

(3.1.1) becomes

(3.1.5) z = qA ~ eU,

and (3.1.3) and (3.1.4) yield

(3.1.6) ~(e) ---- 0, ~(e’e) --- 
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Taking the expected value of z’z over the population, we have, in virtue
of (3.1.3) and (3.1.6),

(3.1.7) R ==- ~(z’z) = A’~(q’q)A S.

Thus since A and ~(q’q) are of rank r, R - U2 is of rank r.
Since in the model the elements of ~(q~q) must be finite, to be consistent

with (3.1.1) and (3.1.2), there exists an r X r nonsingular matrix T such 

(3.1.8) T’~(q’ q)T = 

On introducing

(3.1.5) becomes

(3.1.9)

or

(3.1.10)
where

h --- qT,

z = hT-1A -}-eU

z = hB +eU,

B =-- T-1A

is of rank r. Noting that explicitly

h --- [hi(z,, ... , x,) ... h~(x,, ... , z,) ... hr(x~, ... , 

we see that any model of the form (3.1.1) can be rewritten without loss 
generality in the form (3.1.10) where the r elements of the vector h form 
orthonorm~l set of functions in the t v~riates x, i.e.,

(3.1.11) E(h’h) = 

Accordingly, (3.1.7) becomes

(3.1.12) R = B’B + US.

Let M be the r X n matrix whose rows are the (normalized) l~tent vectors
of R - U2 corresponding to nonzero latent roots, and C the corresponding
r X r diagonal matrix of nonzero latent roots. Then

(3.1.13) MM’ = I

and

(3.1.14) M’CM =- R - Us.

It is convenient to write (3.1.13) and (3.1.14) in the 

<3.1.15) FF’ -- C
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and

(3.1.16) F’F

where
F -~ C1/~M

is the familiar matrix of principal component factor loadings of/~ - U~.

An r × r orthogonal matrix L exists such that

(3.1.17) LF = B.

Thus it is evident that all the basic relations of linear common-factor analysis,
as given in sect. 2.1, obtain also under these more general conditions. In
linear factor analysis it is assumed that the r orthonormal functions in t _~ r
latent variates xm can be identified with the latent variates themselves,
whereas in this model no such assumption has been made.

We now require some further relations in terms of which we may consider
the nature of the orthonormal functions h~(xl, ... , x,). The basic relation
corresponds to (2.1.9) above.

By (3.1.10) and (3.1.17) we 

(3.1.18) z = hLF -k eU,

whence by (3.1.15)

.(3.1.19) zFPC

We rewrite this as

,(3.1.20) v = w -b d,

where

(3.1.21) v

,(3.1.22) w =-- [w, ... w,] = hL

:and

,(3.1.23) d ~-~ Ida ... dr] = eUF’C-1.

By (3.1.3) and (3.1.11)

,(3.1.24) ~(C-~Fz’zF’C-~) = I -b C-~FU~FPC-~

which we rewrite as

(3.1.25) ~(v’v) 

In the principal component analysis of a correlation matrix with unities
in the leading diagonal, the product v is the familiar expression for a vector
.of principal component scores (Thomson, 1950, pp. 363-364). In this con-
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text, the elements v, will be referred to as the component variates. It should
be noted that when U2 is nonzero, the component variates are not in general
equal to the least-squares estimates of factor scores (Holzinger and Harman,
1941, pp. 267-269), which are given by

(3.1.26) :~ = zR-1F’

in the linear case. Each component variate v~ consists of a "true" part w~
which is an orthogonal transformation of the orthonormal functions hi, ..., h,,
and a deviant part d~ which is a linear function of the unique variates e~.

In geometrical terms, the vectors v can be thought of as points distributed
in r-space. They can further be thought of as having "true" locations w,
with random disturbances of location d. Particular hypotheses as to the
orthonormal functions h amount to assertions that the "true" components.
w lie on a curve in the r-space when ~ = 1, or, more generally, on a t-dimen-
sional curvilinear maniyold when ~ > 1. Corresponding to any specific hy-
pothesis there is a set of r -- t equations to the curve or manifold, of the type.

(3.1.27) ~(w) =- ~,(hL) 0, v = 1, .. . , r - t.

It should be noted that here the terms curve and curvilinear manifold in-
clude a straight line and a linear space, as special cases.

In its most general form, then, the problem is to discover restrictions.
of the type (3.1.27) on the distribution of the "true" components w in the
r-space. Solutions to this problem as developed in the following sections are.
subject to three theoretical limitations. (Practical limitations, as yet, are.
even more severe.) Firstly, it is assumed that all possible linear terms xl,
¯ -- , x, are present in any vector h. Secondly, it is supposed that the remain-
ing orthonormal functions h~ can be reasonably represented by polynomials.
in the x~. (Future research could be directed towards an examination of such
alternatives as the trigonometric functions of classical Fourier analysis.)
Thirdly, it is assumed that the disturbances d~ have a normal joint density
function.

Let us examine these assumptions in more detail. We consider hypotheses.
of the type

(3.1.28) h = [x~, ... x,, ax ~ ~-b, ... , cz ~ + d,.. . , gx~x2 ...],

where t members of the vector h are x~, ... , x,, that is, all possible linear
terms are present, but higher degree terms need not all be present.

If the model can be reasonably represented in terms of polynomials,.
least-squares equations can be written (see below) for the purpose of estimat-
ing its parameters, in terms of the moments of the distribution of the "true’"
components w. These are obtainable, given the moments of the component
variates v, i] we can suppose that the disturbances d have a normal joint
density function. This is not a crucial assumption in practice, since these.
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disturbances are linear functions of the n unique variates e;. Hence their
joint density function should approximate the multivariate normal distribu-
tion if the number of manifest variates is sufficiently large, by virtue of the
central limit theorem (cf. KendMl, 1951). The covariance matrix S of the
disturbances d can be computed from (3.1.25), and their higher moments
can be calculated on the basis of their assumed normal distribution. Thus
if the higher moments of the v~ are known, the corresponding moments for
the w, can be determined by means of the expansion of

(3.1.29) ~(v~ .-. v~) -- ~{(wi -~- ~ ... (w, ~- d,)’

It is convenient at this point to develop first the treatment of the single-
factor polynomial and then indicate how this is extended to the multiple-
factor case.

3.2 Single-Factor Polynomial

We consider the particular case in which the h~ are orthonormal func-
tions in a single latent variate x. We adopt the further restriction that each
h~ be a polynomial in x of precise degree p. On writing zo = 1 and

t*~ = E(x~), p = 1,2, ... , 2r,

the h~ take the explicit form

h~(x) - (z~_, ’/~ ’(3.2.1)

where

~nd z~ is obtained by replacing the last row of the determinant by

(cf.’iKendall, 1951; Sz~go, 1959, p. 23).
Without loss of generality we choose an origin and unit for x such that

#l -- 0, it2 = 1, whence

hi(x) = 

We now wish to determine L’ such that, in terms of (3.1.22),

(3.2.2) wL’ = Ix h~(x) ... h,(x)].

Introducing the r X r orthogonal matrix L*, writing ~*~ for its pth column
vector, and h**(x) for an expression in the form of (3.2.1) but containing
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coefficients ~*~ in place of the #~, we consider the functions

(3.2.3) -- ~{w~*~ - h *~(W~*l)} 2 >_ 0, p =2,3,-.. , r .

The functions ~ are all equal to zero if and only if L* = Lr and h*~(x) = h~(x)
for all p. The expression for ~ in (3.2.3) is a function in the moments of 
the elements of L*, and #2, -. ¯ , ~. Given the exact population values for
the moments of w, we could substitute them in (3.2.3) and so determine
the elements of L*, and #~, ... , #:, which make ~ = ~3 .... ~, = 0.

We may now consider the problem of choosing between the alternative
hypotheses

(3.2.4) H, :h = Ix h2(x) ... hr(x)]

and

(3.2.5) Ho : h = Ix1 x~ ... x,]

on the basis of a finite sample of observations z.
In the absence of a rigorous sampling theory, it seems reasonable to

replace the population parameters in the above equations by the correspond-
ing sample values where necessary. Thus from an N X n matrix Z consisting
of N observations of the random vector z we compute

1=

find an estimate of U~ according to one of the principles referred to in sect.
2.1, and compute F and C by the tIotelling method, say. We then obtain
the N X r matrix

(3.2.6) V = ZF’C-~

whose N row vectors are independently and identically distributed as the
random vector v, and estimate the moments of the joint distribution of
the elements of v from the column vectors of V. From (1/N)V’V we obtain
an estimate of S using (3.1.25) and estimate the moments of the joint dis-
tribution of the disturbances d~, up to the order required in (3.2.3), using
the assumption that their joint density function is normal. These yield in
turn estimates of the moments of the w~ by the expansion of (3.1.29). The
estimated moments of the w~ can then be substituted in the expansion of
(3.2.3).

If we then minimize

with respect to L* and the t~*~ we obtain estimates of Lr and the t~ which
appear to be optimal in a rather special sense (see sect. 3.5). It should 
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noted that when estimates of the type indicated are substituted in the ex-
pansion of this function the minimum value can be negative. This reflects
the fact that due to sampling errors the estimates of the moments of the w~
obtained need not correspond to the moments of a possible distribution, i.e.,
the ordinary consistency relations need not hold.

Having determined

L* ~--- L’

on the assumption that H. above is true, we can now test Ho against the
alternative Ho, for if the H, (3.2.4) holds, then by (3.1.19) through (3.1.23),

(3.2.7) VL "~" H --F DL

where H and D are N X r matrices corresponding to the vectors h and d.
It is then possible to test the significance of the prescribed curvilinear relation
between elements of the first column of VL* and those of each succeeding
column. If all these prescribed relations reach an acceptable level of signifi-
cance, then the H, is confirmed. On the alternative hypothesis, the remaining
columns of VL* should be statistically independent of its first column.
If H, is confirmed, using the explicit form of the function h obtained by
minimizing ~ cI,~, we can then write the complete solution in terms of (3.1.18).
If some, but not all, of the eurvilinear relations are significant, it will be
necessary to consider a further alternative to the models (3.2.4) and (3.2.5).
One class of such alternatives can conveniently be treated next.

3.3 Multiple-Factor Polynomial

We consider now the model

(3.3.1) h-- [h~’)(x,) .. .h~)(xl).. .h~m)(x.,).. .h~:)(x,~).. .h~’)(x,) .. .h~:)(x,)],

where rl -]- ... -~ r~ ... ~- r~ = r, and the h~(m)(.) are of the form (3.2.1).
We require only an obvious extension of the methods for the single-factor
polynomial. As previously, given the moments of the w~, we wish to find Lp

such that

(3.3.2) wL’ = h,

where h is now specified by (3.3.1). We introduce h(~m)*(xm) for expressions
in the form of (3.2.1) but containing coefficients t~, (m)* in place of the ~,
and in the r X r orthogonal matrix L* we denote the column vector in a
position corresponding to h(~’~)(x,~) in (3.3.1) by ~). We then have, cor-
responding to (3.2.3), the functions

(3.3.3)_~(~)-- (~)*     - ,o~(m>*:~w~:(~)*~}~: _> 

p= 2,3, ... ,r,~; m= 1,... ,t.
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As before, the functions ~(~ are all equal to zero if and only if

L* = L’ and h~’~*(x,,) = h~’~(x,~) for all p and m.

The rest of the treatment for this case parallels the single-factor procedure.
Here, we minimize

with respect to L* and the ~(~*, and after operating on a sample V with
L* as in (3.2.7) we would partition it in conformity with the sections 
(3.3.1) corresponding to different x~, and test the significance of the prescribed
curvilinear relations between the elements of column vectors within the
submatrices so obtained. If the model is justified, again we obtain a complete
solution with (3.1.18), using the explicit form of the functions in h obtained
by mir~imizing ~ ~’~ ~(m~ (but see sect. 3.5 on the rotation problem).

3.4 Some Remarks on a Class o] More General Cases

An obvious extension of the work of the last two sections would involve
a model containing terms in products of the latent variates. For example,
we might wish to consider factor analogues of the quadric regression surfaces

(2.5.3) ~ = axl ~ bx2 "~- CXlX2,

(i.e., Saunders’ "moderator variable" case) and

(2.5.5) ~ -- a -P b~x~ -{- b2x2 ~ b11x~ ~ b2~x] A- b~2x]x2

mentioned in sect. 2.5. It is a fairly simple matter to extend the methods
just given to cover particular cases of this sort, but a general formal treatment
of the complete class of such cases proves r~ther a forbidding task.

For the present it may suffice if the more general principles required
here are merely illustrated by applications to the two cases just mentioned,
and to a further quite special case, analogous to a "moderator variable"
regression surface

(3.4.1) ~ = axl A- bx~x~

of an unsymmetrical type.

Example 1

The factor analogue of (2.5.3) 

(3.4.2) h -- Ix, x~ xlz~]

in the present terminology, since it is evident that the ’three components in
h form an orthonormal set, given that x~, x~ are statistically independent
and in standard form. It follows from the earlier arguments that such a model
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should yield a reduced correlation matrix R - U2 of rank three, and the
. "true" parts wl, w2, w3, of the three component variates vl, v2, v3, should

be related to the h of (3.4.2) by an orthogonal transformation L. Again
the problem reduces to one of finding an orthogonal matrix L~ such that
wU = h. In this case we may define a single function @ by

(3.4.3) ¯ = ~{w~*~ -- (wg*~)(w~*~)}~ >_ O,

where ~*~ represents, as before, the pth column vector of a 3 X 3 orthogonal
matrix L*. As before, ¯ = 0 if and only if L* = U. Clearly, the procedure
for this case is parallel to the previous ones. That is, we would seek to minimize
the sample analogue of ¯ as a function of L*. The only point of difference is
in the test of significance which justifies the model. This would amount to
a test on the correlation between the elements of the last column of VL*
as previously defined and the products of the pairs of elements in the first
two columns of VL*.

Example 2

A factor analogue to the general quadric regression surface of (2.5.5)
is given by

(3.4.4) h = [xl h~(xl) x~ h2(x2) x~x2]

since the five elements in this vector form an orthonormal set. (Thus,

~{x,x~.h2(xl)} = ~{x~h2(x~)} . ~(z~) 

and

~(x~x~) = ~(z~). ~(x~) 

and the like, with the usual stipulation of ofi~n and u~t for each latent
variate.) Again the c~ of the problem consists of deter~ning 8n o~hogonal
mat~ L’, by introducing anMogues of the functions ~) and ~ employed
earlier. Here, with the previous notation, we introduce three such functiom,

¢ = ~ { ~t~ - (~t,)(~t ~) } 
With anulogous operations to those given earlier, this model is justified ff
~ VL*, the prescribed quadratic relations are found to be sig~ficant between
the second and flint column, ~nd between the fourth and thud, and ff thero
is sig~ficant correlation between the elements of the last colu~ and products
of pairs of elements of the first and third. The importance of this model
consists in the f~ct that it can be shown to arise by combi~ng linear assump-
tions with the basic principles of Coombs’ conjunctive/disjunctive models
(see Append~ 3.4A).
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Example 3

A factor analogue of the regression surface (3.4.1)_’is*given-by

h = [xl zlx2],(3.4.6)

since

and

a(x~) ~(x~x~) = i

~(x?x2) = ~(x~) ~(x2) 
It will be noted that this model violates the first assumption made above
for the general theory, that all linear terms will be present. It is nevertheless
detectable in principle, because of a peculiarity to be expected in the dis-
tribution of the component variates in two-space. It is intuitively obvious
that there should exist a rotation in the two-space such that

var (v~2) ¢¢ (v~)2 d- const.

since x2 acts to "moderate" the variability of xlx2. The point of general
interest about this case is that here we have in fact two latent variates dis-
tributed in two-space, without a restriction of the type (3.1.27), as in the
general theory, yet detectably different from the two-space linear model.
This suggests the existence of a class of models of this type, which may be
worth exploring.

More generally, it may be noted that for a set of statistically independent
variates x~, ¯ ¯ ¯ , x~, one set of multivariate orthonormal polynomials is given
simply by all possible products of the orthonormal polynomials for individual
latent variates, as given by (3.2.1). That is, 

(3.4.7) h, .... = h~’)(x,) ... h~’)(x,),

where h~’~(x~,) is given by (3.2.1), then

(3.4.8) ~(h ..... .h .... ,) = 1, m = u, ... , s = y,

= 0, otherwise,

i.e., the h ..... form an orthonormal set. This is easily seen by writing

(3.4.9) ~(h ..... -h ....~) = EIh(1)[x( m \ 1]~h(~)(X~ ~ ,~ ~ .... ~[~(’)(x(~ . ~ ,~h(*)(x~ 

An extension of the earlier theory to the class of cases involving product
terms can thus be based on the orthonormal set of functions (3.4.7). However,
such extensions seem to demand a somewhat flexible and, in a sense, ad hoc
approach. For this reason it is considered sufficient to exemplify this class
of cases rather than to treat it exhaustively.
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3.5 General Comments on the Theory

In order to avoid interruptions to the formal development of the theory,
certain general issues which require examination have been suppressed up
to this point.

It is convenient at this stage to consider the precise sense in which
we are concerned here with nonlinear factor analysis. In the analogous treat-
ment of nonlinear regressions by orthogonal polynomials, the procedures
employed are still in fact the procedures of linear algebra. That is, the func-
tions are nonlinear in the independent variables, but linear in the parameters
of the curves. A similar statement holds for the general model (3.1.1), which
is nonlinear in the latent variates, but linear in the factor loadings ai~.

In contrast, models such as the normal ogive (2.3.14) and the latent
distance model (2.3.15) discussed earlier are nonlinear both in the latent
variate and in the parameters of the model. A general method of analysis
for models of this type does not seem easy to develop. However, it will
be seen below that the present procedures can be adapted where necessary
to provide a solution for any prescribed model of this type. Thus the system
as developed is not as restrictive as it might seem from these last remarks.

The process of minimizing the expansions of the functions ~ and the
like in previous sections resembles a least-squares estimation procedure.
We might regard it as providing "quasi-least-squares" estimates. However,
it should be emphasized that the process employed rests on the assumption
that the "true" parts w of the component variates v lie precisely on the curvi-
linear manifold to be determined, in which case the minimum value of q,~
should be precisely zero. In statistical theory to date there is no corresponding
least-squares procedure for operating on the observed components v to provide
a rotation and best-fitting function, when there is "error" in v, in all directions.
In general, when estimates of the joint moments of the w~ as obtained above
are substituted in the expansions of these functions 4% there may be a region
in which each ~ is negative. It could be claimed that any one point in the
negative region is as good as any other. However, the procedure above seems,
intuitively, to be an optimal one for obtaining point-estimates.

There is a quite distinct sense in which minimizing the function ~.
can be considered as a least-squares procedure. Suppose that we have the
exact values of the joint moments of the "true" points w~ and that the
polynomial model under consideration fits precisely. As stated already, each
¯ ~(min) should then be precisely zero. In contrast, suppose that the ortho-
normal functions corresponding to the distribution of the latent variates
cannot be perfectly represented by a finite set of polynomials. In such a case,
we would expect to obtain ~(min) > 0, and the above procedures would
provide best-fitting polynomials to the actual orthonormal functions in the
sense of least-squares.

A further point of interest is that no assumptions have been made as



40 NONLINEAR FACTOR ANALYSIS

to the distributions of the latent variates, except for the arbitrary choice
of an origin and unit such that, for each of them, ~1 -- 0 and ~2 = 1. The
remaining moments of the latent distributions emerge as a by-product of
the analysis.

An issue deserving of special consideration is the problem, or rather
problems, of rotation in nonlinear factor analysis. One kind of rotation problem
has been dealt with, in that the rotation of the "true" points w into the points
h with the prescribed functional relations is almost the crux of the theoretical
matter. One way to describe this is to say that we seek a rotation of axes in
the r-space containing the latent variates, such that the curvilinear manifold
on which they lie can be given a simple analytic expression. This rotation
may appear to be overdetermined. Thus, to take a simple example, in the
model

(3.5.1) h = [x, h2(Xl) x2]

the assertion is that the "true" points w lie on a curvilinear manifold con-
sisting of a parabolic cylinder in general orientation in three-space. There is,
in fact, a unique orientation in which the description of the cylinder takes
the simple form of (3.5.1). However, given, by the above methods, an analytic
solution in this form,, which explicitly would be

(3.5.2) zi = ailxl + a~h2(xl) + a~3x2 + u~e~,

such a solution can be transformed into any

z~ = a;~(c~l - s~2) + a~h~(c~ - s~) + a~(s~ + c~) + (3.5.3)

where

~1 ~ CXl + 8X2,

~2 = --SX~ + CX~,

C ~-~ COS ~,

Equation (3.5.3), for any 0, will also constitute solutions for the model, 
it is apparent that the ordinary rule of linear factor analysis applies here,
that the solution is determined only up to an orthogonal transformation.
On the other hand, the description of the cylindrical regression surface in
(3.5.2) is obviously much simpler than that in (3.5.3). It rather seems that~
in some special cases at least, nonlinear factor analysis has its own "simple
structure"--quite different in basis from that of Thurstone. The general
rule that emerges here is that the methods given above will yield mathe-
matically simple solutions in terms of some number ~ of latent variates.
In the search for "psychological meaning," a practicing factor analyst is
free to apply a t X t orthogonal transformation to these latent variates,
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though in general the mathematical description of the regression surfaces
would be more complex after rotation.

Another aspect of rotation is that in the process, product terms in the
latent variates appear or vanish almost at will, so to speak. Thus, in the
expansion of (3.5.3) above, there will in general be a term in ~2. Conversely,
the case of the specialized quadric surface, corresponding to Saunders’
"moderator variables," is interesting. Given an initial solution in the form
of (3.4.2), if we transform [x~, x2] into [~, ~] as above, with 0 = °, the
model becomes

(3 h L J

which is a degenerate case of the model

(3.5.5) h = Ix, h2(xl) z2 h~(x2)].

Thus in the factor analogue to the moderator variable case, the interpreta-
tion in terms of "moderators" is not determined by the mathematics. More
generally, this example serves to show further that there is nothing sacred
about the distinction between cases with product terms and cases without
them.

Finally for this section, we consider the limitations of the above models.
Perhaps the most severe restriction is the assumption generally made above
that all linear terms are present. It is an open question whether real data will
commonly violate this assumption. The theory is nevertheless very much
less restrictive than previously existing theory.

3.6 Numerical Illustrations

(i) Quadratic Case

The simplest possible case in nonlinear factor analysis would be one
in which we wish to choose between the models in which (3.1.10) becomes
either

(3.6.1)

or

(3.6.2)
where by (3.2.1) we have

(3.6.3)
with

zi = bilx~ + b~2x~ + uie~

zi = bi~x + bi2h~(x) + uiei,

h~(x) = l¢(x ~ - mx- 1)

(3.6.4) k = 1/%/m -- #~ -- 1.
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TABLE 3.6.1

Generating Equations (Raw Score Form)

Yi ~ Ai ~- B~X ~ C~X~ -t- U~E~

Test

1 7871 --3425 400 75
2 5982 --2680 300 94
3 0 100 0 10
4 --1934 880 --100 73
5 --6117 2710 --300 87
6 0 200 0 100
7 --8096 3600 --400 226

As a numerical illustration of this case, observations on seven "variables"
were constructed, using a table of random numbers (zero through nine) 
rectangular distribution for the latent variate x and the unique variates,

with arbitrarily chosen parameters in the quadratic equation. These gen-
erating equations are given in "raw score" form in Table 3.6.1. The equations
themselves can be transformed to standard score form, using the moments
of a rectangular distribution of the numbers zero to nine (~1 = 4.5, ~2 = 28.5,

~3 = 202.5, ~4 -- 1533.3). The transformed equations, which correspond to
(3.6.2) are given in Table 3.6.2. A score matrix consisting of one hundred
"individuals" by seven variables was constructed using the equations of

Table 3.6.1. This matrix was processed by a computer to obtain the correla-
tion matrix R, the matrix of principal-component factor loadings F, and the
latent roots C as shown in Tables 3.6.3 and 3.6.4. Iterative estimates of
communalities on the hypothesis of rank two were used to obtain the reduced
correlation matrix.

TABLE 3.6.2

Generating Equations (Standard Score Form)

z~ = blx + ci (x~ -- 1) -{-u~e~

Test b~ ca ui

1 .170 1.115 .073
2 .026 1.126 .123
3 .995 .000 .099
4 --.076 --1.087 .276
5 .013 --1.128 .114
6 .894 .000 .447
7 .000 --1.108 .218
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TABLE 3.6.3

Correlation Matrix

~ in Leading Diagonal)(Communalities 1 --

43

1 2 3 4 5 6 7

1 (.990)
2 .987 (.983)
3 .056 .027 (.933)
4 --.958 --.057 --.083 (.935)
5 --.990 --.986 --.000 .961 (.991)
6 --.032 --.062 .897 .013 .086
7 --.971 --.967 .044 .941 .972

(.869)
.106 (.957)

Not surprisingly, two factors adequately account for the correlation
matrix. The 100 X 2 matrix of component variates V -~ ZFC-~ provided
the scatter diagram of Fig. 3.6.1. Because of the large communalities and
correspondingly small random deviations, a U-shaped curve is evident by
inspection in this example. It is easy to see that the angle of rotation 0 is
close to 90°, ~ (the distance from the origin to the vertex) is close to unity,
and ~ (the perpendicular distance from the origin to the axis of the parabola)
is close to zero.

The estimated covariance matrix (S of (3.1.25)) of the disturbances
[dl d~] of the points Iv1 v,] from their "true positions [wl w~] on the suspected
parabola is given by

I .0176 --.00171.

--.0017 .0504J

TABLE 3.6.4

Factor Matrix and Latent Roots

I II uj

1 .994 .042 .098
2 .991 .011 .132
3 .014 .966 .258
4 --.965 --.065 .255
5 --.995 .015 .092
6 --.071 .930 .361
7 --.977 .050 .207

C = diag [.4853 1.807]



~44

L

NONLINEAR FACTOR ANALYSIS

2.0
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Scorer di~rorn of compor/ent vo~lafes.

F~gu£e 3.6.1

TABLE 3.6.5

Estimated Moments of

(vl, v2), (dl, d2) and (wl, 

Moment v d w

m2o i. 0176 .0176 I. 0000
m1~ --.0017 --.0017 .0000

mo~ 1. 0504 .0504 1. 0000

m~o .5694 .0000 . 5694

m~l --.0235 .0000 --.0235

m ~ .9762 .0000 ,8762

too, --. 0452 .0000 --. 0452

m4o 1.9576 .0009 1.8511

m3~ --.0272 --.0004 --.0217

m~ 1. 5663 .0009 1.4974

m~3 --.0981 --.0019 --.0910

mo 4 2. 0684 .0076 1. 7584
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The estimated joint moments of vl, v~ are given in Table 3.6.5, together
with the moments of dl, d~, calculated on the assumption that they have a
normal bivariate density function, and also the moments of w~, w2, estimated
from the preceding on the basis of equation (3.1.29).

Substituting the estimated moments of wl, w2 in the expansion of ~
as given by (3.2.3) we minimize ¢2 with respect to 0*. We thereby obtain

0" = 89°, ~* = 0.00077, k* = 1.1618;

whence also ~*~ = 1.741 by an analogue of (3.6.4). At these values, ¢~ 
--0.017. Since this is a constructed example, we can compare the obtained
values for the third and fourth moments of x with the true values ~ = 0
and #4 = 1.8 for a rectangular distribution in standard form.

At this point the necessary information has been obtained for recon-
structing the quadratic functions required by the model (3.6.2). To do this,
we operate on the matrix of principal-component factor loadings given in
Table 3.6.4 with the estimated orthogonal matrix L’, corresponding to a
rotation of axes through 0 = 89°, to give the coefficients [bn b~2]. This estimate
of L’ is

L,=I .0175 .99981.
[_-- .9998 .0175J

The corresponding estimate of h~ is

h~(x) = 1.1618(x~ -- .00077x + 1).

Substituting in (3.6.2) this estimated function yields the quadratic expres-
sions given in Table 3.6.6. These may be compared with the generating equa-
tions given in Table 3.6.2.

However, in a real case, it would be essential first to justify the choice
of the model (3.6.2) as against the model (3.6.1). In principle, this is 

TABLE 3.6.6

Estimated Equations

Test b~ c~ u~

1 .059 1.154 .098
2 .028 1.151 .132
3 .966 --.003 .258
4 --.081 --1.119 .255
5 --.001 --1.157 .092
6 .928 --.101 .361
7 --.034 --1.136 .207
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TABLE 3.6.7

Analysis of Variance:

Regression of vl on v~

Source df SS MS F

Linear regression 1 0. 0152 0.0152 < 1
Quadratic component 1 79. 9731 79.9731 356.31’**
Residual 97 21.7717 0. 2244

Total 99 101. 7600

by operating on the component variates Iv1 v2] with L’ before carrying out
the test of significance. Since in this example the transformation differs
only trivially from an interchange of axes, it was considered sufficient to
calculate the correlation ratio of vl on v2 and test its significance.

This procedure gave a correlation ratio of 0.88 with an F of 45.66 on
7 and 92 d.f., using eight class intervals on the v~ axis. An analysis of variance
of the regression of vl on v~ is given in Table 3.6.7. This confirms the hypothesis.

(ii) Cubic Case*

The preceding example served to illustrate the essential features of the
present approach, but in some ways it is deceptively simple. As soon as we
consider a case involving more than two dimensions, and requiring a con-
siderable amount of rotation, it becomes evident that although the above
theory provides a complete solution in principle for a variety of cases, its
practical application will require either the use of approximate methods or
the development of computer programs for the precise solution of most
problems.

In order to show how rapidly the practical problems increase as we move
to other cases, a numerical example was constructed in which the regression
functions are of the third degree. To facilitate computations, this example
is free from unique variations and consists of five "observations" only on
six variables. Five "observations" are sufficient for this case. More would
be required, of course, in an empirical version of it to test the model adequately.

Taking the five values in Table 3.6.8 for the latent variate x in standard
form, we obtain the expressions for h~(x) and h3(x) that make up an ortho-
normal set with x, viz.,

h~(x) = %/~ (~ - 

* Whi]e the numerical results given here are worth reporting, the computational method
employed is now superseded by methods described by McDonald (1965a).
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:and

5 17 x).h~(z) = -~ 3 - -- ~

’The values taken by these expressions, for the given values of x, are also
.given in Table 3.6.8.

TABLE 3.6.8

tt -- h(x) for given ~

[- --1.414 1.195 --.707
--.707 --. 597 1.414
0 --1.195 0

.707 --,597 -- 1.414
1. 414 1.195 ,707

1
0
0

¯ 707
¯ 707

0

TABLE 3.6.9

B (Transposed)o
1 0
0 1

.707 0
0 .7O7

¯ 707 .707

-- i. 414 i. 195
--.707 --.597
0 -- I. 195

¯ 707 --. 597
I. 414 I. 195

TABLE 3.6.10

Z = HB

--. 707 --. 155
1.414 --.922
0 --.845

-- 1.414 .078
¯ 707 1.845

-- 1.500 .345
.500 .578

0 --.845
--.500 -1.422
1.500 1.345

(1)
0 (1)
0 0

.707 .707

.707 0
0 .707

TABLE 3.6.12

F

.577 .816

.577 --.408

.577 --.408

.816 .289
.816 .289
.816 --.577

= diag [3.0 1.5

TABLE 3.6.11

R =

(1)
0

.7O7
¯ 707

7̄07
--. 707

.5
--.5

0

1.5]

(1)
.5 (1)
.5 .5

TABLE 3.6.13

V = ZFC-1

--¯535 --1.354
¯ 063 -,911

-.690 .488
-.752 1.400
1.915 .378

1.345
--1.422
--.845

.577
.345
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A matrix of factor loadings B, given in Table 3.6.9, was chosen arbitrarily,
so as to require considerable rotation from the corresponding principal-
components matrix, in order to recover it in the analysis. The matrix product
HB = Z is the score matrix on which the subsequent analysis is based.
This is given in Table 3.6.10. The score matrix Z yields in turn the cor-
relation matrix R in Table 3.6.11, the matrix F of principal-component factor
loadings, and the diagonal matrix C of latent roots given in Table 3.6.12.
From these we obtain the matrix of component variates V = ZFC-1 given
in Table 3.6.13. A three-dimensional scatter diagram of the component
variates vl, v2, v3 is given in Fig. 3.6.2. Inspection of the graph does not reveal
any obvious curve on which the points lie in the three-dimensional space.

The expansions for the functions ¢, of (3.2.3) are, in fact, too cumbersome
to use in any case more complicated than the simple quadratic. For the
purposes of the present example it was intended to use an approximation
formula for small rotations. An initial graphical rotation is therefore required
before the approximation formula can be used. The required initial rotation
is not at all obvious from inspection of Fig. 3.6.2, so a wire model was con-

1.34

- -2’0

Scotter diagram of V2 on V~
m’th values of V3 given ot
the points of the graph.

Figure 3.6.2
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TABLE 3.6.14

.40 .60 .75 1

.90 --.25 --.25

.10 .75 --.60

--1.29
-- .94

.09
1.02
1.14

TABLE 3.6.15

ZFC-,L(1)

1.02 --.87
--.80 1.12

--1.17 --.14
--.34 --1.26
1.31 1.13

.structed on axes in three dimensions. This gave a twisted curve in the space,

which could be seen as a quadratic parabola from one viewing angle and as a
cubic curve from another angle. By rough observation the coordinates of these
lines of sight with reference to the given axes could be made to yield the
orthogonal matrix L(1~ given in Table 3.6.14. This provides the initial rota-

tion required.
Applying the rotation L(1~ to V yields the product V~’~ = ZFC-~L~

.given in Table 3.6.15. In Fig. 3.6.3, the second and third columns of V~’~

are plotted against the first. The form of the functions is now readily perceived.
Calculating the required ioint moments ofv, (’~, v~’~, v~(1~ and substituting

these in the small angle approximation formula for ~ yields, on minimizing
this function, an increment of rotation AL given in T~ble 3.6.16. Since AL

O

I

O ¯

O

¯

O

~I

0

Figure 3.6.3
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I1.024
¯ 267

TABLE 3.6.16 TABLE 3.6.17

AL L~

.024 --.267 I

I .966

.023
1 .243 --.023 .971

--.243 1 .258 --.236

--.251
.229
.941

--1.494
--¯601

.078

.668
1.363

TABLE 3.6.18

ZFC-1L,L~

1.166 -.261
-1.063 1.107
-1.101 -.422
-.009 -1.520
1.032 1.077

is not an orthogonal matrix, it was normalized by columns to remove some~

of the scale distortion, yielding the matrix L~ given in Table 3.6.17. Applying.
L~ to V(1) yields the matrix V(2) = ZFC-1L(1)L~ given in Table 3.6.18.

The values of q~2 were, respectively, 0.911 with zero rotation, 0.177
after applying L(~), and 0.095 after applying L(~)L~. With further iteration,.
since the example is free from unique variation, ~2 could be made to approach
zero, and the rotated values of V would approach the values in the matrix
H given in Table 3.6.8. (If we cheat a little, by operating on V with a rotation
matrix L that is given by F’B, then VL = H and ¢~ is equal to zero.) If

we stop the analysis at this point, the obtained specification equations are
as given in Table 3.6.19. These may be compared with the true specification
equations, also given in Table 3.6.19. While further iteration would be
desirable, the approximation is not bad.

TABLE 3.6.19

Specification Equations z~ = ao ~ alx -t- a2x2 -~ a~x3

Theoretical Obtained

al a2 a$ a0 al a2 a~

0 1 0 0 --.114 .993 .118 .010
--1.195 0 1¯195 0 --1.096 --.826 1.199 .557

0 --2.833 0 1.667 .002 --2.607 .219 1.551
--1.690 1.414 1.690 0 --.857 .119 .932 .400

0 --2.592 0 2.357 --.080 --1.140 .239 1.075
--1.690 --4.006 1.690 2.357 --.774 --2.425 1.003 1.461
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Discussion

The above two examples serve to show that the theory can already
be applied to simple numerical cases.

An important point emerging from the second example is that visual
inspection of bivariate marginals of the joint distribution of the component
variates need not, necessarily, yield a preliminary hypothesis as to the model
which is most appropriate to the given data. In any empirical case of more
than two dimensions, a considerable amount of rotation may be required,
perhaps on the basis of pure trial and error, before an appropriate hypothesis
can be formulated. This point underlines the importance of developing
computer programs to make the rotation problem tractable.

In the empirical work presented in Chap. 5, approximate methods of
various kinds have been used where necessary. The reason for this will by
now be evident. A good deal of further work will be necessary before the
above methods can be applied to empirical data as a matter of routine, even
though the problems involved are now solved in principle.

3.7 The Family o] Factor Models

A reasonably comprehensive classification of factor models can be set,
out on the basis of the following:

(i) The measures on the observed variates,
(ii) The measures on the latent variates,
(iii) The form of the regression function of observed variates on latent,

variates.

These will be considered in turn.

(i) Observed Variates

As pointed out earlier, various distinctions have been recognized among
types of observation or data in factor analysis and LSA. Guttman and
Lazarsfeld speak of "quantitative" versus "qualitative"; Green (1952) con-
trasts dichotomous with "continuous" variables. Here, it seems sufficient,
as indicated in sect. 2.4, to distinguish measured data and category data as
there defined. As a matter of convenience, in Chap. 4, some theoretical
developments will be given for measured data only (which, it will be recalled,
includes dichotomous data scored 1 for "positive" and 0 for "negative"
response). In other cases we will deal specifically with dichotomies. The
generalization to multivalued measured data is fairly obvious in these cases.

(ii) Latent Variates

Here we may fairly safely follow the conventional distinction between
models based on latent classes and models based on latent continua. As
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mentioned earlier, Lazarsfeld (1950) and Gibson (1959; 1960) have treated
latent classes as arbitrary partitions of a latent continuum. A question of
interest, then, is whether a "genuine" discontinuity in the values taken by
a latent variate is detectable in practice and/or in principle. This question
is taken up in sect. 4.3.

(iii) Regression Function

The theory as developed in this chapter has been restricted to regression
functions in the form of polynomials, because of their usefulness in leading
to expressions in the moments of the latent distribution. The important
distinction here, then, is between polynomial regression functions and the
rest. There is, however, a method available for transferring from a polynomial
model to a prescribed alternative, by performing a harmonic analysis of the
alternative in terms of orthogon~l polynomials. The general principles of
this procedure are as follows:

Let

~;(x) = E(zi Ix) (j -- 1,’" 

be prescribed regression functions of the observed variates z~ on a single
latent variate x whose density function is g(x), for which the polynomials
h,(x) form an orthonormal set. To the function ~(x) let there correspond
the formal Fourier expansions

(3.7.1) q,i(x) "~ ci~ho(x) q-c~lhl(X) q-. ... q-c;~h~(x) q- ...

where the coefficients c~, (the Fourier coefficients of e;(x) with respect 
the given set of h~(x)), are defined by

(3.7.2) c,, = f ~p,(x)h~(x)g(x) 

Then (cf., Sz~go, 1959), every partial sum of the series (3.7.1) has the following
minimum property: If we write

~̄,(z) = ,~,oho(X) + ,~,lhl(x) + ... + ,~,,h,(:~) 
where r >_ 0 is a fixed integer and the a~ are variable coefficients, the integral

(3.7.3) f {~,(x) -- ~;(x)}2g(x) dx

becomes a minimum if and only if a~ = c~ for all p. That is, the Fourier
coefficients of a prescribed function ~(x), in the sense of (3.7.2), will be 
coefficients of an orthonormal series, any finite section of which provides a
best fit to the prescribed function in the sense of least-squares.

Provided that an expression can be written down for the latent density
function, an initial solution in terms of polynomials can then be converted



BY RODERICK P. McDONALD 53

on demand to a solution in terms of the parameters of an alternative model,
using these principles. In sect. 4.4 and 4.5, this procedure.is applied to the
normal ogive model and the latent distance model.

The general theory as developed in sect. 3.1 is regarded as supplying
~ unified theory of factor and latent structure models. The practical approach
in terms of polynomials supplies approximations to models other than
polynomials through the first few terms of their Fourier series.



CHAPTER 4

SPECIALIZATIONS OF THE THEORY

4.0 Introduction

In this chapter, the general theory of nonlinear factor analysis is shown
to yield a series of special developments which supply a treatment of exist-
ing problems or an alternative analysis for existing models.

In sect. 4.1 the problem of di~culty ]actors, mentioned above in sect.
2.2, is revisited. Here it is shown that a difficulty factor could be expected
to result from the curvilinear regressions of easy and difficult tests on a
general factor of ability. This is a hypothesis that can be confirmed by the
general methods of nonlinear factor analysis.

In sect. 4.2 it is shown that the single-factor polynomial model treated
in sect. 3.2 becomes the latent polynomial model discussed by Lazarsfeld,
in the case where all the observed variables are dichotomies.

In sect. 4.3, an examination is made of the conditions under which a
discrete distribution of a latent variate could be detected by the present
methods. The discussion in this section is restricted for convenience to a
very simple case where we might be concerned to choose between a latent
linear model and a latent dichotomy to account for a set of observations.

In sect. 4.4 and 4.5 it is shown that by a harmonic analysis of the func-
tions in the normal ogive and the latent distance models, it is possible to
estimate the parameters of these on the basis of a preliminary analysis of a
given set of observations in terms of polynomials. The perfect scale is then
treated very briefly (sect. 4.6) as a common limiting case of these two models.

Some limited aspects of Guttman’s radex theory are taken up in sect.
4.7. Here it is shown that the simplex property as discussed by Guttman is
consistent with a nonlinear factor model as well as with the notion, which
Guttman appears to favour, of an ordering of the tests in terms of their
factorial complexity. It follows that it would be strongly advisable to apply
the present methods of nonlinear analysis to any data which possess an
approximation to the simplex property before accepting the interpretation
in terms of complexity. In this section a limited treatment is also given of a
class of nonlinear models in which the regression functions for each observed
variable are obtained by translating a prescribed function along the axis
representing a single latent variate. The perfect scale, and a restricted form
of the normal ogive model, are particular cases of this class.

Finally for this chapter we describe some extensions, based on the general
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theory of nonlinear factor analysis, to Tucker’s treatment of the fitting of
a set of functional relations by linear factor analysis. Alternative treatments
are compared and contrasted. One of these is based on Tucker’s work and
the methods of Chap. 3, while the other is based on the classical procedures
for fitting curves, using orthogonal polynomials.

The contents of this chapter provide a broad sampling of the domain
of possible specializations of the theory. These possibilities have not yet
been examined, or even listed, exhaustively. At the same time, five of the
eight theoretical sections in this chapter provide the necessary background
for the empirical examples in Chap. 5. Each of the empirical illustrations to
be given belongs with a particular section of this chapter.

Sections 4.1, 4.2, 4.3, 4.5, and 4.8, are respectively, illustrated by sec-
tions 5.1, 5.2, 5.3, 5.5, and 5.8, hence the former can be read in conjunction
with the latter, instead of taking the theoretical and empirical treatments
separately.

4.1 Di~culty Factors Revisited

The notion of di:ficulty ]actors was discussed in sect. 2.2. This is the
notion that a set of items or tests which differ "widely" in difficulty level
may yield a reduced covariance matrix of rank greater than unity, even
when the set is "really" unidimensional or homogeneous in some sense.
Following Gibson (1959), it was noted that a plausible interpretation of such
an occurrence is in terms of nonlinear regressions of the tests or items on the
latent variate or factor. The argument is not at all rigorous, and it would be
quite possible in principle to have linear regressions when the observed
variates have "widely" spaced means. In the case of items, treated as measured
data, the item mean is of course the proportion of "positive" responses.
In the case of a battery of tests, the tests must have a common metric for
the argument to have meaning.

A di~culty ]actor is detectable in principle by the process of establishing
a functional relation between the test or item means and their loadings on
the suspect factor. The real problem is to show that the items or tests are
in fact "homogeneous" or "unidimensional" in some acceptable sense.
Clearly, linear factor analysis cannot serve this purpose, and it remains a
possibility that some difficulty factors represent genuine inhomogeneities in
the tasks, in that the easy and difficult tasks may after all be different in
kind as well as in difficulty. (The factorization by Guilford (1941) of 
Seashore Tests of Pitch Discrimination may be a case of this sort.)

Let us approach the question from a different angle. Suppose we have
a set of data which is reasonably fitted by the second-degree case of the
single-factor polynomial of sect. 3.2, i.e., (3.1.10) yields

x2 -- #3x ~ 1=(4.1.1) Yl = bio + b~lx -~ b~2 "~/~4 -- ~ - 1
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where

~(Vi) = bio,

is not necessarily zero. In a quite precise sense, the manifest variates Yi
form a unidimensional or "homogeneous" set, yet the reduced covariance
matrix is of rank two. The family of curves representing the regressions of
the observed variates on the latent variate could be such as is shown in
Fig. 4.1.1. I] further the magnitudes of the coefficients b~2 correlated highly
with the means of the manifest variates, this would correspond to a progressive
change in curvature of the regression functions, as shown in the figure, from
the "easy" items or tests through to the "difficult" ones.

These considerations provide one application of the methods of Chap.
3. In the first empirical example of sect. 5.1, it is first shown that a difficulty
factor emerges, in that the loadings of the tests on one factor are a linear
function of the test means. It is then shown that this factor corresponds to
the quadratic term in the model (4.1.1), hence that in this case the difficulty
factor corresponds to variations in curvature of the regressions of the tests
on a single factor.

4.2 The Latent Polynomial

In the last section we considered an application of nonlinear factor
analysis to a problem which may involve multivalued observed variates.
In this and the next three sections we examine the application of the theory
to four existing factor models, the latent polynomial, the latent class model,
the normal ogive and the latent distance model. The common feature of these
models is that they have all been recognized as particular cases in latent
structure analysis. With the exception of the normal ogive, they have been
developed by Lazarsfeld (1950) within the framework of LSA.

As mentioned earlier, in the latent polynomial model, a single latent
variate is assumed, and for dichotomous manifest variates the trace-line or
regression function takes the form (2.3.12)

p; I -- ,s(.v, = .i = 1, -..

I~iffar~ 4.1.1
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In introducing this model, Lazarsfeld (1950) did not develop solutions for it,
except for the linear case where he has given formulae that are equivalent
to those of a Spearman general-factor analysis. More generally, assuming
a single latent variate, he noted that the rank of the covariance matrix
(or cross product matrix, in his terms) would be equal to the highest degree
of the trace-line polynomials. Lazarsfeld (1950, pp. 371-372) showed 
particular for the quadratic case that

8(Yi) =- Pi = a~o + aill, h -}-(4.2.1)

and

(4.2.2) coy (y~, Yk) =- pik -- PiP~ = a~la~l(g2 -- tt~)

where, as previously, g~ = 8(x~). He did not, however, go on to develop
more general relations of this kind, or show how they might be used. In the
ten years or so since this work of Lazarsfeld, there does not seem to have
been any further contribution to the problem. One might guess that the main
barrier to further work has been the occurrence of terms like the third on
the right-hand side of (4.2.2). However, when we rewrite (2.3.12) in the 

p~ Ix = ~ b~h~(z),

where the h,(x) form an orthonormal set, the difficulty disappears. The
model is then recognizable as the single-factor polynomial treated in sect.
3.2, with the dichotomous observations treated as measured data. An obvious
advantage in using the methods of sect. 3.2 to fit the latent polynomial
to empirical data is that these methods include a test of the model against
the alternative multifactor linear model or latent hyperplane. This means
that the assumption made by Lazarsfeld (1950) of a single latent variate
in the latent polynomial model can be tested.

There are two possible embarrassments which may arise in the treat-
ment of dichotomous observations in terms of the latent polynomial model.
Firstly, it is possible that some of the fitted trace-lines may turn out to be
nonmonotonic, within the interval in which the density of the latent dis-
tribution is not negligible, in cases where this is not credible on psychological
grounds. Secondly, within this interval, one may obtain values for the condi-
tional probability of a response to the item which lie outside the permissible
range of zero to unity. One way to avoid these embarrassments is to employ
models such as the normal ogive or the latent distance model, which are well
behaved by definition in these respects. There is a good case for using a
preliminary analysis in terms of the latent polynomial, however. Such a
solution can then be converted if desired to a normal ogive or latent distance
solution as shown in sect. 4.4 and 4.5.
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4.3 The Latent Class Models

It was noted in the last section that Lazarsfeld (1950) in his early work
on LSA introduced the latent polynomial model but did not develop its
properties in any detail. Instead, he recommended replacing the poly-
nomial trace-lines by an equivalent set of latent classes. The latent class
model can be derived more generally (cf. sect. 2.3) from the most general
form of the principles of LSA simply by ascribing a discrete distribution to
the latent variate or set of latent variates.

Two forms of this model have been recognized. The latent class model
proper is regarded as a model for dichotomous manifest variates. The treat-
ment of this model represents the most advanced aspect of LSA (Green,
1951; Anderson, 1954; Gibson, 1955; Gibson, 1959; McHugh, 1956; Madansky,
1960; McDonald, 1962a). The case in which the manifest variates consist
of multivalued measured data has been named the latent profile model by
Gibson (1959). However, as argued in sect. 2.3, the distinction between the
two models is not fundamental. Maximum-likelihood estimators (h/IcHugh,
1956) have been supplied for the case of dichotomies, but not as yet in the
more general case. For the present purposes, the two can be treated together
as the general latent class model (McDonald, 1962a).

There are at least two important theoretical questions relating to the
latent class model for which there has been no solution up to the present.
The first is whether a "genuine" discrete distribution of the latent variates
can be detected if it exists. (By current methods, it is always possible to
impose such a distribution.) The second concerns the arrangement of the
latent classes in the factor space. There are relations between the latent
polynomial, the latent hyperplane, and the latent class model, such that in
some ways they can be thought of as "equivalent" (Lazarsfeld, 1950). Thus,
the latent polynomial of degree r, the linear model in r statistically inde-
pendent latent variates, and the latent class model with r + 1 latent classes
all entail a reduced covariance matrix of rank r. This is, of course, related
to the fact that a minimum of r + 1 points will serve to define a polynomial
of degree r in a single variable or to define an r-sp~ce. Existing methods of
latent class analysis do not test whether the latent v~riates have a discrete
distribution, or, in case they have, whether the points occupied by latent
classes are distributed throughout r-space, or alternatively whether they span
the r-space by lying on a curve within it, as assumed in effect by Lazarsfeld
(1950) in treating the l~tent polynomial ~nd latent class models as "equiv-
Ment." There is an early attempt by Lazarsfeld (1950, pp. 446-454) to deal
with this problem. However, it rests on the somewhat restrictive assumption
that the regression functions have at most a single maximum over the range
of the distribution of the latent variate. The present approach supplies a
partial answer only to the first of the above questions. The second is answered
independently of the first, by the general theory of nonlinear factor analysis.
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As the starting point for this aspect of the theory, we again consider the
component variates v in (3.1.19) of the general theory. These are represented
as the sum of a "true" part w and disturbances d. If the latent variate (or
variates) x takes the values x~ with probabilities g~ (i = 1, 2, -..), the cor-
responding "true" components w take values w~ with probabilities g~. The
disturbances d were assumed normally distributed, with a variance-covariance
matrix given by (3.1.24). The component variates v will then have a density
function which results from the combination of a discrete density function
with a normal density function whose parameters can be estimated from
given sample. For a population in which the latent variates have a point
distribution, we could expect to find in a sample from it that the distribution
of the component variates is multimodal if the disturbances are small enough.
A possible approach to the detection of a latent class case, then, is to look
for such a multimodal distribution and to attempt to resolve the distribu-
tion into a discrete component due to the latent variates and a normal com-
ponent due to the disturbances. To consider the feasibility and the limita-
tions of such a procedure, we treat only the simplest case, involving two latent
classes and dichotomous observations. This model is the latent dichotomy
of Lazarsfeld (1950).

For the latent dichotomy, the following relations are easily obtained
(see Appendix 4.3A). In this case the reduced covariance matrix of the
manifest dichotonfies is of rank unity, and the component variate v is
scalar. The "true" component w is identical with the latent variate x, and
takes the two values xl -- -- %/g2/gl and x~ = "V/g~/g2 with probabilities

gl and g2 respectively, with, of course, gl q- g2 = 1. Writing as usual Pi
P; I x~ for the probabilities of the positive response to item j given respectively
that x = xl, x = x~, we introduce

(4.3.1) 3; ---- p; I x~ -- Pi Ix1.

We then find that

~ ~t~{a~-(1 - a~) - g~g~

(4.3.2) var (d) ~’ ,

where d, the disturbance component, is a scalar here. Given also the separa-
tion of the two values of w,

(4.3.3) w~ -- w~ = "V’gl/g~ -~ ~/g~/g,,

by making further simplifying assumptions we can speculate quantitatively
about the detectability of a latent dichotomy on the basis of a sample of
data. This requires a determination of the amount of overlap to be expected
between the two normal curves, with the given variance and separation
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between their means. If we suppose the parameters 5i to be equal, and ai =
for all items and set ~; = ~ in (4.3.1), we obtain

(4.3.4) var (d) = (1 5~)/n ~.

In a practical case, g,, g~ would not be expected to vary outside the range
0.2 to 0.8. This would give a range for the separation w~ -- wl of 1.75 to
2.00 units, a variation so slight that it can reasonably be ignored as a first
approximation. Taking the figure of 2.00 for the separation, we see for example
with n = 20, and a probability-difference 5 between the classes of 0.6, that
the population SD for the disturbance component would be 0.669. Hence
the resultant distribution of v would be strongly bimodal though with some
overlap of the underlying normal curves as in Fig. 4.3.1 (see following ex-
ample).

Figure 4.3.1

In principle one could introduce a cutting point on the v-dimension to
divide a sample of observations on e into two groups, with a proportion of
miselassified observatiot~s which is a function of vat (d) and w~ -- wl. 
the within-group variation corresponds fairly closely to vat (d), and the
group means correspond reasonably to the expressions above for x~, x~, the
latent class interpretation of the data will seem plausible. If there is any over-
lap at all, misclassification of observations will lead to a biasing downwards
of the estimate of within-group variation. In principle, one could correc~t this
bias.

It would appear then that the difference between a discrete latent class
case and its equivalent continuous model can be detected, but the distinction
may often remain uncertain. More generally, a strongly multimodal distribu-
tion of v, whether in one or more dimensions, with the modes disposed on
curve in the space or in a general configuration will lead us to suspect such a
discrete distribution. In optimal cases where there are well-defined groups with
minimal overlap, we would hope to fit the parameters of the latent class model
by the present methods.

We would first fit the appropriate linear or nonlinear model

~(Yi x) -- ~ (x)

by the methods of Chap. 3. (These in no way depend on the continuity or
or otherwise of x.) We would then estimate the density function g~, i = 1, ¯ ¯ ¯, r,
(the proportion of subjects in each latent class) by simple enumeration of the
number of subjects in each group in the sample distribution of v.
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The remaining parameters required are the n X r quantities ¢~(x,). These
are obtained by substituting group means for x in ~;(x). In the case of manifest
dichotomies, each ~(x~) is interpreted, as usual, as the conditional probability
of endorsing item j for a "subject" belonging to latent class i. For multi-
valued manifest variates each ~(x~) represents a latent class mean as 
Gibson’s (1959) discussion of the "latent profile model." Since the parameters
g, and ~i(x,) of the latent class model are independent of the arrangement
of the latent classes in the factor space, the problem of rotation does not arise.
However, if we proceed in this way, information as to the configuration of
the classes has necessarily been obtained and will form a valuable supplement
t~ the latent class description.

In fact, this procedure is the converse of Gibson’s. Gibson (1959), 
noted in sect. 2.5, proposes that we first obtain a latent class solution, and then
arrange the classes in space in some way, to obtain a nonlinear factor model.
The second step is necessarily quite arbitrary. In contrast, here we first
obtain a nonlinear factor model that fits the data, and then if groupings
are observable in the arrangement of the component variates in the factor
space, we permit ourselves a latent class interpretation. Both methods can
fail, in the sense of imposing an incorrect model without being able to know
that it is incorrect. In general, however, it would seem fairly harmless to
impose a continuous model oa data which is "really" discrete in its latent
structure, but perhaps not quite so harmless to impose a latent class model
on data which is "really" continuous. Further, the second procedure is
less informative.

For the purposes of the following artificial example, it is useful to have
expressions for the parameters of the linear model which correspond to a
given latent dichotomy. It is shown in Appendix 4.3A that if, in the linear
model for manifest dichotomies,

x has a point distribution, taking only the values xl and x, with probabilities
gl, g2 respectively, then

(4.3.5) a~. -- ~;lgl "{- ~Pj~g~

and

(4.3.6) b; = g~f~g~(~;, -- ~,1) = ~g, ~,,

where q~, ~ q~;(x~) = P;I x,, q~i, = ~;(x,) = p; I x,, and g, (or g,) are 
three parameters of the latent dichotomy.

Numerical Example 4.3a

As an illustration of the preceding discussion, a set of artificial data was
constructed, using a table of random numbers, to correspond to a latent
dichotomy.
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The intention was to construct an optimal case, in which one could

expect to find good separation of the groups, in terms of the procedures
outlined above. This leads to a case that looks rather trivial at first sight,
but it serves to bring out a point not mentioned above, namely, the relative
advantages of using the component variate v over the use of total score on the
n items. Clearly, in data conforming to a latent dichotomy one might expect
that the score totals for each subject over the n items in the set would tend,
like the component variate v, to yield a bimodal distribution. It might be
.supposed that no more elaborate machinery than this is required to detect
a latent dichotomy when it exists. As will appear, the component variate
distribution has some advantages over the total score for this purpose.

A score matrix was constructed consisting of one hundred "subjects"
by twenty variables ("items"). Each variable was scored unity if a pair 
digits in the table of random numbers was greater than a criterion number,
and zero otherwise. A sample was constructed with gl = g2 = 0.5 for all
items. For items one through ten the criterion number eighteen was taken

for fifty of the "subjects," with eighty for the other fifty. This is approxi-

TABLE 4.3.1

Parameter Estimates: Latent Dichotomy

Item
1 0.49 0.403
2 0.49 0.346
3 0.52 0.317
4 0.46 0.304
5 0.48 0.288
6 0.50 0.298
7 0.49 0.283
8 0.44 0.390
9 0.48 0.378

10 0.52 0.3O8
11 0.43 - 0.036
12 0.43 -0.054
13 0.52 -0.020
14 0.47 - 0.098
15 0.61 0.047
16 0.50 0.048
17 0.47 -0.037
18 0.54 -0.028
19 0.48 0.023
20 0.53 - 0.067

Estimates using
group means

0.095 0. 887
0.151 0. 831
0.210 0.832
0.162 0.759
0.198 0. 764
0.208 0.794
0.213 0.769
0. 058 0. 824
0.110 0. 852
0. 218 0. 823
0. 465 0. 395
0.485 0. 377
0. 540 0. 500
0. 566 0. 373
0. 564 0. 656
0. 453 0. 547
0. 506 0.434
0. 568 0. 512
0. 458 0. 503
0. 596 0. 464

Estimates using
group proportion~

0.087 0.893
0.144 0.836
0.203 0.837
0.156 0. 764
0.192 0.768
0. 202 0.798
0.207 0. 773
0.050 0.830
0.102 0.858
0.212 0.828
0.466 0.394
0.484 0.376
0.540 0.500
0.568 O.372
0.563 0.657
0.452 0.548
0.507 0.433
0.5~8 0.512
0.457 0.503
0.597 0.463

Mean (1-10) 0.162 0.813 0.155 0.818
Mean (11-20) 0.520 0.476 0.520 0.476
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TABLE 4.3.2

Distributions of "Subjects": Latent Dichotomy

Distribution of v

1.80 - 1.99
1.60 - 1.79
1.40 - 1.59
1.20 - 1.39
1.00- 1.19
.80- .99
.60 - .79
¯ 40 - .59
.20 - .39
.00 - .19

-- .20 - --.01
-- .40- -- .21
-- .60- -- .41
-- .80- -- .61

-1.00- -.81
--1.20- --I.01
--1.40- --1.21
--1.60- --1.41
--i.80- --1.61
--2.00- --i.81

7
9

13
5
8
5
3

Score

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Distribution of score totals

1
1
1
4
4

11
9

11
4
5
7

11
9

10
5
6
1

2
6

11
9

10
5
6
1

FLatent~
fLclass 2/

1
1
1
4
4

11
9

11
4
3
1

mately the optimal case of a latent dichotomy for which there is a possible
equivalent latent linear model, with a rectangular latent distribution, in
terms of (4.3.5) and (4.3.6). If we take any greater difference than 
between ~ii and ~i2, the equivalent latent linear model would give values of
less than ~ero and greater than one for the probability of a response, within
the range of x in which the population density is nonzero¯ For items eleven
through twenty, the criterion number was forty-nine for all subjects, cor-

responding to a conditional probability of 0.5 for either response in both
latent classes. Thus the total set of items consists of ten "discriminating"
and ten "nondiscriminating" items as between the two latent classes¯

The covariance matrix is given in Appendix 4.3B. This is satisfactorily
accounted for by a generM factor, with loadings as given by Table 4.3.1.
The distribution of the component variate is given in Table 4.3.2¯ The
distribution falls into two clearly separated groups.

Pretending ignorance of the origins of this set of data, we can draw
the following conclusions.
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(1) Supposing that there is no misclassification, since there are fifty
subiects per group, the best estimate of the proportions in the two presumptive-
latent classes will be gl = g2 = 0.5.

(2) The proportion p; of positive responses, given in Table 4.3.1 and the.
factor loadings there given, provide the parameters a,. and bi of the latent
linear model. Substituting the group means, 0.985 for the upper group and
--0.979 for the lower group, as the two values of x in

~i(x) = ai 

gives the estimates of e;1 and ~;2 in Table 4.3.1. In the absence of sampling
theory, the fit to the theoretical values e;1 -- 0.19 and ~ -- 0.81 for items
one through ten and ~;1 -- ~;z = 0.50 for items eleven through twenty does.
not seem too bad. Separate means of these parameters are also given in
Table 4.3.1 for items one through ten and items eleven through twenty.

(3) Instead of using the two values of x estimated from the group means,
we could take the values x~ -- %,fg~/g~ = 1, x~ = -"C’~l/g~ = -1, using
the estimated proportions gl, g~ above, to estimate ~;~, ~;~. These alternative.
estimates are given also in Table 4.3.1.

(4) We also note that the variances within the upper and lower pre-
sumptive groups are, respectively, 0.109 and 0.153. These may be compared
with the theoretical population variance for the disturbance component,
viz. 0.151, given by substituting /i i = 0.81 - 0.19 (items one through ten)
and ~i -- 0 (items eleven through twenty) in (4.3.2). They may also be 
pared with the further estimate 0.095, obtained by subtracting unity from
the total variance of the component variate.

From this much it would seem that at least in an optimal case the pro-
cedures employed as a matter of routine in nonlinear factor analysis can
reveal a genuine latent class case if it exists, and can be made to give a
reasonable fit to the parameters.

In this example, a simpler procedure would have sufficed to give us
grounds for suspecting a latent dichotomy. Table 4.3.2 gives the distribution
of the total scores over the twenty items for the one hundred "subjects"
(and also the separate distributions for the two latent classes, as known on
the basis of the previous work). This distribution is in fact suspiciously
bimodal. There is, however, considerable overlap in the distributions of the. ¯
score totals.

More generally, the weight given to an item in determining the value of
the component variate v is proportional to its/t~ value, in the present notation.
Hence the peaks of the distribution of v obtained in a latent dichotomy case
will be sharpened in comparison with the distribution of score totals, so that
the distribution of v could enable one to detect a latent dichotomy when there
is little or no suggestion of this in the distribution of the score totals.



BY RODERICK P. McDONALD 65

4.4 Normal-Ogive Model

The normal-ogive model is a basic and important model in mental test
theory. Both the early history of the notions involved in the model, dating
at least from Richardson (1936) and Guilford (1936), and the elegant formal
treatment of it by Lord (1953) lie outside the framework of latent structure
analysis. Nevertheless, the model can be described as a particular case in
LSA, as indicated in (2.3.14).

It is not necessary to review the existing developments of this model
in any detail here. It may suffice to note that Lord (1953) has deduced the
maximum-likelihood estimators for the parameters of the model; also, among
.other interesting properties, it has been shown that if the latent variate is
normally distributed, the model should yield a matrix of tetrachoric cor-
relations which is of rank unity.

The quite limited aim of this section is to show that given an initial
treatment of a set of observations in terms of the single-factor polynomial,
it is possible to transfer from such a solution to the parameters of the normal-
ogive model by way of a Fourier analysis of the normal ogive. The major
.advantage of this approach is of course that the transfer can be carried out
as an afterthought, having first established that the set of items depends on
only a single latent variate, and that the shapes of the trace functions are
reasonably compatible with the normal-ogive model. A good deal of further
work will be required, however, before it is known whether the estimates
of the model parameters so obtained are at all well behaved.

We consider, then, the regression function as in (2.3.14),

where

N(t) 1

While the argument would hold for quantitative manifest variates, one may
.as well think of the observations as items, in this ease, and take the regression
functions to represent the conditional probability of endorsing the item for
:a given position on the latent dimension.

As indicated in sect. 3.7, the formal Fourier expansions (3.7.1) of the
~,(x) are

q~(x) ,~’ c~oho(x) + c~,hl(x) T "’" + c~h,(x) 

where the Fourier coefficients (3.7.2) are given 
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with the density function of x given by g(x). These have the least-squares
property (3.7.3). For any given g(x), with the above specification of ei(x),
the c;~ can be written as functions in ~- and ~;. A common assumption is
that x is normally distributed. Under this assumption it can be shown (see
Appendix 4.4A) that

(4.4.1)
c~

where

p = 1,2,.-. ,

exp

and the h~(-) are obtained by normalizing the Hermite-Tchebycheff poly-
nomials. The first four coefficients, which are probably all that would ever
be required in practice, are given by

(4.4.2) C,o = N{-u~/(1 -t- a~)1/~

C~"1 : (1 + ~)-’/~{~,/(1 a~)’/ ~}

1
#~ n{#~/(1 + a~)’/~}

Le~ us suppose, then, tha~ we have data which co~orm to the normal-
ogive model. We fit the single-factor polyno~al to it by the previous methods,
and obtain thereby

(4.4.3) p, a(u, 

If in addition we find that the distribution of x can be considered normal,
so thut the polynomials h~(x) approximate the normalized Hermite-Tcheby-
cheff series, under these conditions it would seem re~sonuble to make the
identification

Then by (4.4.1) we have

(4.4.4) u~/(1 + z~)’/~ = N-~(b~o)

~ n{N-~(b,o)}
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whereby the parameters ~ and ~; can be computed given the values of bio
and b;l. If the solutions (4.4.3) have yielded higher order terms such as b;2,
bi,, b;4, the compatibility of these with (4.4.1) can be checked. Alternatively,
estimates using these in (4.4.1) rnight be combined with those from (4.4.4)
to improve estimation in practice.

A good deal of further work will be necessary before these proposals can
be considered workable. For the present, the following points will serve to
conclude this section. Firstly, if the latent linear model gives a reasonable
fit to the data, it is still possible to transfer to the normal-ogive model by
way of (4.4.4). Nonlinearity is not necessary. Secondly, if the assumption
that the latent variate is normally distributed breaks down, it should be pos-
sible to develop analogues to (4.4.1) post facto, according to the distribution
of x which is indicated by the data. Ia some cases, numerical integration
may be necessary, and the problem of inverting the relations as ia (4.4.4)
may be intractable.

One feature of the normaPogive model could be considered a weakness
in it. The upper and lower asymptotes of the conditional probability func-
tions ~(x) for the observed dichotomies are respectively unity and zero.
Thus, in an ability context, no allowance is made for success due to guessing
by a subject of low ability, or of f~ilure due to "chance" errors in ~ subject
of high ability. It would be convenient for some applications to relax these
restrictions on the model, by introducing upper and lower asymptotes which
can be determined from the data, and which are free to take values other
than zero and unity. It is very easy to extend the present treatment of the
model to cover this point. It is shown in Appendix 4.4A that if we introduce
the parameters ~o for the lower limit and ~,;1 for the upper limit of the ogive
function, we simply replace (4.4.1) 

(4.4.5)
C~o -- ),go -b (Xn -- ;~o)N{-~/(1 q- ~)1/2}

= _
,̄{,,/(1 q- ,~)lz~}, p = 1, 2, -..

Given estimates of the parameters c;, up to the third order from a nonlinear
factor analysis, it is possible as previously to estimate the parameters of this
model, ~., =;, ~,;o and ~;~ from these, since

(4.4.6)
c;~ = 1 . 1

(4.4.7)

Given the values of ~, ~; from these relations, the remaining parameters
k;, and ~;~ are readily determined from the equations for c~o and c~.
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Since the solution for this version of the normal-ogive model requires
terms in the initial nonlinear factor analysis up to the cubic, a good deal of
empirical work will probably be required before it is known whether these
relations can generally be expected to yield sensible results.

4.5 Latent Distance Model

In the latent distance model (2.3.15) we have

~oi(x)
-~ fl~, x ~ x~,

i.e., a "step" or "jump" function for the trace-line or regression of item
on the single latent variate x. This model was developed by Lazarsfeld
(1950) as one possible probability-analogue of the perfect scale. Methods
for determining the parameters of the model have been described by Lazars-
feld (1950) and Hays and Borgatta (1954). It should be noted that these
methods require a preliminary ordering of the items in respect of their
breaking points x~.

As in the case of the normal-ogive model just treated, the object here is
to give the results of a harmonic analysis of the step-function in terms of
orthonormal polynomials. This, again, yields a set of relations by means of
which an initial solution in the form of a latent polynomial can be made to
yield the parameters of the latent distance model. One advantage in this
case is that the preliminary ordering of the items in respect of x~- is not neces-
sary in the indirect method.

With the notation of the previous section, and with parallel remarks,
for this case we obtain (see Appendix 4.5A),

(4.5.1) c~o = fli + (~fs -- Bi)N(zi)

1
ci~ - ~¢~ (fl~ - ~)h,_,(x~)n(xi), p 

where the h~ are the normalized Hermite-Tchebycheff polynomials, under
the assumption that the latent variate has a normal density function. The
first few coefficients c;~ are

(4.5.2)
1

Again by identifying the coefficients b;, in the latent polynomial analysis
with the Fourier coefficients c;~ we can in principle solve for the parameters
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of the latent distance model. The first three terms are sufficient, since by
(4.5.2) we can estimate x; 

(4.5.3) x; = ~ b;__~
5;1 ’

following which the values of ~., ~,~ can easily be obtained from the equations
for Cio(= b~o) and c~1(= b~l). If the initial analysis has given higher-order
terms, the parameters so obtained can be checked for consistency with these.

It may be noted that a restricted form of the latent distance model has
been described (cf. Torgerson (1958)) in which it is assumed 

(4.5.4) ~i = 1 - ~.

With this assumption, c;o and c;1 are given by

(4.5.5) C~o = 8; + (1 - 2~)~V(x;)

Ci, = (2[Ji -- 1)n(x~).

Given estimates of the Cio, c~1 from a linear factor analysis, (4.5.5) could 
solved by a graphical or successive-approximation method to yield the param-
eters of the restricted latent distance model. The unrestricted version, on the
other hand, requires an initial factor solution which is nonlinear, with terms
at least up to the second degree, if it is to be treated by the present method.

As in the case of the normal-ogive model, if the assumption of a normal
density function for the latent variate breaks down, it may be possible to
find an appropriate expression for the observed distribution and carry out
a corresponding Fourier analysis.

Again it should be pointed out that this procedure may require the use
of numerical integration, and could prove intractable in some cases.

4.6 The Perfect Scale

As mentioned earlier, the ideal answer patlern first recognized by Walker
(1931), and implicit in Ferguson’s (1941) work on difficulty factors, has 
recently been extensively studied by Guttman. A large body of literature
exists, usually referring to it as the perfect scale or Gutt~nan scale. The most
important developments are contained in Loevinger (1947; 1957), Guttman
(1950; 1954c), Lord (1958), Goodman (1959), Maxwell (1959a) and 
sler (1961).

In keeping with the general intentions of the present approach, the
perfect scale will here be considered only as a common limiting case of the
two models just considered. As mentioned in sect. 2.3, in the normal-ogive
model (2.3.14),

~;(x) = N{(~ - ~;)/~;},
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it is clear that as ~ --~ 0, in the limit we have

(4.6.1) ~(x) = 1, 

O, x

Similarly, in the latent-distance model (2.3.15),

~;(x) = ~., z > x~
~i~ X < Xi,

~ we set Vi = O, ~i = 1 for all ~, then

(4.6.2) ¢~(x) = x > x~
0, x <

~e parameters xi, g~ take on the same meaning in (4.6.1) and (4.6.2).
Provided that the values of xi for the items are all distinct, the model

(4.6.2) gives rise to the ideal answer pattern or perfect scale. It is worth
noting that, as is to be expected, the Fourier coefficients given by (4.4.1)
and (4.5.1) reduce in this case to identical expressions, namely,

(4.6.3)

c,~ = p-~/~h~_,(x~)n(x,), p 

These correspond to the principal component weights in the more general
theory given by Guttman (1950), and the normalized Her~t~Tchebycheff
polynomials h~(x) correspond to the principal component scores, for the case
where the latent variate has a normal distribution.

In contrast to the psychological interpretation of the principal com-
ponents given by Guttman (1950; 1954c) and Suchman (1950), the 
ponents are here treated simply as the harmonics of a step function. In
terms of the present theory, if we were to fit a latent polynomial to a set
of scalable data, this would yield a linear combination of the Guttman
principal components which gives the best approxima¢ion in the sense of least
squares to a step-function.

4.7 The Simplex Property and Translated Functi~ Models

In this section we exa~ne certain hmited aspects of the simplex theory
developed by Guttman (1954b; 1955b). As mentioned in sect. 2.3, a cor-
relation matrix has the additive simplex property, if (2.3.22),

for a specified ordering of the variables. A more general deflation of the
simplex property (Guttman, i955b), which allows negative correlations 
occur, is given by

(4.7.1) 8{(y~ - y~)(y~ yt )} = 0, j ~ k ~ l,
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i.e., the sequence of random variables Yl, Y2, ̄  ¯ ¯, y. has orthogonal increments.
We consider the additive simplex only.

Among the mathematical properties of a simplex matrix that have been
noted by Guttman, there are two of particular importance. When the variables
are appropriately ordered, any second-order minor vanishes if its elements
are all drawn from one side of the leading diagonal, but does not vanish in
general if elements are drawn from both sides. Also, the largest correlations
are adjacent to the leading diagonal, and their values decrease progressively
as one moves away from the diagonal. One difficulty for empirical applica-
tions of the simplex model is that it is easy to find other models which entail
the second of these properties and closely approximate the first, yet do not
possess the properties (2.3.22) or (4.7.1).

It was pointed out earlier that the correlation matrix (phi-coefficients)
of the perfect scale possesses the simplex property. In this case the principal
components of the scale can be regarded as the harmonics of a step-function
as in the previous section. While the simplex property does not entail a
unique factor model giving rise to it, Guttman (1954b, p. 323) makes the
additional assumption in his simplex theory that the observed variates are
continuously measurable, with a joint normal density function and hence
linear mutual regressions. Because of this additional assumption, he argues
that the principal component scores (equivalent to the component variates 
of Chap. 3) must be mutually statistically independent. This is in contrast
to the principal component scores for the perfect scale, for which case he
finds relations between them similar to those between the h~(x) in Chap. 3.
It appears that neither Guttman’s additional assumption nor its further
implications have yet been tested on any empirical simplex matrix.

Given the assumption of a normal multivariate distribution for the
observed variates, the most plausible factor model giving rise to the simplex
property (4.7.1) is, in the present notation,

i

Yi = ~ a~x~,(4.7.2)

that is,

(4.7.3)

where

y ~- xA,

:alalal ... al

a2a~ ’’’ a~

A =-- a3 ... a3



NONLINEAR FACTOR ANALYSIS

is an n X n matrix with zero elements everywhere below the leading diagonal
(cf. Guttman, 1954b, pp. 309-311) and nonzero elements, repeated as shown,
elsewhere, and xl, ¯ ¯ ¯ , x~ are independent normal, with mean zero, variance
unity. Since A is in triangular form, it is nonsingular, hence the correlation
matrix is of full rank. It is in terms of this particular factor model for the
simplex that Guttman interprets the order of the observed variates as
progressive increase in "complexity." In the field of abilities, each successive
test is thought of as requiring all the abilities called upon in the preceding
test, plus one more.

In Guttman’s theory, a perfect simplex is one in which the simplex
property holds precisely. In a quasi-simplex, an error term is added, and it
becomes necessary to adjust the elements in the leading diagonal of the cor-
relation matrix as in preceding factor theory. In general, such adjustments
as required by the error-term in the factor model should not reduce the rank
of the correlation matrix if the simplex condition holds.t

Guttman (1957b) lists twenty-six sets of variables which appear to have
a quasi-simplex form. These were discovered as submatrices of published
empirical correlation matrices.

Humphreys (1960) draws attention to the existence of the quasi-simplex
property in data obtained by retesting subjects at intervals over time in
certain maturation or learning studies. Here, the model (4.7.2) seems
plicable. The successive factors x~ can be thought of as increments in growth
or learning which are statistically independent of the existing level of de-
velopment. Such a situation resembles certain stochastic processes of the
random-walk type (cf. Feller, 1957, pp. 65-85).

In contrast to the evidence as interpreted by Guttman, it has been
noted by Borgatta (1958) and Humphreys (1960) that with a minimum 
two factors it is possible to generate a matrix which closely resembles
simplex, in that the two conditions mentioned above are approximately
satisfied. Following Humphreys, we will refer to such a matrix as a pseudo-
simplex. There is a fundamental distinction in theory between a pseudo-
simplex and a quasi-simplex, but in typical empirical work it may prove
impossible to distinguish between them at all.

An equally important distinction, especially in the case of learning and

t It has been shown very ingeniously by DuBois (1960) that a correlation matrix
having the simplex property (without error) can be reduced in rank to half its order 
suitable adjustments to the diagonal elements. This demonstration does not seem to have
any fundamental significance, however. In the usual situation with a factor model plus error,
we describe the n observed variates in terms of r common factors plus n "specific factors"
ascribable to unique "errors." In contrast, DuBois is able to show that an error-free simplex
matrix can be described in terms of n/2 common factors and n/2 specific factors. That is,
there is a rotation of the triangular matrix A within the n-space such that half of its column-
vectors each have only one nonzero element. While the issue may be worth exploring
further, it does not seem sensible to use the communality concept except on the basis of a
model allowing for random errors.
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maturation studies, is that between the multifactor simPlex, with the factor
model (4.7.2), and the unifactor simplex as in sect. 4.6.fit is shown in Ap-
pendix 4.7A that the factor model

(4.7.4) y~ --

where

];(z) = x < x;o

~;(z), Z;o < z _< z;,

1, x > xil

has a quasi-simplex property, in the sense that it possesses an approximation
to the property (2.3.22), provided that, for any two successive variables
i and k, xko > x;1. This model satisfies (2.3.22) precisely, if and only if ~;(x)
is a step-function, as in the argument of sect. 4.6. Model (4.7.4) corresponds
to the situation where the observed variates have identical upper and lower
limits, and where in terms of the latent variate x (the "ability," say), any
observed variate leaves its "floor" after the preceding one reaches its ceiling.

A model such as (4.7.4) may seem unlikely to apply in real life. Yet
some approximation to it may well hold in such cases as the learning and
maturation data considered by Humphreys (1960), thus providing an alter-
native to the random-increments model. It may also hold approximately
for subtests formed from sets of items of widely differing difficulty, as in
the first empirical example in sect. 5.1 below, and in the analysis by Gabriel
(1954) of the subtests of the 1937 Raven’s Progressive Matrices Test.

An important application of nonlinear factor analysis would be to the
task of distinguishing between unifactor and multifactor models for data
which appear to have the simplex property. This would seem to be of par-
ticular importance in learning and maturation studies, where the theoretical
distinction is between the randomoincrements model and one in which the
simplex property is due merely to the scale properties of the manifest variates.

Translated Function Models

The step-function model (4.6.2) for the perfect scale can be described 

(4.7.5)

where ~(x) is defined 

(4.7.6)

~,(z) = ~(x x;),

¢(x) = 1, > 0

0, x<0.

This immediately suggests a whole class of models defined by (4.7.5) obtainable
by introducing different functions ¢(x) in place of (4.7.6). These may 
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TABLE 4.7.1

1.000 .955 .449 -.318 -.600
.955 1.000 .707 .000 -.318
.449 .707 1.000 .707 .449

--.318 .000 .707 1.000 .955
-.600 -.318 .449 .955 1.000

sonably be called translated ]unction models, as they are obtained by the
translation of a prescribed function along the x-axis. The particular case of
the normal-ogive model in which the item parameters a~ (cf. sect. 4.4) are
equal for all items is an important case of this class, in which the items differ
in difficulty but not in discrimination.

In Appendix 4.7B some properties are given for the model in which a
single-factor quadratic regression function is translated along the x-axis.
With one particular choice of numerical values for the parameters, this model
yields the correlation matrix shown in Table 4.7.1. This is a pseudo-simplex
of rank two, corresponding to the Guttman (1955b) generalized simplex model.
Closer approximations to a quasi-simplex could be obtained with models
of this type containing terms of higher degree. It seems likely that the ap-
proach to translated function models in Appendix 4.7B is a theoretical blind
alley. The important point about these models is that they serve to shed more
light on Guttman’s radex theory, considered as a theory of conditional order.
Guttman has emphasized the fact that the simplex property, when it is
found, yields a unique ordering of items or tests, and the significance of this
ordering is independent of the factor model which underlies the data. In
view of the above, it would seem that one cannot ignore the fundamental
difference between an ordering of tests or items which rests on the translation
of a regression function along a single axis, and an ordering which rests on
the successive addition of independent factors. Nonlinear factor analysis
seems to be the essential device for distinguishing between these alternatives.

4.8 Curve-Fitting by Nonlinear Factor Analysis

A further application of nonlinear factor analysis consists of an extension
of one aspect of work by Tucker (1958; 1960) on the simultaneous fitting 
a set of individual curves by linear factor analysis. In this section, an account
of this extension is given, together with an alternative treatment based on
classical methods.

We consider a matrix of observations

y= (y,,) i= 1, ... , n
t = 1,... ,m.

This may be thought of as containing measures on each of n individuals
under each of m levels of a prescribed quantitative treatment x~. Other
interpretations are possible. (To fix ideas, we may think of the matrix as
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representing responses of individuals (i) after a number of learning trials (t)).
We regard Y as a random sample of one realization from an ensemble of
possible realizations of the process being studied with xl, ... , x~ fixed and
known. This corresponds to Model II as discussed in sect. 2.1.

We are interested in a set of individual laws of the form

(4.S.1) y,, = l,(x,) + 

where each e, is a random deviate.
Tucker (1958; 1960) has proposed to describe any set of individual

curves as linear combinations of a minimal set of re]erence curves, i.e., to write

(4.8.2) y,, = ~ a,,I,(z,) -~ e,,,

where the ],(x~) are s _~ m prescribed linearly independent functions in x,
and where, of course, ]],(x,)l < o~ for all r, t. The coefficients a~, are to be
estimated from the sample. Tucker’s approach to the problem is rather more
flexible in some respects than the development of it to be given here, since
a variety of functions might be prescribed, perhaps on theoretical grounds
according to the given data, whereas here we will as previously consider only
the treatment in terms of orthonormal polynomials. Cliff (1962) has examined
the rotation problem that arises in Tucker’s work and has provided a solu-
tion to it for cases where one has a criterion towards which the factor solution
is to be rotated. The present approach to this problem, on the other hand,
is a natural development of the methods of Chap. 3.

Method I: Procedure Using Nonlinear Factor Analysis

We may rewrite (4.8.2) in matrix form,

.(4.8.3) Y = AF(x) -~ 

where
A ~ (a,,) an n X s matrix,

F(x) ~ (],(x,)) an s X m matrix,

.of rank s _~ m, and

E ~" (e,,), an n X m matrix.

We assume* that

(4.8.4) ~ ~(e,,) = for all i, t,

5(,) -- for all t,
nd

~(e,,ei.) = for all i ~ j and all t, u.

* It may be noted that serial correlation between "trials" within "individuals" is
allowed in the model, since in general

8(e~Le~.) ~ 
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By (4.8.3) and (4.8.4) we 

(4.8.5) ~(YY’) = AF(x)F’(x)A’ ~,

where

u = diag ...
In general,

F(x)F’(x) 

so that one might consider it necessary to employ an oblique factor solution.
However, as in the corresponding equations (3.1.5) through (3.1.10), since
F(x) is of full rank, there exists a nonsingular matrix T such that

(4.8.6) TF(x)F’(x)T" 

Writing

(4.8.7) G(x) = TF(x),

whence

(4.8.8) F(x) --- T-IG(x),

we have from (4.8.3)

(4.8.9) Y = AT-1G(x) T 

and writing

(4.8.10) B -- AT-~

we obtain

(4.8.11) Y = BG(x) -t- 

where

(4.8.12) G(x)G’(x) 

Explicitly, (4.8.11) may be written

(4.8.13)

Hence without loss of generality the representation (4.8.2) can be reduced
to the representation (4.8.13), where the functions g~(.) are orthonormaL

By (4.8.4), (4.8.11) and (4.8.12),

(4.8.14) ~(YY’) = BB’ + ~,
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where B is of full rank.* Also, (4.8.11) has the same form as (3.1.10). 
important difference is that in the present case the x, are known. Since in
this case the g~(x,) are functions in a single variable, we have in particular
the single-factor case, hence in principle it can be subjected to a first analysis.
by the methods of sect. 3.2. Such an analysis will yield functional relations
between the gr of the type

(4.8.15) gr(z) -= h, {gl(x)}

where the functions h~(.) are the polynomials of (3.2.1).
In addition, since the values of x, are known, we can determine g,(x)

as a linear or nonlinear function, not necessarily a polynomial, in the inde-
pendent variable x. Such an analysis yields a determinate set of individual
curves as polynomials h, in the g~(x) so determined. That is, by the methods
of sect. 3.2, and in addition the determination of gl(x) we obtain individual
functions of the type

(4.8.16) y,, --

in which the ~r are estimated individual parameters, and the hr{g~(x)}
may be thought of as reIerence curves.

Method II: Procedure Using Classical Curve-Fitting and Linear Factor Analysis

There is, however, an alternative approach to the problem which is
both simpler and, in some ways, more instructive. Following the classical
procedures for curve fitting by orthogonal polynomials, we write

(4.8.17)

where the functions hi(x,) are, as in (3.2.1), orthonormal polynomials in 
of precise degree j, i.e.,

(4.8.18) ~ h,(x,)hk(x,) 1’

and ~ -]- 1 _< min (m, n).
We may rewrite (4.8.17) in matrix form,

(4.8.19) Y = KH(x) -b 

* It may be noted that in contrast to Tucker’s (1960) treatment, we are here developing
the argument in terms of 5(yyt), i.e., interrelations between "persons" rather than "trials."
This choice is virtually a matter of taste, since the preceding argument and the sequel
could have been developed by introducing a transformation of A into an orthogonal
matrix instead of the transformation T applied to F(x). The argument here was originally
developed on the basis of the account in Tucker (1958), in ignorance of the later work.
Perhaps the only point to be made now about this choice is that the orthonormal functions
in the indepen~ient variable x appear to have a more "substantive" basis than would
orthonormal transformations of the parameters associated with the individuals in the set.
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where K ~ [/~,;], an n X (~ ~- 1) matrix, which is not necessarily of full
rank, and

H(x) -- [h;(x,)], an (~ ~- 1) × m matrix, with

(4.8.20) H(x)H’(x) -- 

By (4.8.4), (4.8.19) and (4.8.20),

(4.8.21) ~(YY’) -- KK’ + 2,

but in this case K is not necessarily of full rank, in contrast to (4.8.14).
In case the x, are equally spaced, the functions ht can be obtained

by normalizing the Tchebycheff polynomials listed by Pearson and Hartley
(1956), and the elements of H(x) are given by normalizing the corresponding
tabulated values.

If a(e~,e~) = 0 for all t ~ u and all i, least-squares estimates/~, 
K are given by

(4.8.22) /~ = Yg’(x).

The usual tests of significance (Pearson and Hartley, 1956) can then 
applied to successive elements of each row vector of I~. The use of these
tests involves the further assumption that the joint density function of the
errors is normal. Let us now suppose that as a result of such tests of signifi-
cance, all column vectors of/~ for j <_ p + 1 (p _< g) require some nonzero
entries, while all column vectors of/~ for j > p + 1 can reasonably be deleted.
This procedure also yields estimates ~2 of U2.

Now if K is of rank s _< min. (p + 1, n) we may write

(4.8.23) K = MC1/2N,

where M, N are orthogonal matrices, respectively, of orders n X s and
s X (p + 1), and C is a diagonal matrix containing the s nonzero latent roots
of KK~.

Then by (4.8.19) and (4.8.23)

(4.8.24) Y = MC1/2NH(x) -t-E

which we rewrite as

(4.8.25) Y -= MCI/2T(x) -t- 

where

(4.8.26) T(x) = Nil(x)

is an orthogonal matrix.
Hence if/~ is approximately of rank s, we may obtain estimates

~, and )9 by the usual methods, and then write
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(4.8.27) Y = MCI/~T(x) -~ 

a set of individual curves expressed in terms of a minimum number of ortho-
normal polynomials, with the functions

(4.8.28) T(z) = NH(x)

serving to describe the reference curves. (One simple procedure is to obtain
the latent roots C and latent vectors fi" of/~’/~ = fi-rCh~, which will in general
be of much lower order than/~/~’ = ,~r¢21~r, and then obtain M by

~r =/~,5-~.

Essentially, what this amounts to is that we first fit a set of individual
curves by the classical methods, using the conventional tests of significance.
We then use the ordinary methods of factor analysis to condense the matrix
of individual parameters so obtained, according to the extent of linear
dependence shown between these parameters, and apply the same condensa-
tion to the set of orthogonal polynomials. (As developed above, the argument
does not allow for any alterations to the elements in the leading diagonal
of KK’, before obtaining its latent roots and vectors.)

Contrast, for example, the model

(4.8.29) y, = k,o + k,lx, ~- k,2h2(x,) -t- e,,

in which the parameters/c,o, k~l, ~ are linearly independent, with the model

(4.8.30) y,, = k,o ~- k,x, + k,~h~(x,) + k,3ha(x,) + l~,4h4(x,) 

in which the parameters are such that it may be rewritten in the form

(4.8.31) y,, = c,o ~- c,,{x, -~ ah~(x,)} c,~{ha(x,) + ~h4(x,)} ~- e,, ,

where c~o, c,~ and c~ are linearly independent.
In the first of these models, the matrix of individual parameters is of

full rank (rank three), the fitted individual curves are quadratic functions,
and the application of the latent roots/latent vectors procedure will not
yield any condensation of the expressions for the reference curves. In the
second model, the matrix of individual parameters is also of rank three,
but the fitted individual curves are quartics, and the application of the
latent roots/latent vectors procedure yields some condensation in the ex-
pressions for the reference curves.

The application of Method I to data conforming to these models would
yield similar expressions, but we might fail to realize the contrasting nature
of the two cases.



CH~.PTER 5

EMPIRICAL APPLICATIONS OF THE THEORY

5.0 Introduction

Each of the empirical studies reported in this chapter serves to illustrate
one of the specializations of the theory that was given in Chap. 4. The sections
are labeled in conformity with the sections of Chap. 4 which are here il-
lustrated.

In sect. 5.1 two analyses of subtests of the Raven Progressive Matrices
Test (1947) serve to illustrate the theory of difficulty factors given in sect.
4.1. In sect. 5.2 an analysis of items from two quasi-scales yields a two-factor
latent polynomial for dichotomies. Section 5.3 contains applications of the
treatment suggested in sect. 4.3 for latent class analysis. An attempt to
apply the treatment of the latent distance model given in sect. 4.5 is reported
in sect. 5.5. Finally, an application of the methods of curve fitting by factor
analysis, given in sect. 4.8, to a set of learning curves is discussed in sect. 5.8.

5.1 Two Analyses oI Raven’s Progressive Matrices Test (1947)

Introduction

It has been shown by Gabriel (1954) that if the five subtests in the
1938 version of the Progressive Matrices Test are intercorrelated, the prop-
erties of the resulting correlation matrix are in reasonable accordance with
Guttman’s simplex theory. This test consists of five sets of twelve incomplete
patterns, and the examinee is asked to complete each pattern by choosing
one of six or eight alternatives. The items tend to increase in difficulty
through each set, and the successive sets are claimed to increase in logical
complexity, as well as difficulty.

In the theory presented above (sect. 2.3 and 4.1) it was pointed out
that the factors obtained in the analysis of a simplex correlation matrix
may be identical with the difi%ulty factors discussed by Ferguson and
interpreted by Gibson as being due to curvilinear relations between tests
and factors. The distinction with which we are concerned is between a model
in which each test loads on one more factor than its predecessor in the se-
quence (i.e., the tests show a successive increase in factorial complexity)
and a model in which the difficulty factors that emerge are components due
to curvilinear regressions of the tests on a single factor. In the latter case

80
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the differences in curvature correspond to the fact that easy tests will dis-
criminate best at the lower end of the ability dimension, while the difficult
tests discriminate best at the higher end.

From these considerations, it seems worthwhile to reanalyze the Pro-
gressive Matrices Test (PM) using the techniques of nonlinear factor analysis.
For this purpose, however, there are two unsatisfactory features about the
1938 version of the test.

Firstly, subset A of the test appears to be rather too easy to be worth
including in an analysis, and the remaining four subsets do not provide a
large enough correlation matrix to be "fair" to the present theory. (It will
be recalled that this theory rests in part on the operation of the central limit
theorem as the number of observed variables becomes large.)

Secondly, the test as a whole is too easy to give a satisfactory spread
in performance on a university population. In contrast, the 1947 "high-level"
version of the test proves to give a satisfactory spread in performance both
for university students and in a sample of 13-year-old children. Furthermore,
it consists of forty-eight items, of which successive sets of four are claimed
by Raven to constitute subtests of increasing complexity. (Yates (1961)
found that two subsets are misplaced in difficulty level.) Hence it can be
made to yield twelve subtests for the purpose of factor analysis.

Accordingly, it seemed desirable to carry out a nonlinear factor analysis
on the twelve subtests of the 1947 PM, using both a sample from a university
population and a sample of children.* One could hope to find in one or both
analyses that the regressions of the tests on one factor would be nonlinear,
and that the loadings on the quadratic component should correlate with test
difficulty, as discussed in sect. 4.1. Further, one would hope to find that the
regression curves for the sample of children would link up in a sensible way
with the curves for the university sample. A priori, there were a number of
possibilities. In particular, it seemed quite possible that the data might
be in accord with Guttman’s model, that is, a linear factor model with
successive increases in factorial complexity.

Procedure

The 1947 PNI was administered under virtually untimed conditions to
groups of boys in Sydney high schools. Results were available from 390
subjects, mean age 13.96 years, SD 0.49 years. Of the total of 18,720 re-
sponses required, only twenty-six items were not attempted. The sample of
children will be referred to as Group C. The test was also administered in a
single session with a seventy-minute time limit to ninety-three beginning
students in psychology, mean age 18.54 years, SD 2.32 years. Of the total
of 4,464 responses required, seven items were not attempted. The sample of

* The data from the children were kindly supplied by Mr. R. A. Lockhart, Department
of Psychology, University of Sydney.
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TABLE 5.1. lc

Test Mean SD

1 3. 677 0. 663
2 3. 303 1.075
3 2.210 1.135
4 2.659 1.157
5 2.310 1. 304
6 1.154 1.135
7 1.897 1.062
8 1.415 1.070
9 1.687 1.267

10 0. 562 0. 744
11 0. 544 0. 692
12 0.331 0.546

ninety-three adults will be referred to as Group A. Results for the two groups
will be presented in parallel, to facilitate comparisons. Parallel tables and
graphs will be differentiated by a "e" or an "a" termination to identify
the group from which they originate.

Results

Means and SDs of the twelve tests are given in Table 5.1.1. The sample
correlation matrices are given in Table 5.1.2. In both cases, three latent

roots were larger than unity in a preliminary principal component analysis
with unities in the leading diagonals. Communality estimates were therefore
obtained on the hypothesis of rank three for both matrices, and the principal
component analysis was repeated using these estimates in the diagonals.

TABLE 5.1. la

Test Mean SD

1 3.881 .353
2 3.892 .341
3 3.700 .598
4 3.690 .602
5 3.636 .581
6 3.009 1.207
7 3.030 .818
8 2.924 1.074
9 3.222 1.012

10 1.446 1.126
11 1.446 1.078
12 1.021 .911
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TABLE 5.1.2c

Matrix R: Group C

83

(.276) .362 .124 .333 .388 .253 .325 .307 .285 .048 .125 .007
.400 (.475) .177 .442 .514 .338 .434 .384 .410 .085 .173 .017
¯ 158 .114 (.287) .232 .260 .223 .263 .276 .242 .383 .202 .126
.345 .444 .205 (.432) .500 .345 .435 .398 .409 .187 .203 .052
¯ 377 .577 .210 .476 (.578) .396 .501 .457 .471 .202 .230 .055
.202 .298 .206 .345 .357 (.283) .343 .332 .331 .214 .183 .064
¯ 361 .375 .258 .429 .515 .347 (.442) .412 .415 .240 .221 .071
.218 .383 .289 .433 .431 .325 .430 (.390) .385 .280 .223 .086
.292 .343 .251 .410 .461 .395 .420 .398 (.389) .216 .205 .063
.035 .169 .139 .190 .248 .174 .238 .277 .173 (.572) .249 .193
¯ 081 .158 .112 .190 .200 .272 .236 .246 .214 .249 (.150) .081
.132 .004 .016 .089 .097 .030 .045 --.007 .072 .010 .074 (.065)

With these communality estimates, the two matrices of factor loadings are
as shown in Table 5.1.3. The component variates Iv1, v2, v2] were also estimated.

Scatter diagrams of v2 on vl are shown in Fig. 5.1.1.
In both cases the third component variate v~ turned out to have ~,

peculiar trimodal distribution, with clear separations between the three
groups. It was discarded from the present analysis in both cases and is
discussed below in sect. 5.4.

The factor loadings on the first two factors are graphed in Fig. 5.1.2.
The upper triangles in Table 5.1.2 contain the reproduced correlations as

TABLE 5.1.2a

Matrix R: Group A

(.023) .032 .073 .059 .074 .103 .084 .091 .084 .089
.515 (.046) .100 .082 .075 .146 .114 .137 .119 .117

-.014 -.051 (.230) .188 .233 .326 .266 .285 .266 .283
.130 .047
.054 .143
.053 .132

--.006 --.086
.033 .153
.134 .193
.034 --.006
.013 .086

--.025 .042

.073 .053

.126 .071

.224 .169
.158 (.154) .192 .267 .217 .235 .218 .230 .189 .138
.203 .153 (.658) .282 .298 .129 .242 .377 --.134 .216
.402 .327 .309 (.471) .373 .430 .383 .388 .376 .233
.284 .307 .224 .333 (.307) .321 .306 .330 .243 .197
.363 .228 .097 .403 .250 (.426) .346 .316 .437 .193
.200 .108 .280 .333 .359 .354 (.312) .319 .296 .192
.274 .202 .319 .356 .377 .328 .294 (.362) .203 .215
.147 .154 --.070 .396 .227 .354 .319 .186 (.562) .131
.129 .167 .255 .145 .169 .209 .139 .260 .208 (.128)

Lower triangle, observed correlations
Upper triangle, reproduced correlations (2 factors)
Diagonal, communalities (2 factors)
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¯ 476
¯ 637
.417
¯ 648
¯ 745
¯ 532
¯ 664
¯ 623
¯ 622
¯ 400
¯ 344
¯ 120

C = diag [3.572

TABLE 5.1.3c

Matrix F: Group C

--.222 .135
-.264 -.012

.337 -.124
-.112 .036
-.150 .039

.002 -.034
--.040 --.020
.048 --.103

--.051 .011
.642 --.195
.174 --.009
.226 .929

¯ 768 .949]

from the first two factors. The major discrepancies between observed and
reproduced correlations are due to the omission of the third factor in each
case. The joint moments of Iv1, v2] are given in Table 5.1.4, together with
the moments of the "true" parts [wl,

From Fig. 5.1.1, it is reasonably evident in the case of Group C that
the points Ivy, v2] cluster about a quadratic parabola whose axis is approxi-
mately vertical. The picture is not nearly so clear in the case of Group A,
but with a little imagination one can project into it a quadratic parabola
whose principal axis is rotated approximately 30 to 45 degrees anticlockwise
from the vertical. In accordance with the theory given in sect. 3.1 and 3.2,

¯ 151
.211
¯479
¯ 392
.467
¯ 684
¯ 551
¯ 609
¯ 558
¯ 580
¯ 503
¯ 348

(: ~ diag [2. 833

TABLE 5.1.3a

Group .k

F

--.006 --.725
¯ 035 --¯803

--¯030 ¯168
--.014 .000
--.663 --.055

.057 .038
--.062 .201

.235 .023

.028 --.O9O
--.160 .133

.556 .047
--.080 .066

.846 1.276]

B

.134 -.069

.206 --.058

.421 --.230

.349 --¯178

.143 --.798

.644 -.238

.473 --.289

.651 --.045

.517 -.211

.458 --.390

.691 .291

.281 -.220
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TABLE 5.1.4c

Moments: Group C

87

20 1.146 1.000
11 --0.125 , 0.000
02 1.352 1.000
30 --0.160 --0.160
21 0.774 0.774
12 --0.004 --0.004
03 0.601 0.601
40 3.232 2.292
31 --0.526 --0.096
22 2.314 1.765
13 --0.878 --0.371
04 5.500 3.016

we wish to find, for both cases, a rotation 0 which will give a best parabola,
in the sense described earlier, to fit these graphs.

In the case of Group C, :Fig. 5.1.3 provides a graph of ~2 for 0 in the
range -10° to +10°. The required rotation is approximately zero, hence
we may be satisfied to take

k = 0.600, #3 = --0.160, 0 -- 0,

yielding

q):(min) = 0.536.

TABLE 5.1.4a

Moments: Group A

Y W

20 1.221 1.000
11 .093 0.000
02 1.339 1.000
30 --.6S7 --.687
21 .640 .640
12 -.015 --.015
03 1.318 1.318
40 4.400 2.928
31 .048 --2.93
22 2.745 2.110
13 .225 --.149
04 6.075 3.696
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Figure 5.1.3

An analysis of the variance of v2 into orthogonal components is given in
Table 5.1.5c. The F of 112.832 on one and 387 d] for the quadratic component
seems adequate confirmation of the hypothesis that the "true" part w2 is a
quadratic function of wl. Hence with zero rotation, we confirm the model
Ix 0.6(x2 -k 0.16x -- 1)] and reject the alternative hypothesis of two satistically
independent factors with linear regressions. With the obtained expression for
the quadratic term, the regression functions of the tests on a single factor x
are as given in Table 5.1.6c. Table 5.1.7c gives the corresponding expressions
when the test measurements are converted back into raw score form. A
selection of these regression functions is graphed in Fig. 5.1.4c. There is
an obvious similarity (with the notable exception of test 3) between these
regressions and the curves in Fig. 4.1.1 discussed earlier. That is, the easy
tests show maximum slope, corresponding to maximum discrimination, at
the negative end of the x dimension, while the difficult tests show maximum
slope at the positive end.

In the case of Group A, a preliminary graphical rotation of the points
Ivy, v2] through an angle of --30° was carried out on the Iv1, v~] graph as in-
dicated. An analysis of the variance of v2, after rotation, into orthogonal
components was then performed to verify the rather imaginative hunch
mentioned above. The results of this are given in Table 5.1.5a. The F of
15.03 on 1 and 90 d] (P < 0.001) confirms the hypothesis that the "true"
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Selected regression

curves - Children
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-I 0 I

Figure 5.1.4c

TABLE 5.1.5c
Analysis of Variance: Group C

Source SS

Total 527.280

Linear 5.312

Quadratic 117. 797

Residual 404.171

df

389

1

1

387

Ms F

5.312 5.088*

1.044
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TABLE 5.1.5a
Analysis of Variance: Group A

Source SS

Total 124.20

Linear 0.66

Quadratic 17.68

Residual 105.86

df

92

1

1

9O

0.66

17.68

1.176

F

1

15.03***

parts [wl, w~] lie on a rotated quadratic parabola, as surmised on the basis

of inspecting the graph. Fig, 5.1.3 provides a graph of ~ for 0 in the range
-10° to ~-10° about the initial rotation of --30 °. The minimum of $~ with
respect to 0 is at -1-5 °, hence the required total rotation is through -25°,

and the required parameters are

0.425, p~ = --0.511, 0 = --25° ,

yielding

¯ :(min) = 0.707.

TABLE 5.1.6
Estimated Parameters: Standard Score Form

Group C Group

Test

1
2
3
4
5
6
7
8
9

10
11
12

.455 --.133

.612 --.158

.449 .202

.637 --.067

.731 --.090

.532 .002

.660 --.024

.628 .029

.617 --.031

.462 .385

.361 .104

.142 .136

.099 --.029

.176 --.025
.303 --.098
.258 --.076

--.265 --.339
.522 --.101
.325 --.123
.628 --.019
.409 --.090
.259 --,166
.840 .124
.169 --.093
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TABLE 5.1.7
Estimated Parameters: Raw Score Form

y = ai -P bix -[- c~x

Group C Group

Test ai bi ci ai bi

1
2
3
4
5
6
7
8
9

10
11
12

3.755 .302 -.088
3.473 .658 -.170
1.981 .510 .229
2.737 .737 -.078
2.427 .953 -.117
1.152 .604 .002
1.922 .701 -.025
1.384 .672 .031
1.726 .782 -.039
0.276 .344 .286
0.472 .250 .072
0.257 .078 .074

3.891 .035 -.010
3.901 .060 -.009
3.759 .181 -.059
3.736 .155 -.046
3.833 -.154 -.197
3.131 .630 -.122
3.131 .266 -.101
2.944 .674 -.020
3.313 .414 -.091
1.633 .292 -.187
1.312 .906 .134
1.106 .154 -.085

Correspondingly, a rotation matrix

L__1.906 --.4231

[_.423 .906_j

is applied to the factor matrix of Table 5.1.3a (first two column vectors only).
With the obtained expression 0.425(x ~ -b 0.511x -- 1) for the quadratic
term, and the obtained matrix B of rotated factor loadings, we have the
regression functions of the tests on the single factor x as given in Table
5.1.6. Table 5.1.7 gives the corresponding expressions when the test measure-
ments are converted back into raw score form. A selection of these regression
functions is graphed in Fig. 5.1.4a.

In Group C, the correlation between the test means and their loadings
on the second factor is -0.715 (t -- 3.235 on 10 dr, P < 0.01). In contrast,
in Group A, the corresponding correlations both before rotation (r = -0.289)
and after rotation (r = -0.206) are nonsignificant.

Test 3 in Group C and test 5 in Group A are both represented as having
markedly nonmonotonic regression functions in the region where there is
appreciable population density. These were examined item by item to see if
they might be genuinely nomrnonotonic. A fairly independent check is given
by plotting the proportion of correct responses as a function of total test
score. None of the items appeared nonmonotonic on this basis.

Finally, we consider the relationship between the sets of regression
curves obtained from the two samples. A general theory of factorial invariance
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Figure 5.1.4a

that will be applicable to nonlinear factor analysis has not yet been worked
out. For the purposes of the present example, it seemed sufficient to determine
the points on the x-continuum for each group where the regression curves
showed maximum agreement in the sense of least squares, and to examine
the extent of the agreement at this point.

Writing

Yi~ = ato -t- b~oxo "1- ciox~

for the regression curves for Group C and

for the curves for Group A, we minimize the quantity

= ,o+za ~,a,~+x. ~,b~ ~
i i i i i
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i i i

i i

i i i i

~th respect to x~ x., using the values of the parameters given in Table
5.1.7. This yields a well-defined mi~mum value of 0.741 ~t x~ = 1.62, x. =

-0.74. The extent of ~sfitting of the individual regression cu~es can be
seen ~ Fig. 5.1.5, which gives the v~lues of the Group A regression fuuctio~
at x. = -0.74 plotted against the values of the Group C regression fuactio~
u~ x. = 1.62. Unfortunately, there does not seem to be any test which could
be applied in order to deter~ae whether the agreement is "s~tisf~ctory"
in some sense.

Discussion

In general, the regression functions relating the tests to the factor are
plausible in both cases, thus serving to show that the methods of nmfiinear

-4

000 ~/~

0 O0

0 ,

o o

f ~ I I
f 2 3 4

Relations between regression curves
fo~ Adu#s and Childr~ of fhe

poinf of best fit. Reloti~ of

~ c = 0 , ~ ~ = 0 shown for con~osf.

Fi~are 5,1.5
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factor analysis presented in Chap. 3 can be put to work and that empirical
data can be found to which these methods are appIicable.

The regression functions are "plausible" in that the following remarks
apply. With the two exceptions noted above they are monotonic increasing
functions of x in the region where there is appreciable population density
(remembering that x is in standard form, hence most of the population will
lie in the range --2 < x < 2, say). Further, in Group C, as noted above,
the easy tests have their greater slope at the low end of the range of ability,
while the difficult tests have their greater slope at the high end of the ability
range, much as we would expect. In this respect, for the case of Group A,
nearly all the tests behave like "easy" tests, with maximum discrimination
at the lower end of the ability range. This could be expected in a university
population as contrasted with school children.

The curves for the two groups show maximum agreement at xc = 1.62,
x, -- --0.74, and the amount of agreement appears to be satisfactory. It
seems plausible that a child performing at 1.62 standard deviations above
the mean of his group should have the same ability as a university student
performing at 0.74 standard deviations below the mean of his group.

An interesting feature of this particular example is that it provides
us, for the first time, with direct evidence that a difficulty factor can be due
to differential curvature of the regressions on the "content" factor, together
with evidence that it is possible to have differential curvature without a
difficulty factor.

In the case of Group C, investigators employing linear factor analysis
could be expected to notice that the loadings on the second factor correlate
highly with test difficulty, and hence to set it aside as a difficulty factor,
requiring no interpretation. The present methods serve to show further that
in this case the "difficulty factor" corresponds quite directly to the shape
of the regression curves. Also, the treatment by nonlinear methods gives us
curves from which the discriminating power of each test, measured by the
slope of the regression function, can be determined at any part of the ability
range. In this way, the "difficulty factor," instead of being a nuisance,
acquires some usefulness.

In the case of Group A, linear factor analysis might be expected to go
quite astray in its treatment of the data. Here there is nothing to lead one
to suspect a difficulty factor. In Fig. 5.1.2a one might follow the usual con-
ventions for analyzing cognitive tests, and rotate the axes to yield a positive
manifold. This is approximately attainable. (Simple structure cannot be
remotely approached in this case.) Test 5 and test 11 then provide the only
"pure" measures of the two alleged factors, other tests involving mixtures
of these. One might even achieve an interpretation of these. But, from what
we now know, the whole of this rotation and interpretation procedure would
clearly be quite wrong, from start to finish. In fact, the rotation required by
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the nonlinear procedures has nothing to do with positive manifold--in this
case it produced a majority of negative loadings on the second factor--and
certainly nothing to do with the principles of simple structure.

The Group C data required no rotation in that there was a close balance
between positive and negative curvatures in the set of regression curves,
hence the principal component solution was satisfactory as it stood. In
the case of Group A, rotation from the principal components solution was
necessary in that most of the regression curves showed curvature in the one
direction.

5.2 An Empirica~ Example of a Polynomial in Two Factors from
Dichotomous Items

Introduction

As pointed out in sect. 4.2 the latent polynomial model as described by
Lazarsfeld is a model for observed dichotomies in which the regression func-
tions are polynomials in a single latent variate or factor. If the model is
appropriate, it can be fitted to empirical data by the methods of sect. 3.2.

Somewhat more generally, analysis of empirical data may demand a
model in which the regression functions are polynomials in two or more latent
variates. The methods of sect. 3.3 are then appropriate.

When looking for a set of dichotomous data that should serve to illustrate
this type of case, it seemed advisable to obtain a reasonably large number of
items which would have a fair a priori probability of requiring a nonlinear
model. An obvious way to get some assurance of this is to use items which are
known to form a quasi-scale. It is, however, unusual to find quasi-scales based
on a reasonably large number of items.

Schutz (1958) has developed an Interpersonal Relations Inventory, con-
sisting of six subtests containing nine items each. Each of the six subtests
forms a fairly good quasi-scale. Data were available on this test for 158
subjects.* The six subscales are not mutually orthogonal. The six scales
are made up of three content areas, viz. "inclusion" (in groups), "control"
(over others), and "affection," by two aspects of each, "wanted behavior"
(with items beginning "I like..." or equivalently) versus "expressed behavior"
(with items beginning "I try to..." or equivalently). The highest intercor-
relations between total scores on different scales are -~0.62 between wanted
and expected inclusion, and ~-0.57 between wanted and expected affection.
The scatter diagram for the second of these relations revealed that peculiar
but not uncommon form of distribution in which all the sample density was
concentrated in one triangle, corresponding to a tendency for a score of y
on one scale to be conditional on a score of greater than y on the other, but

* These data were kindly supplied by Mr. G. Singer of the Department of Psychology~
University of Sydney.
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TABLE 5.2.0

Schutz Scale

Item No.

1 I try to be friendly to people.
2 My personal relations with people are cool and distant.
3 I act cool and distant with people.
4 I try to have close relationships with people.
5 I try to have close, personal relationships with people.
6 I try to have close relationships with people.
7 I try to get close and personal with people.
8 I try to have close, personal relationships with people.
9 I try to get close and personal with people.

10 I like people to act friendly toward me.
11 I like people to act cool and distant toward me.
12 I like people to act distant toward me.
13 I like people to act cool and distant toward me.
14 I like people to act distant toward me.
15 I like people to act close toward me.
16 I like people to act close and personal toward me.
17 I like people to act close and personal with me.
18 I like people to act close toward me.

Note.--(1) Items are scored positively or negatively where appropriate. (2) Items 
one of two sets of response alternatives: (a) most people--many--some--a few--nobody;
(b) usually--often--sometimes-~occasionally--never. Where items are repeated, the
"time" and the "people" alternatives are used. Cutting-points also vary.

not vice versa. These preliminary observations suggested that it might be
interesting to factor the eighteen items for "wanted" and "expressed affection"
put together in a single score matrix. These items are listed in Table 5.2.0.
It may be noted that the items within each subscale reveal a kind of "semantic
triviality," in that one finds virtually the same content from one item to the
next, with a variant on the wording designed primarily to alter the probability
of endorsing it. This seems rather typical of Guttman scales.

In the other examples in this chapter, there is in each case some kind
of "validation" for the method, e.g., the relation of the second factor to test
difficulty in the Group C data in sect. 5.1. In this case the analysis is best
regarded as purely exploratory, and the results can only be judged in terms
of their intrinsic plausibility.

Analysis and Results

The coefficients of reproducibility for the two scales employed were,
respectively, 0.942 for "expressed affection" and 0.938 for "wanted affection,"
for 158 subjects.

In this, and most succeeding analyses, we are concerned with dichotomous
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observed variables. Hence it is appropriate to factor the covariance matrix,
in accordance with the argument of sect. 2.3, in order that the obtained
regression functions will be directly interpretable as "trace functions," i.e.,

as representing the conditional probability, given the latent characteriza-
tion, of giving the positive response to each item. Corresponding to the

Guttman lower bound for the rank of the reduced correlation matrix, we
require a criterion for the rank of the reduced covariance matrix. An ap-
proximate equivalent to the Guttman lower bound is obtained by taking

the mean of the variances of the observed variables (the trace of the co-
variance matrix divided by its order). Then the rank of the reduced covariance
matrix can be taken as equal to the number of latent roots of the original

covariance matrix which are greater than the mean of the variances.
The observed covariances are given in Appendix 5.2A. The item means

(Pi, the proportion of positive responses) and variances (p~(1 - p~)) 
given in Table 5.2.1. In the initial principal components analysis, three latent
roots (0.763, 0.501, and 0.196) were greater than the mean of the variances
(0.151). Accordingly, the principal components analysis was repeated with
the communalities obtained from these three factors, yielding the factor
matrix and latent roots given in Table 5.2.2. This F matrix yields the re-
produced covariances and communalities given in the upper triangle and
leading diagonal of Appendix 5.2A.

TABLE 5.2.1

Commu- Comm./
Item F p~ p~q~ nalities Variance

1 .151
2 .209
3 .230
4 .218
5 .092
6 .180
7 .125
8 .121
9 .078

10 .105
11 .222
12 .170
13 .297
14 .333
15 .252
16 .197
17 .186
18 .158

C = diag {.6949

--.076 .018
-.238 .076
-.191 .023

.207 --.179

.135 --.119

.139 --.018
.138 .000
.113 .047
.091 --.059

--.040 --.006
--.113 --.098
--.080 --.067
--.168 --.040
--.193 .022

.199 .168

.206 .016

.185 .159

.106 --.052

.4338 .1322}

.874 .1100 .0289 .263

.723 .2002 .1061 .530

.679 .2179 .0899 .413

.245 .1851 .1224 .661

.119 .1100 .0499 .372

.138 .1192 .0520 .436

.094 .0905 .0347 .383

.132 .1146 .0296 .258

.057 .0478 .0178 .372

.931 .0644 .0127 .197

.818 .1491 .0717 .481

.780 .1717 .0398 .232

.748 .1883 .1180 .627

.686 .2132 .1486 .697

.314 .2156 .1313 .609

.208 .1645 .0815 .495

.195 .1570 .0941 .599

.195 .1570 .0389 .248
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TABLE 5.2.2

Analysis of Variance of
V2

Source SS

Total 183.870

Linear 0.009

Quad. 85. 503

Resid. 98.358

df Ms

157

1

1 85.503

155 0.631

F Total

< 1 With

Analysis of Variance of
~)$

I57 228.867

7 9.215

150 219.652

F

1.316 < 1

1.464

135.504"** (v3 observations grouped into
eight classes by partigioning the
vl axis)

°oe

Scoffer dJogrom
Second vs, Firsf
componenf voriofe

o°

Figure 5.2.1a
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Scatter diagrams of the distributions [vl, v2] and [vl, v3] are given in
Fig. 5.2.1. Inspection of these suggests that the true part (w2) of the second
component variate can be expressed as a quadratic in w~, with practically
zero rotation, while v3 appears to be statistically independent of vl. Analyses
of variance for v2 and va given in Table 5.2.2 confirm these impressions.
Hence in this case we have the factor model

Yi = boi + b,~x, + b2~h2(xl) + b~ix~ + uiei

where, as usual, h~(xl) represents a quadratic function in xl.
The required moments of the distribution of [vl, v2] and the corresponding

moments of the true parts [wl, w2] are given in Table 5.2.3. Substituting the
latter in the expression for ~2 as previously yields a required rotation of less
than one degree, which m~y be safely neglected, and parameters k and ~a
such that

h~(x,) = 0.155x + 0.629(x~ - 1),

with

4b~(min) = 0.317.

Substituting the expression for h~(x~) in the specification equations for the
eighteen variables gives the regression functions (trace surfaces) of Table

-3

Scatter diagram -- Third Vs. first componenf variafe

Figure 5.2.1b
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TABLE 5.2.3

Moments of (v~, v2) and (w~,

20 1.097 1.000
11 --.008 .000
02 1.154 1.000
30 -.247 --.247
21 1.085 1.085
12 .409 .409
03 .631 .631
40 3.396 2.785
31 .268 .293
22 .540 .274
13 .886 .913
04 3.040 2.045

5.2.4. Fig. 5.2.2 gives the regression curves for selected items on the firs¢
latent variate

Since in this example we require two statistically independent factors,
xl and x~, to account for the data, it is necessary to consider the alternative
solutions that might be obtained by a transformation of Ix1, x2]. A plot of
the factor loadings on the third factor against those on the first is given in
Fig. 5.2.3. From this it can be seen that it would not be possible, in the terms
of conventional factor analysis, to rotate the solution to orthogonal simple
structure. It is possible, however, by applying a rotation of sin-1 0.8 to achieve
a positive manifold. Applying the transformation

to the expressions given in Table 5.2.4 gives the transformed regression func-
tions of Table 5.2.5 (only a selection from the eighteen items is given).

Discussion

The regression functions obtained are fairly plausible, in that, over
the range of xl for which the population density is not negligible, they give
values for the probability of a positive response that lie for the most part
within the required range of zero to one. The worst case is item 6, which is
given a probability of endorsement of - 0.064 at x~ = -- 1.0. As in the examples
of sect. 5.1, there are curves which are nonmonotonic within the range of
the latent distribution, but none have a stationary value within the range
--1.0 < x~ < 1.0 which contains the major part of the population density.

Since in this case we require two factors to account for the data, ques-
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p jx.

Trace - functions of selected #ems

pjlX o Probo~ili,y o~
endorsement of item j

for given X

F~re 5.2.2

TABLE 5.2.4
Regression Functions

ao -F a1~ -F a~ozl2 q-

Item ao a~o ~2o ~o~

1 .922 .139 --.048 .018
2 .873 .172 --.150 .076
3 .799 .200 --.120 .023
4 .115 .250 .130 --.179
5 .034 .113 .085 --.119
6 .051 .202 .087 --.018
7 .007 .146 .087 .000
8 .061 .139 .071 .047
9 .000 .092 .057 --.059

10 .956 .099 --.025 --.006
11 .889 .204 --.071 --.098
12 .830 .158 --.050 --.067
13 .854 .271 --.106 --.040
14 .807 .303 --.121 .022
15 .189 .283 .125 .168
16 .078 .229 .130 .016
17 .079 .215 .116 .159
18 .128 .174 ,067 --.052
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component ~c~or /oodings

first ~nd fhird lector

Figure 5.2.3

tions arise concerning rotation to a preferred solution and interpretation of
the factors.

A comparison of the functions in Tables 5.2.4 and 5.2.5 serves to show

that rotation of axes to achieve positive manifold, i.e., to a position such that
all the first-order coefficients of }, and }2 are positive, can only be achieved
at the price of considerable complications to the description of the regression
surface. This would still have been the case, thoug~h not quite to the same
extent, if orthogonal simple structure were possible for the first-order coeffi-

TABLE 5.2.5

Regression Functions after Rotation

y = ao -t- alo}, ~ ao,}-. ~- a~0~l2 -~ ao~~ -~-

Item a0 a,0 a0l a2o ao2 atl

1 .922 .069 .122 --.017 --.031 .046
5 .034 .163 .019 .031 .054 --.082
9 .000 .102 .038 .021 .036 --.055

10 .956 .064 .076 --.009 --.016 .024
14 .807 .164 .256 --.044 --.077 .116
18 .128 .146 .108 .024 .043 --.064
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cients. Further research experience with nonlinear factor analysis would seem
necessary before any positive recommendations can be made with regard to
this type of rotation problem.

There does not seem to be a clear-cut interpretation of the two factors
that emerge from the analysis. Examining the unrotated form of the factor
matrix in Table 5.2.1, one can regard the first, general factor, as concerned
with a general orientation towards having close (affectionate?) relations
with people. The third set of factor loadings should provide the necessary
contrasts for the interpretation of the second latent variate. Here it is intrigu-
ing to note that the contrast, broadly, is between the items of one subscale
with high probability of endorsement, together with the items of the other
with low probability, as against the reverse combination. More specifically,
it seems to reduce to a rather unlikely contrast of "trying to be close to
people and wanting them not to be distant," versus "trying not to be distant
from people and wanting them to be close." Beyond this semantic curiosity
it seems impossible to go.

5.3 Empirical Work Related to the Latent Class Model

Introduction

In sect. 4.3 we saw that the methods employed as a matter of routine
in nonlinear factor analysis can serve to reveal a genuine point distribution
of the latent variate or factor, if such exists, and that in optimal cases, at
least, it may be possible to estimate the parameters of the appropriate latent
class model from the results obtained in the initial analysis.

It seems reasonable to suggest that latent class cases will prove to be
comparatively rare in behavioral nature, while latent continuity would be
the general rule. There is no evidence in the literature on this point, since
in contrast to the procedures suggested in sect. 4.3, the methods of analysis
given by Green (1951), Anderson (1954) and Gibson (1955) do not provide
a test of the assumption that the latent distribution is discrete.

Thus, in an interesting application of latent class analysis to listeners’
choices of radio programs, Gibson (cf. Lazarsfeld, 1959) was able to account
for the data in terms of six latent classes. Four of these could be interpreted
readily as: A, "non-listeners"; D, "high-brows"; E, "low-brows"; and F,
"older and/or small-town people." Each of these verbal labels refers to an
attribute which admits of degrees of variation. One can therefore suspect
that an alternative model allowing for continuous variation in a latent space
of one or more dimensions might be preferable, in comparison with a model
which imposes a discrete class interpretation from the start.

Similarly, Miller, Sabagh and Dingman (1962) have applied latent class
analysis, using Green’s method, to five diagnostic characteristics of patients
admitted to a hospital for the mentally retarded. The five variables were
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adequately accounted for by a latent dichotomy; the two classes were in-
terpreted respectively as "mildly retarded" and "severely retarded." In this
case the interpretation suggests strongly that we should really have latent
continuity, rather than a two-valued characteristic of the patient, "mild"
versus "severe" retardation.* The complete set of data in this study was
kindly made available by Dr. Miller for reanalysis.

Since the present program of research was begun, no really worthwhile
example of a latent point distribution has been discovered. For the purposes
of this section, then, two empirical cases will be presented. The first is a
reanalysis of the data of Miller, Sabagh and Dingman, while the second
consists of a further examination of the third factor in each of the two analyses
given in sect. 5.1.

A Reanalysis of the Data of Miller et al.

The data as supplied by Dr. Miller are given in Table 5.3.1. This yields
in turn the covariance matrix in Table 5.3.2. The estimates of the parameters
of the latent dichotomy obtained by Miller et al. using Green’s method
are also given in Table 5.3.2. Since the reduced covariance matrix is approxi-
mately of rank one, it can equally be accounted for by a latent dichotomy or
by the latent linear model. The estimates of the parameters as, b~ in a latent
linear interpretation of the data are Mso given in Table 5.3.2. In the columns
ai(s), b~(s), these estimates are obtained directly from the data, with the
proportion of positive responses to each item as estimates of a;, and with the
slope parameters b~ obtained as factor loadings in a Spearman factor analysis
of the covariance matrix, as recommended by Torgerson (1958). In the
columns a~(M), b~(M), these parameters have been calculated from the
latent class parameters, using the formulae (4.3.5) and (4.3.6) of sect. 
Such small discrepancies as occur between the results of the two methods
would be due, basically, to differences in the communalities obtained in the
Spearman analysis and the equivalents to communality obtained in a latent
class analysis by Green’s method.

The value of the component variate, or, in this case, the general factor
score, was calculated for each response pattern, using the factor Ioadings
from the Spearman analysis of the covariance matrix. These values are given
in Table 5.3.1. The distribution of v is represented as a histogram in Fig.
5.3.1. Considering the large size of the sample (3709 cases), this strongly
suggests the existence of four believable modes, separated by three intervals
of low frequency. One is tempted to say that the frequencies of the thirty-
two response patterns might be accounted for by four latent classes on a
unidimensional continuum. In terms of the theory given by Lazarsfeld (1950),

* The obiects of Miller et al. were to study differential mortality rates as a function
of the diagnostic characteristics employed. A decision as to the "genuineness" of the dis-
continuity imposed in the analysis is almost certainly unnecessary from their point of view.
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TABLE 5.3.1

105

Pattern Frequency v

11111 314 1.766
11110 85 .748
11101 61 .660
11100 27 --.358
11011 49 1.296
11010 21 .278
11001 12 .190
11000 4 --.828
10111 200 .819
10110 112 --.199
10101 135 --.287
10100 274 --1.305
10011 38 .349
I0010 37 --.669
10001 27 --.757
10000 158 --1.775
01111 416 1.688
01110 124 .670
OllOl 116 .582
01100 69 --.436
01011 68 1.218
01010 24 .200
01001 5 .112
01000 12 --.906
00111 218 .741
O011O 125 --.277
00101 177 --.365
00100 374 --1.383
00011 50 .271
00010 44 --.747
00001 44 --.835
00000 289 --1.853

Variables

1 2 3 4 5
Sex Age Race IQ Dx

1 female 1 0-9 yrs. 1 Caucasian 1 0-39 1 Somatic
0 male 0 10yrs. 0 Nonwhite 0 40 0 Nonsomafic

this would be a "degenerate" four-class case, degenerate in the sense that
four classes are required, yet the covariance matrix is of rank one. However,
before we take this notion too seriously, it is advisable to examine the re-
.sponse patterns more closely.

In Table 5.3.3a, the thirty-two response patterns have been put into
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Covariance Matrix

-.005
.007 .038
.014 .100 .035
.007 .084 .045 .095

TABLE 5.3.2

Latent Class
Parameters

~1 ~i~ ai(s) ai(M) b~(s) b~(M)
.400 .447 .419 .418 .016 .023

J .153 .723 .379 .379 .265 .280

.650 .933 .762 .763 .136 .139

.255 .924 .519 .520 .333 .327

.277 .892 .520 .521 .305 .301

gl.604 g2.396

(i)

TABLE 5.3.33

Response Pattern Frequencies Grouped by v-value

(2) (3)

00000(289) 00101(177) 00111(218)

10000(158) 01100(69) 01101(116)

00100(374) 10101(135) 01110(124)

10100(274) 10110(112) 10111(200)

00110(125) 11100(27) 11101(61)
11110(85)

(1-2) (2-3) (3-4)

01011(68)
11011(49)

00001(44)
00010(44)
OLOOO(12)
10001(27)
10010(37)
11000(4)

00011(50)
01001(5)
01010(24)
10011(38)
11001(12)
11010(21)

(4)

01111(416)
11111(314)

(1)

ooo(lo95)
010(125)

TABLE 5.3.3b

Response Pattern Frequencies
(Omitting Variables 1 and 3)

(2) (3)

001(312) 011(418)
100(96) 101(177)
010(135) 110(209)

(2-3)

011(88)
101(17)
110(45)

(1-2)

oo1(71)
OLO(81)
lOO(16)

(4)

111(730)

(34)

111(117)
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four groups corresponding to the intervals of v containing a high probability
density, separated by the three groups corresponding to intervals of low
density. Inspection of this table suggests that we consider what remains
if we omit the first and third items (sex and ethnic status) which have proved,
not surprisingly, to be poor discriminators between the two alleged latent
classes. Omitting these items we obtain the corresponding set of response
patterns given in Table 5.3.3b. From this table it appears that the intervals
of high density in the histogram of Fig. 5.3.1 correspond fairly well to the
total scores 0, 1, 2, and 3 of positive responses, in all possible patterns, for
the three items which show good discrimination. (The behavior of the fourth
item, IQ--second in the reduced response patterns--is exceptional. The 010
pattern turns up in three of the intervals as in Table 5.3.3b. Nevertheless,
the overall picture seems clear enough.) Thus, in a real yet quite trivial
sense, we have in this case four latent classes on a unidimensional continuum.
On the whole, then, it would seem preferable to describe the data in terms
of the latent linear model. A continuous gradation from mild to severe
retardation makes psychological sense. At the same time it must be recognized
that one cannot positively assert latent continuity on the basis of a small
number of observed variables.

Empirical Example 5.1 Revisited

In the two analyses of the Raven PM data of sect. 5.1, a curious thing
was noted. Three factors were retained in the initial analysis in each case
and the distributions of component variate v~ were multimodal, as shown
in Table 5.3.4. It looked as though we would require two latent variates to
account for the data in both cases. The first would be the variate appearing
in the analyses given above, with quadratic regression lines. The second
would be a variate taking only two or three discrete values as suggested by
Table 5.3.4.

However, in the case of Set C, inspection of the factor loadings on the
third factor revealed that test 12 had a loading of 0.929, while no other test
had a loading of greater than ~=0.2 (cf. Table 5.1.3c). Since the scores 
test 12 were distributed over the values 0, 1, and 2 (with no subject scoring

Figure 5.3.1
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TABLE 5.3.4
Distribution of Third Component: Raven’s Data

Group C Group A

3.5
3.0
2.5

Frequency

2.0
1.5
1.0
.5
0

-1.0

-2.0

2.4
1.9
1.4
.9
.4

4
6
1

17
42
16
3

Frequen~

3.9 2
3.4 8
2.9 4

1
34
45
17
5

133
114
27

390Total 93

3 or 4) in complete correspondence to the three suspected groups in Table
5.3.4, the explanation of the three latent classes was evident.

Similarly, in the case of Set A, the factor loadings for tests 1 and 2

were --0.725 and -0.803 respectively, while no other test had a loading
of greater than 4-0.201 (cf. Table 5.1.3a). Here the three apparent classes
correspond precisely to 0, 1, or 2 errors in the eight items of subtests 1 and
2, so again there was no great mystery.

Discussion

In both the examples considered, there is some suggestion that the

latent variate has a discrete distribution, and in both cases the basis of the
discontinuity is readily understood and completely lacking in theoretical
interest. This is in contrast to the constructed numerical example of a genuine
latent dichotomy in sect. 4.3. It was also true in the latter case that the two
values taken by the latent variate corresponded approximately to cumulated
:scores on the discriminating items. However, in the empirical examples, all
possible total scores occurred, over the discriminating items, yielding as many
latent classes. In the constructed example, there were ten discriminating
items, and hence there could be eleven latent classes on this theoretically
trivial basis. But the data were so constructed that only two such classes

¢ccurred.
The question for future research in this direction is this: How often
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will a latent class case be discovered in empirical data, which is nontrivial
theoretically? It is to be hoped that the use of the present methods of non-
linear analysis in future factor investigations will serve incidentally to answer
this question.

5.5 An Empirical Application to Latent Distance Analysis

Introduction

In sect. 4.5, a set of relations was obtained from a Fourier analysis of a
step function, which should enable one to estimate the parameters of the
latent distance model, given an initial solution in the form of a latent poly-
nomial.

A direct method for fitting a latent distance model to empirical data
was first described by Lazarsfeld (1950). The currently recommended method
for fitting this model directly can be found in Torgerson (1958). This makes
use of the covariances of the observed variables, and also of the expected
value of products of three variables. By its nature, the method imposes
a rectangular distribution on the latent variate. Since the regression functions
are step-functions, their form will be invariant under a change of metric of
the latent continuum.

It is not yet possible to make any theoretical statements as to the
relative effectiveness of the direct method in normal use and the indirect
method of sect. 4.5. Some idea as to the relative efficiency of estimation of
the methods could be obtained from an empirical program which would be
somewhat parallel to the comparison by Hays and Borgatta (1954) of the
three-parameter and the two-parameter latent distance models.

For the purposes of this section, one such comparison will be made.
Hays and Borgatta (1954) give the complete score matrices, arranged 
terms of response patterns and their frequencies, for ten sets of four items
and five sets of five items. All fifteen would be regarded as good quasi-scales,
with coefficients of reproducibility, as defined by Guttman, ranging from
0.9207 to 0.9821. Scale 10 contains 1000 subjects (with a reproducibility of
0.9403), while the next largest sample consists of 390 subjects. Accordingly,
scale 10 was chosen for reanalysis by nonlinear factor analysis and the methods
of sect. 4.5. Since Hays and Borgatta give no information about the items
in the scale, the psychological significance of the results is unknown.

Analysis and Results

The response patterns and their frequencies are given in Table 5.5.1.
The five main "scale types" are underlined. The observed covariance matrix
is given in the lower triangle of Table 5.5.2, together with the factor matrix F
and the latent roots C. The reproduced covariances are given in the upper
triangle of the covariance matrix, with communalities in the leading diagonal.
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TABLE 5.5.1

Component Variates
Response Observed Expected
Pattern Frequency (0) vl v~ v~ Frequency

1111 75 2.083 1.857 .895 39.3
1110 110 1.544 --.403 --2.638 142.8
1101 14 1.257 .546 3.071 13.3
ll0q 141 .717 --1.714 --.463 157.4
1011 10 1.132 1.700 3.743 9.7
1010 49 .592 --.560 .210 51.1
1001 1.1 .306 .390 5.919 13.8
100Q 161 --.234 --1.870 2.386 222.4
0111 8 .923 4.180 --1.355 6.8
0110 11 .383 1.918 --4.888 25.9
0101 8 .097 2.767 .821 3.1
0100 64 --.443 .607 --2.712 42.0
0011 3 --.028 4.022 1.494 2.8
0010 41 --.568 1.762 --2.039 29.0
0001 9 --.855 2.711 3.670 13.4
0000 285 --1.394 .451 .136 227.2

Table 5.5.1 contains also the values of the three component variates for each
response pattern.

Scatter diagrams of the bivariate distributions Iv,, v2] and [Vl, va] are
given respectively in Figs. 5.5.1 and 5.5.2. Inspection of these suggests that
v2 could be represented as a quadratic function of Vl, while va could be rep-
resented as a cubic, with little or no rotation. Analyses of the variances of
v~ and va, given in Table 5.5.3, provide confirmation of these impressions.
Thus we confirm the hypothesis that the data can be accounted for by a
single4aetor cubic model.

The rigorous procedures for rotation given in sect. 3.2 are exceedingly

arduous to carry out in three-space by hand computation. The nature of this
example (see discussion section below) did not justify a refined analysis.

TABLE 5.5.2

Item Covariance matrix p~. Matrix F

2 .0939 (. 0972) .0850 .0419 .431 .297 .014
3 .0687 .0717 (. 0847) .0575 .307 .258 .114
4 .0312 .0455 .0536 (. 0807) .138 .169 .196

C--diag { .312 .087

.073
--.094
--.072

.117

.033
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TABLE 5.5.3

Analyses of Variance

Component Yariate v~

111

Source df SS Ms F

Linear 1 67.426 67.426 44. 861"**
Quadratic 1 347. 611 347. 611 231.278***

Residual 997 1,498. 063 1. 503

TotM 999 1,913.100

Component Variate v~

Source df SS Ms F

Linear 1 57. 430 57.430 18.082***
Quadratic 1 33. 025 33. 025 10. 398**
Cubic 1 218.180 218.180 68. 696***

Residual 996 3,162. 865 3.176

Total 999 3,471. 500
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A comparison with the artificial example of the cubic case given in sect.
3.6 suggests that if the graphs reveal discernible quadratic and cubic parabolas,
the amount of rotation required will be negligibly small, relative to other
sources of error in an empirical case such as this. It was therefore assumed

from inspection of the graphs that the required rotation would be near enough
to zero. Table 5.5.4 gives the estimated moments of vl, together with the
moments of the true part wl (which we identify with the single latent variate

TABLE 5.5.4

Moments of v: and wl

20 1.307 1.000
30 .373 .373
40 3.224 1.096
50 2.457 11.311
60 9.947 .206
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x) calculated as usual on the assumption that the disturbances are normally
distributed. The moments of w~ should give, as previously, expressions for
w~, w~ as orthonormal polynomials in x(= wl), by (3.2.1). However, the
values of the moments of wl so calculated are quite implausible, and in fact
they yield an imaginary value for

k(= 1/%/~, -- ~ -- 1)

in the expression for the quadratic component. Thus in this case the present
methods for fitting polynomial regression curves have broken down com-
pletely.

In spite of the failure of the procedures described in the last paragraph,
we now identify the three sets of factor loadings in Table 5.5.2 with the
coefficients c;~ of the first, third, and second order harmonics of a step func-
tion, as indicated, and the proportion of endorsements of each item (also
given in Table 5.5.2) is identified with the coefficient of the zero order har-
monic. Assuming now that the latent variate has a normal distribution,
we substitute these values in the expressions for cio, c;1, and c;~ given by
(4.5.1) and (4.5.2), 

C;o = 8; ÷ (~ 

1c;~ - ~/~ (8,’ 

and thence obtain the estimates of the parameters of the latent distance
model given in Table 5.5.5. The values so obtained for the "breaking points"
x;, where the regression function jumps from the value -~ to the value
correspond to a metric of the latent dimension for which x is normally dis-
tributed. To obtain results comparable with those given by Hays and Borgatta
it is necessary to transform the metric so that x would have a rectangular
distribution. This is achieved, in effect, by taking the transformed values
for the breaking points

TABLE 5.5.5
Estimates of Model Parameters

Item
Indirec~ Method

~ ~’ x

.855 --.330 --.739 .240

.822 .075 .065 .524

.882 .097 .624 .732
1.709 .055 1.646 .950

tt~ys and Borgatta
5" x(a}

.919 .081 .415

.846 .165 .609

.843 .124 .746

.961 .039 .892
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x ~
~

exp -- dz

from a table of the normal distribution. The values of/~;, ~ and x~") obtained
by these methods may be compared with those obtained by Hays and Borgatta
using the direct method, also given in Table 5.5.5. The step-functions given
by both methods are shown in Fig. 5.5.3.

A test of the relative merits of the two procedures can be obtained by
calculating the expected frequencies of the response patterns from the

parameters as fitted to the data. These are given in Table 5.5.1 for convenience
of comparison with the observed frequencies. A figure of merit used by Hays
and Borgatta to compare their three-parameter and two-parameter solutions
is the sum of the absolute differences ]0 - EI over all response patterns.
With the parameters obtained here, this figure comes to 269.6, while with
the Hays and Borgatta solution it is 55.

Discussi(m

On this example, the indirect method of fitting a latent distance model
by means of a nonlinear factor analysis yields results which are not hopelessly
unrealistic; however, these results do compare unfavorably with those obtained
by the direct method.

o .; .;
~ Indirect Method
...... Hays ~ Borgotta

.I

Figure 5.5.3

(n)
1"0
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There are two reasons why one might not expect this example to yield
closely comparable results by the two methods.

Firstly, the general theory as developed in Chap. 3 rests for its practical
application on the assumption of a normal distribution for the disturbance
part of the component variates, as the disturbance consists of a linear com-
bination of the unique variations in the observed variates. This assumption
can only be made with some confidence when the number of observed variables
is "large." In this case we have only four observed variables, and inspection
of the graphs in Figs. 5.5.1 and 5.5.2 is sufficient to dispose of any belief
that the deviations in the vl direction from the theoretical curves could be
considered normally distributed. The failure of this assumption leads in
turn to absurd figures for the moments of w~ and failure of the procedure
for fitting polynomial regressions.

Secondly, in taking the step to the latent distance solution, it was
suddenly assumed that the latent variate itself is normally distributed.
This was done simply because, thus far, the necessary integrals in the har-
monic analysis of a step function have only been written down for a normal
latent distribution. However, this assumption is clearly contrary to fact!
We already know at this point (el. Table 5.5.4) that the third moment 
v~, hence of the assumed single factor x, is not zero, but 0.428, on a sample
of size 1000. The assumption that the latent variate is itself normally dis-
tributed is also inconsistent with the impression given by the graphs in
Figs. 5.5.1 and 5.5.2.

A third consideration with some bearing on the question of goodness of
fit is the fact that the latent polynomial solution obtained above is only a
first approximation, with the rotation assumed zero. It seems very unlikely
that this could affect the issue, however. It was in fact because of the two
major doubts just considered that a precise solution to the rotation problem
did not seem worth the computational labor involved. In view of the graphs
in Figs. 5.5.1 and 5.5.2 it is inconceivable that a large amount of rotation
could be required for a precise solution. From experience with these methods
it can be said that a small rotation would make very little difference to the
solution.

It is possible that the indirect method and the direct methods for fitting
a latent distance model should be considered complementary rather than,
in any sense, competitive. The advantage claimed for the indirect procedure
is that it can be applied in truly post facto fashion to data already analyzed
in terms of the latent polynomial, if the data justify this. The possibly fatal
.disadvantage is that it seems unlikely to work at all well on small sets of
variables. On the other hand, the computing labor in applying the direct
method increases more rapidly as a function of the number of observed
variables than does the labor required in the indirect method, and at the same
time it is likely that the precision of the indirect method improves. (This last
comment needs substantiation by an extensive program of empirical testing.)
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5.8 An Application to Learning Curves

Introduction

In sect. 4.8 two methods were described for fitting a set of individual’
functional relationships using what can broadly be termed factor analytic
techniques. One of these (Method I) is a direct extension of the general theory
of nonlinear factor analysis, while the other (Method II) stems from the.
classical procedures for fitting curves by a series of orthogonal polynomials.

For a comparison of these methods in a psychological application, data
were available from a variety of sources, but one set in particular seemed
likely to be reasonably tractable in that the average curve for the groula
could be readily fitted by a quadratic function, and individual curves, on
simple inspection, revealed some variation in shape, though such as should
not require terms of very high order to describe.

The data chosen for analysis were collected as part of a recent un-
published study* on factors affecting the reminiscence phenomenon. For
the present purpose, it will be sufficient to describe the origin of the data
which was actually employed here, without a detailed account of the broader
experimental context.

The task employed was the Tsai-Partington numbers test (Ammons,
1955). In the form which was constructed, this consists of a pattern of num-
bers (1 to 50) scattered at random on a quarto page. A specimen page is given
as :Fig. 5.8.1. The subject’s task was to trace with pencil as rapidly as possible
from one number to the next in serial order. The group whose data are to be
reanalyzed here is one which received thirty-six trials on the task, with
repetition of a single random pattern throughout the sequence of trials.
For this group, eighteen test booklets were constructed, consisting of a cover
page containing a small example of the task set, followed by thirty-six
repetitions of a random pattern of numbers, and terminated by a page con-
raining the words "STOP WORK" to avoid end-spurt. To achieve counter-
balancing in the overall design of the experiment, each of the eighteen sub-
jects in this group performed on a different random pattern, so that any
individual learning function could be expected to be dependent on the par-
ticular pattern that the subject is working through, as well as on the basic
learning parameters of the subject.

Instructions to the subjects emphasized the need for both speed and
accuracy. Trials were timed with a stop watch. The subject’s score on each
trial was the highest number reached in a 30-second interval. No account
was taken of inaccurate responses. These occurred very rarely in the records.
Divisions between trials were indicated by the experimenter calling "stop...

* R. P. McDonald and A. J. Yates, "Reminiscence and perceptual search." A paper
read to the 1961 annual conference of the British Psychological Society, Australian Branch.
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turn over (the page).., begin," so as to provide approximately two seconds
between trials.

Analysis and Results: Method I

The score matrix Y (18 subiects X 36 trials) is given in Appendix
5.8A, together with the 18 X 18 covariance matrix (intercorrelating subjects
over the 36 trials as required by the argument given in sect. 4.8). A decision
was made to operate on the covariance matrix rather than on the matrix
.of (raw) product-moments as in the Eckart-Young procedure employed 
Tucker (1960). The main motive for this was to simplify the subsequent
analysis. A justification for this choice was given in sect. 2.1 where it was
¯ shown that in general, if the (raw) product-moments are analyzed, a rota-
tion of the factor matrix exists in which the vector of means appears as a
"factor." In data analyzed in this way by Tucker (1960, p. 28 and p. 35)
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the first principal component (unrotated) agrees very closely with the vector
of means.

In an initial principal components analysis of the covariance matrix,
with variances in the leading diagonal, the five largest latent roots were
814.900, 13.111, 8.805, 7.357, 7.145.

Tucker (1960) has described a Mean Square Ratio, which is intended 
provide a test of significance for the approximate rank of a score matrix,
whose sampling distribution is not unlike that of Snedecor’s F, but is "slightly
biassed towards higher values" (Tucker, 1960, p. 17). This MSR is based,
ultimately, on the theorem that the sum of the latent roots of a symmetric
matrix is equal to its trace. This should enable one to compare the variance
accounted for by the r’th latent root with the variance accounted for by
the sum of the remaining n - r latent roots. In the present notation this
leads to the formula

C~r ~=r+l
(5.8.1) (MSR), = (n + m 1 -- 2r (n - l) (m- r - 1)

where c~ is the i’th latent root, n is the number of subjects, m the number of
"trials." An adiustment has been made to the degrees of freedom, (n 
m - 1 - 2r) for the numerator and (n - r - 1)(m - r - 1) for the 
nominator, to allow for the fact that we are operating here on the covariance
matrix. The MSR’s for the first five latent roots are, respectively, 128.584,
2.428, 1.834, 1.702, and 1.899. In view of Tucker’s remarks about the sampling
distribution of the MSR, and given that the total degrees of freedom in
this case are comparable with Tucker’s worked example, a decision was made
to retain two factors, this being essentially in line with Tucker’s decision.
Communality estimates were therefore obtained on the hypothesis of rank
two, and the covariance matrix was again subjected to a principal components
analysis with these estimates in the leading diagonal. It was hoped, in any
case, that this treatment of the data would be justified in the sequel. The
matrix of factor loadings F and diagonal matrix of latent roots C are given
in Table 5.8.1. The 36 X 2 matrix of component variates V was then com-
puted. Fig. 5.8.2 gives a scatter diagram of v2 on vl, with the trial num-
bers entered on the graph at the points (vl, v2). Simple inspection does not
strongly suggest any particular form of functional relation between them.
A very faint suggestion that the early, middle, and late trials form groups
which might lie on a parabola was followed up. Application of the rotation
procedure for a single-factor quadratic case gave a minimum value of .795
for ~2, at a rotation of axes of -- 17°, but an analysis of variance of the regres-
sion of v2~ on vl~ gave an F of slightly less than unity for the quadratic
component, hence this interpretation could not be justified.

An alternative interpretation of the relation between vl and v2 is sug-
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TABLE 5.8.1

Factor Loadin~ Matrix

F

8. 034
6. 824
8. 880
5. 503
4. 589
9. 512
8. 289
3. 309
4.271
2. 781
5. 435
9.142
6. 290
7.323
4. 904
7¯298
7.515
5.883

C = diag 1812.125

¯ 200
-.824
- ¯498

.277
-. 596

¯ 686
-. 346
-. 974

¯ 554
.456

- .473
-.671
2.506

¯ 077
.211

-. 175
-.486

.316

10.826

¯
%,..,I, ¯

:
"2

Figure 5¯8¯2
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gested by their respective relations to the independent variable x. Graphs
of these are given in Figs. 5.8.3 and 5.8.4. Regression functions for v~ on x
(number of trials) and v= on x were fitted to these using the tabulated ortho-
gonal polynomials given by Pearson and Hartley (1956). Analyses of variance
given in Tables 5.8.2 and 5.8.3 show that the first component variate can be

Figure 5.8.4
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TABLE 5.8.2

Analysis of Variance

~1 = f(x)

121

Source df SS Ms F

Linear 1 34. 540 34. 540 4111.9* **
Quad. 1 1. 649 1. 649 196.3***

Resid. 33 .261 .0084

Total 35 36.450

fitted by the quadratic function

(5.8.2) 91 -- -2.26656 ~- .17642x - .00222x2

while the second requires the quartic function

(5.8.3) 92 -- .405037 -- .535978x -~ .076313x2 - .003330x~ ~- .000045x4.

These functions are also plotted in Figs. 5.8.3 and 5.8.4. Since vl can be
represented as a quadratic function in x, with very little departure from
linearity, while v~ is a quartic in x, it would be reasonable to expect that
the relation between the true parts (wl, w~) of (v~, v~) could be represented

by a quartic~ with little or no rotation. Reexamination of Fig. 5.8.2 reveals
a close resemblance to Fig. 5.8.4, with some scale distortion and misplace-
ments in the vl direction. However, the analysis of variance of the regression
of v~ on v~, given in Table 5.8.4, fails to confirm this hypothesis. In spite
of this conflict of indications, this interpretation of the second factor still
seemed plausible, as the misplacements of the points in Fig. 5.8.2 in the vl

TABLE 5.8.3

Analysis of Variance

~ = f(x)

Source df SS Ms F

Linear 1 .264 .264 < 1
Quad. 1 4.430 4. 430 4.152"
Cubic 1 .000 .000 < 1
Quartic 1 4. 539 4. 539 4.254*

Resid. 31 33. 067 1.067

Total 35 42. 300
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TABLE 5.8.4
Analysis of Variance

~ = f(vl)

Source df SS Ms F

Linear 1 .9424 .9424 1
Quad. 1 1. 5832 1. 5832 1.4093
Cubic 1 4.1810 4.1810 3.7217
Quartic 1 .7669 .7669 1

Resid. 31 34. 8265 1.1234

Total 35 42. 3000

direction could be sufficient to weaken the test of significance, whereas in
the tests on the relations of v~ and v2 to x, the independent variable is not
subject to error.

Retaining the hypothesis that w2 is a quartic function in w~, the moments
of v~ up to the eighth were estimated, and estimates of the corresponding
moments of wl were obtained from these. These are given in Table 5.8.5.
Substituting the obtained moments of w~ in the expression for a quartic
function given by (3.2.1) we obtain the function

(5.8.4) h4(w~) .7683 -- 2.4678w~ -- 2.2947w~ q- 2.1526w~ -b 1.2609w~.

This function is plotted in Fig. 5.8.2. According to the general theory, the
points (v, v2) are considered to be displaced by "errors" in both directions
from the theoretical curve. Since the curve of h4(wl) is obtained on the basis
of the estimated distribution of v~ only, simple inspection of the relation
between the points (vl, v~) and the curve in Fig. 5.8.2 suggests that the
interpretation made above, on the basis of the relations of v~ and v2 to x,
remains plausible.

TABLE 5.8.5

Moments of v i and w ~

20 1.0125 1.0000
30 --.6095 --.6095
40 2.3246 2.2490
50 --3.0686 --2.9924
60 7.8286 7.3979
70 --14.0989 --13.3034
80 32.2402 29.5764
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There is a possible variant at this point on the procedures in Method I
as described in sect. 4.8. We have obtained, in this case, an interpretation
of the second component variate as a quartic function in the first. According
to the theory of sect. 4.8, we would obtain first an expression 9~ -- g~(x),
as in (5.8.2), and then obtain an expression for 92 as a function in x by sub-
stituting gl(x) for w~ in (5.8.4). (This assumes that in the regression functions
on x, which is error-free, vl, v2 can be identified respectively with the true
components w,, w~.) Proceeding in this way, we obtain the function

(5.8.5) ~ = h4(w,) = .7683 -- 2.4678(--2.26656 + .17642x -- .00222x~)

- 2.2947(-2.26656 + .17642x - .00222x~)~

+ 2.1526(-2.26656 + .17642x - .00222x~)3

+ 1.2609(- 2.26656 + .17642x - .00222x~)~.

However, we already possess the expression (5.8.3) for ~ as a function in 
so that this step appears to be redundant. The function (5.S.5) is also plotted
in Fig. 5.8.4. The directly obtained expression (5.8.3) necessarily gives 
better fit to the data, but it is evident on inspection that the indirectly
obtained expression does follow the trend of the data, in spite of the fact
that it was calculated with no reference to the values of v~.

We have, then, two solutions by Method I. In the direct solution
(Method In, say), the re]erence cur~es are given by (5.8.2) and (5.8.3). 
the indirect solution (Method Ib, say), the reference curves are given 
(5.8.2) and (5.8.5). Individual curves are obtained by substituting the first
or second set of these expressions for 9, and ~ in

(5.8.6) Y, = ~3, + ],av, + f,:v~,

where ZT~ is the mean score for the i’th subject over the 36 trials, and ]~, ]~
are the elements of the matrix F given in Table 5.8.1. Data for a selection
of subjects are plotted in Figs. 5.8.5 through 5.8.8, together with some of
the curves fitted by the two variants of 5~ethod I and by Method II. In
some cases, the fitted curves agree so well that it is impossible to distinguish
them on the graph. To facilitate comparisons, Table 5.8.8 gives values of
the fitted functions, by all methods, for selected trials.

Analysis and Results: Method II

The tabulated values of the set of orthogonal polynomials for m = 36,
up to the fifth power, given by Pearson and Hartley (1956, p. 219) were
normalized to yield the 36 >( 5 matrix H’(x) given in Appendix 5.8A. The
score matrix Y was postmultiplied by H’(x) according to (4.8.22) to yield
the estimated matrix I{ given in Table 5.8.6, with an indication of the level
of significance of each parameter. At this point we require to make a decision
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as to how many columns of/i~ should be retained for subsequent analysis.
Inspection of the table suggested that retention of terms in polynomials
above the second degree would not be justified, as one could expect the number
of technically significant results, out of eighteen, obtained in later columns,
to occur by chance.*

Deleting the last three columns of/i~ and premultiplying the 18 X 2
matrix (/~) so obtained by its transpose yields

L-6012.93 1409.66_]"

This yields in turn the estimated principal component matrix

~ : 1.977262 -.2120751
L.212367 .977142J

and latent roots

C = diag {29,117.802 104.786}.

According to the argument of sect. 4.8, we hope to find (in general) that
one or more of the latent roots of/~’/~ is zero. In a practical case, it is un-
likely that this would be strictly true. While there seemed to be no theoretical
iustification for the introduction of an additional error term such that we
would have the right to approximate ~ with a matrix of lower rank, the

* A comprehensive test to replace this decision-procedure would be desirable. It should
be noted that the analysis by Method II was initiated at a time when the results of Method
I were unknown. When both analyses were completed, it seemed best to retain the original
decisions and compare the two methods as independently employed.
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TABLE 5.8.6

Matrix of Regression Coefficients

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

47.08*** -10.35"** 0.99 -0.01 0.04
41.37"** -3.7 -4.37* 2,04 2.12
52.15"** -10.32"** 1.00 -2,40 2.76
31.99"** -7,57*** 0.32 0.30 -1,39
27.73*** --2.22 2.68 -7.40*** 1.41
55.69*** -12.08"** 4.77* 5.66** -1.13
48,76*** -8.48*** 6,11"* -2.49 4.77**
19.55"** -2.82 1.47 --0.25 0,03
24.41"** -7.66*** 1,58 2.45 0.49
16.48"** --1.38 0.68 1.60 0.80
31.37"** -7.81"** 3.42 --2.48 -1.19
53.17"** -12,85"** 3,10 -0.46 1.64
35.75*** --13.92"** -0.32 5.05 -2.97
43.29*** -8.33*** 0.17 -1.29 1.05
28.95*** --5.68*** 1.95 -0.08 --4.61"*
42.32*** -10.04"** 2.67 1.70 -2.24
43,59*** -11.46"** 1.95 -1.39 0,47
33.94*** --8.94*** 5.20** 1.08 1.89
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practical implication of the theory is that we should attempt to do just this.
That is, we hope to obtain an adequate description, though necessarily
less precise, of the individual learning curves, by deleting rows of ~ which

correspond to "negligibly small" latent roots.
In this case we choose to delete the second row of ~, regarding the second

latent root (104.786) as "negligibly small," giving the reduced matrices

.~ = [.977262 --.212075]

and

~ = 29,117.802.

Postmultiplying /~ by 2~ yields the column vector _~1/~ given in Table

5.8.7. The success of the approximation can be judged from the product
matrix .~/2/~ given also in Table 5.8.7.

The general expressions for the orthonormal polynomials in

are

and

H(z) = [h,(x)h~(x)]

hi(x) = 0.01604x --0.29683

h2(x) = 0.00173x~ --0.06396x + 0.52946.

TABLE 5.8.7

48.191
41.207
53.138
32.859
27.563
56.970
49.436
19.698
25.472
16.394
32.304
54.671
37.879
44.060
29.488
43.475
45.017
35.055

47.10
40.27
51.93
32.11
26.94
55.67
48.31
19.25
24.89
16.02
31.57
53.43
37.02
43.06
28.82
42.49
43.99
34.26

--10.22
--8.74

--11.27
--6.97
--5.85

-12.08
-10.48
--4.18
--5.40
--3.48
--6.85

--11.59
--8.03
--9.34
--6.25
--9.22
--9.55
--7.43
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These are obtained by normalizing the expressions given by Pearson and
ttartley (1956, p. 91). Premultiplying this expression for H(x) by/q gives
the reference curve

~(x) = -~H(x) -- 0.402366 + 0.029240x --0.000367x~.

IndividuM learning curves are then given by l~’/~’(x). A selection of
these curves is included in Figs. 5.8.5 through 5.8.8, together with the curves
given by

~ = I~H(x)

and the curves given by the two variants of Method I. Where the agreement
between the curves is too close to represent them on the same graph, corn-.
parisons can be made by an examination of selected values of the fitted
functions given in Table 5.8.8.

Discussion

The two variants on Method I, the basic procedure for fitting curves
by orthogonal polynomials, and the "condensation" performed on these by
Method II yield altogether four sets of functions exemplified in Figs. 5.8.5
through 5.8.8 and Table 5.8.8. All four would appear to follow the trend of
the data reasonably well, and in this case there is little ground for choosing
between them when we balance goodness of fit against economy of description.

On the whole, the advantages seem to lie with Method II. Computing.
procedures are very much easier with this method, and at no stage in the.
procedure are there any basic decisions to be made as to the nature of the.
model required. In Method I, at least in one variant, it may be necessary
in more complicated cases to find a rotation, in a space of more than two
dimensions, for the component variates and to identify the nonlinear factor
model which best accounts for their relationships. This will always be less.
straightforward than the procedures in Method II.

A disadvantage with both methods is the restriction to a description
in terms of polynomials. In this kind of application there are often good
theoretical grounds for prescribing a "law" of a different mathematical type
such as the exponential growth function. It may prove possible, as in the
treatment of the normal ogive model and the latent distance model in sects.
4.4 and 4.5, to obtain the parameters of such prescribed functions from an
initial solution in terms of polynomials.

It should also be noted that if the reJerence curves are to be thought
of as having some theoretical significance in their own right, it may seem
unsatisfactory to require that these functions be mutually orthogonal. In
the present example, vl is a monotonic function in x (x = 1, ... , 36) and
could therefore qualify as a learning curve. Clearly, v2 cannot be thought
of as a learning function. In general, oblique solutions will be required if
.one_is seeking for theoretical significance in the reference curves.
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TABLE 5.8.8

Representative Fitted Curves

Ia Ib IIa lib

Trial

1
5

10
15
2O
25
30
35

1
5

10
15
2O
25
3O
35

1
5

10
15
2O
25
3O
35

1
5

10
15
2O
25
3O
35

Subject No. 13

12.05 20.67 8.82 11.21
14.41 13.68 14.10 15.31
20.30 23.16 19.62 19.80
26.06 27.00 23.94 23.59
29.68 26.70 27.06 26.68
30.83 27.58 28.98 29.07
30.88 30.48 29.70 30.76
32.89 36.54 29.22 31.75

Subject No. 6

5.73 8.09 4.39 4.39
11.45 11.25 10.55 10.55
18.64 19.43 17.30 17.31
24.93 25.18 23.01 23.01
29.78 28.95 27.66 27.67
33.09 32.17 31.27 31.27
35.25 35.08 33.82 33.83
37.11 37.99 35.33 35.33

Subiect No. 8

11.66 8.32 11.72 11.17
14.50 14.78 13.58 13.31
16.33 15.22 15.67 15.66
17.56 17.20 17.52 17.67
18.99 20.16 19.11 19.32
20.72 22.01 20.46 20.63
22.22 22.45 21.55 22.19
22.30 21.03 22.40 22.19

Subject No. 10

9.18 10.75 9.76 8.91
10.68 10.55 11.12 10.68
12.94 13.45 12.74 12.62
14.95 15.13 14.25 14.27
16.66 15.89 15.67 15.61
17.83 16.67 16.98 16.66
18.89 17.64 18.20 17.40
20.52 19.01 19.31 17.85

Ila -- ~ = ~j ~- k~h~(x) -[- k~h~(z)
IIb -- ~ = ~ .-]-



CHAPTER 6

SUMMARY AND CONCLUSIONS

The theory of nonlinear factor analysis presented here was based initially
on the demonstration that the fundamental equations usually associated with
linear factor analysis still hold under much more general conditions (sect. 2.1).
A restatement in general terms of the principles of Latent Structure Analysis
(sect. 2.3) revealed that linear and nonlinear factor analysis can be regarded
as particular cases in LSA, as well as the recognized models. It also became
apparent (sect. 2.4) that the distinction between "quantitative" or.multi-
valued observations and "qualitative" or category observations is not of
fundamental importance in distinguishing factor models.

Following the examination of an analogy (sect. 2.5) with the procedures
for fitting single or multiple curvilinear regressions by orthogonal poly-
nomials, the basic relations for a method of nonlinear factor analysis were
introduced (sect. 3.1). The basic principle is that corresponding to any
particular nonlinear model there should be a restricting of the distribution
of component variates to a curvilinear manifold spanning the space defined -
by an orthogonal "linear" factor analysis. A complete, formal treatment was
given (sects. 3.2 and 3.3) for the single-factor and multiple-factor polynomial
models, together with an informal introduction (sect. 3.4) to the class 
cases where terms in products of factor scores (latent variates) appear 
the specification equation of the model. Essentially, this treatment involves
estimating the moments of the "true" parts of the observed component
variates, the latter being thought of as "disturbed" by unique variations
from their true positions on the curvilinear manifold prescribed by the as-
sumed model. Using these estimated moments of the "true" parts, a rotation
can be found which simplifies the description of the curvilinear manifold.
This in turn allows one to apply analyses of variance to the relations between
the rotated component variates to test the significance of the curvilinear
relations implied by the model assumed.

Certain specializations on the general theory were then presented. It
was shown how a "difficulty factor" might be expected to arise from the
variations in curvature of the regression functions from "easy" to "difficult"
tests or items (sect. 4.1). The latent polynomial model discussed but not
analyzed by Lazarsfeld was shown to be a special case of the single-factor
polynomial treated earlier, hence readily analyzed by the present methods
(sect. 4.2). The possibility of detecting a discrete distribution of a latent
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variate was demonstrated (sect. 4.3). This procedure has the advantage over
conventional methods of latent class analysis that one would not impose
a latent class solution on data which "really" possess latent continuity.
Methods for deriving the parameters of the normal ogive and latent distance
models from an initial solution in terms of polynomials were given (sects.
4.4 and 4.5). These again have the advantage over conventional methods
of avoiding the imposition of such models on data to which they are in-
applicable, though in these two cases users of the conventional methods
would usually avoid this if they were not applying the methods blindly.
The "perfect scale," or "ideal answer pattern" of Walker was treated as a
limiting case of the latent distance and normal ogive models (sect. 4.6).
In contrast to Guttman’s psychological interpretation of the principal com-
ponents of the perfect scale, these were treated as the harmonics of a step
function. This last point was developed further (sect. 4.7) into a demonstra-
tion that in addition to the factor model with which Guttman prefers to
account for the simplex property, the step-function regression model (single-
factor) is an alternative to be taken seriously. The final specialization on the
general theory concerned an extension of Tucker’s work on the fitting of a
set of functional relationships by linear factor analysis (sect. 4.8). One method
was described which stems directly from the general theory of nonlinear
factor analysis. A second method was also introduced which involves the
factor analysis (in a broad sense) of a matrix of individual parameters 
the regression functions obtained by the classical methods of curve fitting
by orthogonal polynomials.

Empirical material was sought that would serve both to illustrate the
general principles of nonlinear factor analysis and to exemplify some at
least of the specializations on this theory. A factor analysis of subtests of
the Raven PM (1947) (sect. 5.1) served to verify the interpretation 
"difficulty factor" as due to differential curvature. In a corresponding analysis
based on a second sample, the "difficulty factor" failed to emerge, but u
second factor due to differential curvature was still obtained. This example
serves to underline a disturbing implication of the whole of the present
theory. Hundreds of studies using factor analysis have appeared by now in
the psychological literature. It seems probable that a number of the factors
that have been found, interpreted, and neatly labelled as a dimension of
ability or personality, would prove on reanalysis to be components due to
nonlinear regressions of the tests on the "real" or "basic" factors. This is
most likely in the case of those investigators who enthusiastically extract
a rather large number of factors from a rather small matrix. It is hardly to
be expected that all existing studies be repeated, using the methods advocated
here, but there would be a strong case for repetition of a number of major
studies or reanalysis where full records of the initial score matrices have
been kept.
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A nonlinear factor analysis was carried out (sect. 5.2) on two quasi-
scales put together in a single matrix. The covariance matrix was readily
accounted for, initially, by three factors, and the ultimate solution reduced
to a set of quadratic functions in one latent variate, together with linear
functions in a second. There are two general implications which are illustrated
by this study. Firstly, in a nonlinear model, rotation to achieve "simple
structure" in the sense of Thurstone is no longer strictly possible, in general,
and rotation to achieve "positive manifold" may be obtained at the price
of considerable complications in the description of the regression surfaces.
Secondly, one recognizes that a quasi-scale will require regression functions,
for the items on the factor, lying somewhere between the two extremes of a
straight line and a step function. This example suggests that quasi-scales
with quite high coefficients of reproducibility do not need a very large de-
parture from linearity in the regression functions to account for them. The
highest degree of the required polynomial (in this case, two) is much nearer
to unity than might have been expected.

Investigations (sect. 5.3) in the direction of latent class models (in 
sense of a discrete distribution of the latent variate) revealed one negative
instance and two trivial ones. The positive implication of these cases is that
conventional latent class analysis should be supplemented (or replaced) by 
nonlinear factor analysis if one does not wish to impose a latent class in~
terpretation on data irrespective of the actual nature of the latent distribu-
tion.

A reanalysis (sect. 5.5) of data treated by Hays and Borgatta in terms
of the latent distance model failed quite badly. Firstly, it gave nonsense
results (nonreal coefficients) in the attempt to fit a latent polynomial to the
data. Secondly, the latent distance parameters estimated by the present
methods gave a considerably worse fit to the observed response frequencies
than the parameters estimated by Hays and Borgatta using the direct methods
of analysis for this model. These failures were understandable, since it was
possible to detect the fact that two of the assumptions made in the theory
of the present methods had been quite grossly violated. It is still possible
that these methods would work, and reveal some advantages, in applications
to data based on reasonably large sets of items.

The final empirical illustration (sect. 5.8) was an application of the two
methods described earlier to the fitting of individual learning curves. Both
methods "work," in the sense that they supply an economical description
of the individual curves, with reasonable fit. On the whole, the advantage
seems to lie with the method based on classical curve-fitting procedures,
rather than with the method based on nonlinear factor analysis. The "clas-
sical" procedure involves easier computations, and at all stages in the pro-
cedure it is somewhat less "mysterious."

At this point, we turn to certain general issues which deserve review
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or closer examination. These include a review of the theoretical and practical
restrictions on the present approach to nonlinear factor analysis and some
remarks on the questions of factor metric, the invariance problem, and
rotation.

Theoretically, the restrictive assumptions involved in the methods given
here are not in fact very restrictive. The assumption that the disturbance
parts of the component variates have a normal ioint density function can
be justified for a large set of observed variates on the basis of the central
limit theorem. Failure of this assumption can be detectable, as in the example
of sect. 5.5. The assumption that the regression functions can be adequately
described by polynomials seems reasonable, in that the description of any
curve can be approximated as closely as we please by a polynomial of suffi-
ciently high degree. The assumption that, in any particular case, linear terms
in the latent variates are present, could fail in some cases (one such case was
discussed in sect. 3.4). This assumption is in part related to the question
of factor metric, which will be briefly treated below.

On the other hand, although in principle any curve can be described
by polynomials of sufficiently high degree, in practice one could not expect
to detect the higher order components (say, above the third degree) from the
relations between the component variates, unless the communa]ities are
very much higher than are usually obtained in psychological work and the
disturbances due to unique variations are correspondingly small.

It may have seemed rather curious that no assumptions were introduced
in Chap. 3 as to the distribution of the latent variates on the Intent con-
tinuum, nor were there any assumptions as to the metric of the latent con-
tinuum (the factor metric). An origin and a unit were defined for each latent
variate or factor by setting its mean to zero and its variance to unity, but
nothing was required beyond this. On the other hand, the assumption was
made, not in complete innocence, that linear terms in the latent variates
are present in the model. This assumption and the procedures following
serve to define the factor metric, and in terms of this metric the distribution
of the latent variates emerges "empirically." After the analysis is completed,
it would always be possible to subject the linear terms in the fitted model
to any monotonic transformation. With corresponding transformations applied
to the higher order functions in the latent variates, we would alter both
the factor metric (and distribution) and the regression functions, without
affecting the relations between the observed variates for which they jointly
account. An example of this is the transformation applied to the "breaking-
point" parameters of the latent distance model in sect. 5.8, such that the
latent distribution becomes rectangular.

One of the general problems in factor analytic theory concerns the
invariance or otherwise of results obtained under selection of subjects,
tests, or items. Rotation of the matrix of factor loadings to "simple structure,"
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orthogonal or oblique, has been considered to have advantages in the in-
variance of the overall pattern of zero versus nonzero loadings from one
study to another. (This is essentially due to the simple fact that zero multiplied
by any coefficient is still zero.) We have already seen that the concept of
simple structure may be difficult or impossible to redefine in the context of
nonlinear factor analysis. The whole question of factorial invariance will
need to be reappraised in this context. A small beginning has been made
on this, in the form of the treatment developed ad hoc for finding an optimum
point on the Group C and Group A latent dimensions (sect. 5.1) for linking
up the two sets of regression functions. A problem for the future will be the
development of a more general procedure on these lines or perhaps by other
means.

We turn now to a general issue in factor analysis which has aroused
a good deal of controversy. This is the matter of oblique, as against orthogonal,
solutions. Thurstone (1947) adopted the position that factors, conceived 
as fundamental dimensions of ability, personality, and the like, need not
be thought of as orthogonal. After all, such fundamental and observable
dimensions of physique as height and weight are demonstrably correlated.
There is a good deal of impressive argument, by analogy with observable
dimensions of physical entities, to justify this view. For our purposes, however,
it proved necessary to stipulate that the latent variates or factors be not
merely orthogonal, but completely mutually independent in the probability
sense. If this stipulation is not made, there can be no distinction between
linear and nonlinear factor analysis. A fortiori, we cannot allow the factors
to be correlated. Presumably, it is not possible to prove by a process of
definition that the advocates of oblique solutions are wrong. Just as it is
possible, after the main analysis, to transform the metric of the factor space
to one which may yield desirable properties in the solution, so it is not in-
conceivable that one could derive a "desirable" oblique solution from an
initial solution in terms of statistically independent factors. This will almost
certainly prove a more complex task than the corresponding one in linear
factor analysis.

The final points to emphasize are these: The present treatment of
nonlinear factor analysis has its basis in a mathematical model of great
generality. This leads to a single basic procedure for the dimensional analysis.
of data, with a rational choice of the specific model which best accounts for
it. Although a good deal of further development is required, the direction
that this work should take is already clear. At its present stage the model
yields both a unifying theory of factor models and a method of analysis.
which can already be applied to empirical data to yield worthwhile results..
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APPENDIX 3.4

Some Generalizations on the Conjunctive/Disjunctive Models

In the course of developing factor models free of strong assumptions
with respect to the metric of the factor space, Coombs (cf. Torgerson, 1958)
has described two formally identical models, the conjunctive and disjunctive
models, which have a number of interesting properties. In the conjunctive
model, an individual passes an item if his measure on each relevant attribute
is not less than the difficulty level of the item. In the disjunctive model,
an individual passes an item if he possesses a certain minimum value on any
one relevant dimension. Because of the formal identity between the two
models, discussion will be restricted to the disjunctive model in the following.
Existing methods of data analysis in terms of the disiunctive model make
no allowance for error. Thus the usefulness of the model in practical applica-
tions is somewhat restricted.

In this section we consider some generalizations embodying the es-
sential logic of the model, some of which are open to treatment by nonlinear
factor analysis. Discussion will be restricted to cases involving two factors
only. Further generalization to higher spaces is reasonably obvious.

It is convenient to describe the disiunctive model in what may appear
a rather inelegant fashion. We specify the position of any individual in a
two-dimensional factor space by coordinates (x, y), these being statistically
independent latent variates. The item j can be described by two parameters
(xi, Yi). These may be thought of as the coordinates of the item, if we treat
it as a point in the same space. In contrast to Coombs’ treatment, the param-
eters and latent variates may here assume both positive and negative values.

Separate statements are required for individual points lying in the half
plane described by

y/x >

and for those lying in the half plane

y/x < y~/xi.

If the disjunctive model applies, then for any individual such that y/x
yi/xi, he passes the item if y >_ y; and fails it if y < y;. For any individual
such that y/x < y~/x~, he passes the item if x >_ x; and fails it if x
In effect, we first state for any individual which of his two relevant abilities
is "best" for the given item, and, secondly, whether he has enough of it.

139
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One might say that the individual is assumed to utilize that relevant ability
which is "best" for the given item.

The description just given immediately suggests an alternative though
closely related model, which could also be regarded as disiunctive. Suppose
that, for any individual such that y > x, he passes the item if y >_ y~ and
fails it if y < y;. Conversely, for any individual such that y < x, he passes
the item if x >_ x~ and fails it if x < x~. In effect, this would assume that
throughout a series of items, the individual is set to utilize his best overall
relevant ability, even though it may not be the best to use for certain specific
items.

It is a matter of convention whether we regard the model iust described
as a second type of disjunctive model. In this, as in the case considered by
Coombs, an individual’s performance is a function of a "best relevant ability"
only, and is independent of all other abilities. This seems to capture the
essential notion. The difference is that in the model of the first kind, the
ability utilized depends on both the item and the individual, while in the
second kind it depends only on the individual. For these and other reasons
that will appear, the Coombs’ model will be referred to as the Type I dis-
]unctive model, while the one just introduced will be called the Type II
disiunctive model. The similarities and differences between the two models
are illustrated by the diagrams in Fig. 3.4a.1, with five items labelled a,

b, c, d, e.
Methods of analysis for the Type I model have been described by

Coombs and others (cf. Torgerson, 1958). In the case of the Type II model,
it is intuitively obvious that individuals in either half plane (y > x or y < x)
yield a Guttman scale if all x; and all y~ are distinct. For n items there are
(n ~- 1) response patterns from each half plane. Two of these (failing 
items and passing all items) are indistinguishable, while others may or may
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not be, according to the relative orderings of the xi and the y~. Hence, in
general, the Type II model yields m distinct response patterns where

n~-l <_ m<_2n.

Thus, in principle, by an extension of scalogram techniques, one could
divide the subiects into two groups giving distinct Guttman scales on the
one set of items. It may also be noted that for given orderings of the x; and y~,
the permissible response patterns for Type I include the permissible response
patterns for Type II.

The two models as described can alternatively be specified in terms of
regression functions (which are trace functions or conditional probability
functions for the case of dichotomous observations) as follows:

As usual, we write*

S(z, Ix, y) -~ ~(x, y)

for the regression function of the jth manifest variate on the latent variates.
Then for either of the models under consideration, we have

(3.4a.1) ¢~(x, y) = ui(x)

in one of the defined half planes, and

(3.4a.2)

in the other, with

(3.4a.3)

and

(3.4a.4)

~(x, y) = vi(y)

u~(x) = x < x~

v~(y) = O, y < 

= 1, y~_y~.

Within either half plane, the regression surface is a step function, taking
values zero or unity. Considered in these terms, it could be said that Coombs’
weak assumptions as to the metric of the factor space are purchased at the
price of a quite strong restriction on the shape of the regression surface.
This suggests, as a first basis for generalization, the substitutionof other
functions u~(x) and v~(y) for the regression surfaces in the respective half
planes. We could consider, for example, polynomials, or step functions
taking values other than zero or unity, as in the latent distance model.

The respective conditions defining the half planes in the two models
can be thought of as conditions under which the individual utilizes the one

* Throughout this appendix we use z~. for the observed variate, not necessarily in standard
form, to avoid confusion.
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or the other ability. These conditions, like the regression functions, need
not involve a discontinuity. As a second basis for generalization, we introduce
the probabilities

(3.4a.5) n~(x, y) -- (~{~(x, y) = u~(x) Ix, 

and

(3.4a.6) ~(x, y) -- (~{~(x, y) = v~(y) Ix, 

where

(3.4a.7) n~ + ~; = 1.

The functions n~ and fii will be referred to as utilization functions. The
function ni describes the conditional probability, given (x, y), that "ability
x is utilized" and hence that ~(x, y) = u~(x). The function ~ is its converse
and probability complement. To identify the Type II model it would be
sufficient to assume that n~(x, y) is independent of i.

In the following the major results for the two models are presented first,
then proofs of some of these are presented, in effect, as an appendix to this
appendix.

General Regression Functions

On this basis only, without any alteration in the utilization functions,
nothing worthwhile can be said at present about the Type I model. In the
case of the Type II model, we might assume linear regressions in each half
plane, viz.

(3.4a.8)
u~(z) = a~o + a~lx

v~(y) = b~o + b~ly.

In this case it is easily shown that the covariance of two manifest variates
z~ and zk is given by

coy (z~, zk) = pxp~(a~o - b~o)(a~o -- b~o) + pxa~a~ + p~b~b~,

(3.4a.10)
p~ -- 6’{x > y}

Thus, with suitable adjustments to the elements of the leading diagonal,
this model yields a covariance matrix of rank three. It is of interest to consider
some of the properties of the three obvious degenerate cases. If either p,
or p~ is zero, i.e., all subjects are on one or the other side of the line y -- x,
the model reduces as would be expected to a single-factor linear model.
In case a,.o = b~o for all j, the covariance matrix can be accounted for by a

(3.4a.9)

where
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sum of products of the regression slopes within each half plane, weighted by
the proportion of subjects therein. In case the slopes of the regression funo-
tions are zero, for all j, in both half planes, (3.4a.9) reduces 

(3.~a.ll) coy (z~, z~) = p~p~(a,o - b,o)(a~o -- 

and the model corresponds as we would expect, to the latent dichotomy
model of sect. 4.3.

More generally, it can be shown that if the regression functions in each
half plane can be represented in terms of orthogonal polynomials of the form

(3.4a.12) ui(z) -= ~_~ a~h~(x)

vi(y) = ~ b~.~.(y),

then

(3.4a.13) coy (zi, z~) = p~p~(aio - bio)(a~o 

#

Hence it seems that this model, with two factors, will yield a covariance
matrix of ra~ (r + t + 1) ~ 

However, while the model as developed is not without conceptual in-
terest, it seems u~ealistic to ~ssume u discontinuity ut y = x in the form of
the regression functions. This is to suppose that the person correctly chooses
to employ his better abi~ty, no matter how slight its superiority. It is doubtful,
then, whether it is worthwhile attempting to produce methods for fitt~g
it to observed data. These results are offered only for their conceptual interest
and the~ relations to the further generalizations bdow.

General U glization Functi~s

Introducing the functions n~(x, y) and ~(x, y) ~ in (3.4a.5) and (3.4~.6),
we have i~ediately

(3.4a.14) ~(x, y) = u~(x)n~(x, y) + ~(y)~(x, 

In general, the expression on the right in (3.4~.14) could be represented
by a set of bivafiate orthonormal functions ia (x, y) i.e., 

where ~e h~ fo~ a~ or~honormal se~. We ghen have, in ~he usuM way,
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In principle, data conforming to this model could be treated by nonlinear
factor analysis, as in sect. 3.4, to yield regression functions in the form of
(3.4a.15). While it is conceivable that the nature of these regression func-
tions may suggest an obvious factorization of the type of (3.4a.14), such 
factorization may not be unique.

For the corresponding properties of the Type II model we would sub-
stitute hi(x, y) = n(x, in theabove relations. In t he general case, this
seems to make no useful difference.

In a following section we develop the particular case for both models
in which the linear regression functions of (3.4a.8) are assumed. It is also
assumed that the probability of utilization is a linear function of the per-
pendicular distance of (x, y) from the line

y/x = Yi/Xi.

With these assumptions, the Type I regression surface takes the form
¯ .

~Ci)x(3.4a.17) ~,,(x, y) = ~(o~o~ + [~)x + ~(o~)y + ~n Y + ~(~o)h~(x) + fl(o~h2(y),

where in general the coefficients~#~)tm are linearly independent, hence yielding
a reduced covariance matrix of rank five. This function may be recognized
as the quadric surface (2.5.5) discussed in sect. 2.5 and analyzed in sect. 3.4.
Thus, if we assume linear functions where Coombs assumes step functions
in the disjunctive model, we obtain a regression surface in the form of a
gener~l quadric. In principle, such a surface can be detected and fitted by
nonlinear factor analysis.

With the same assumptions, the Type II regression surface is a degenerate
case in which, in (3.4a.17),

~o W = ~P2o -t- ,02 ~,

where ~, ~/, are constants. Hence this case in general fields a reduced co-
variance matrix of rank three. With the linear constraints (3.4a.18), it 
instructive to transform (3.4a.17) into

where ~ is a constant. Given data conforming to this model, we might apply
the methods of nonlinear factor analysis described earlier. Because of the
nature of the three orthonormal components, a mechanical application of
these methods could be expected to fail. It is possible, however, that in-
spection of the trivariate distribution of the sample component variates
might lead us to suspect that this case applied.

There is a further sense in which the ~bove considerations provide
generalizations on the Coombs models. Throughout these developments we
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have been concerned with regression functions ,~i(x, y) which need not be
regarded as the trace functions of dichotomous items. That is, the manifest
variates as treated can be multivalued variables. If such is the case, the
model correponds to the notion that an individual performs, on a given
multivalued test, as well as his best relevant ability allows. This is in contrast
to the more restricted notion that he passes a given item if his best relevant
ability is sufficient.

Proo] o/(3.4a.9) and (3.4a.13)

Assuming that the latent variates (x, y) are statistically independent,
we write for their ioint density function

(3.4a.20) dF(x, y) = ](x)g(y) 

taking nonzero values in the range xo <_ x <: xl, and yo _ y _~ yl.
We consider a set of n observed variates z~ (not necessarily in standard

form). From the general principle of local independence (2.3.2), by (2.3.5),
we have an expression for the expected value of any product of the observed
variates

(3.4a.21) ~(ziz~. . .zn)= ~(x, y)~(x, y). . .~,(x, y)I(x)g(y) 

where for the ease of the Type II model,

(3.4a.22) ,pi(x, y) = u~(x),

----- /)~.(y),

Hence (3.4a.21) becomes

(3.4a.23)

Writing

(3.4a.24)

~(ziz~ "" z,.) ---- ui(x)u~(x) ".. u,(x)](x)g(y) 

-b v~(y)v~(y) "." v.(y)I(x)g(y) 

G(y) -- f~i g(y) dy

and noting that F(xo) = G(yo) = (3. 4a.23) becomes

(3.4a.25) ~(z~z, . . . z.) f~::’ ui(x)u,(x) . . . u.,(x),,(x) dz

~,(y)v~(y) ... v.(y)g~(y) 
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where

(3.4a.26)
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f~(x) 

gF(y) =- g(y)F(y).
We note that

(3.4a.27) ]o(x) dx q- g~(y) I(x)g(y) dx dy 
¯ ¯ ¯ ~Yo

so we write

(3.4a.28)

where

(3.4a.29)

o

f~" g+(y) dy = p~,

The parameter p+ represents the proportion of the population in which
x > y and conversely for Pr

The regression functions us(x) and v~(y) can in general be represented
in terms of a series of orthogonal functions whose norms are, respectively,
p+ and p,, i.e., we write

(3.4a.30)

where

(3.4a.31)

Then from (3.4a.25), (3.4a.30) and (3.4a.31), we 

(3.4a.32) 8(z~) = pxa~o q- p~b~o

and

(3.4a.33) 8(z,z+) = p+ ~ %,a,,, q- p, ~ b,ob,..
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This yields in turn the required result (3.4a.13),

by using (3.4a.32) and rearranging the zero-order ter~ with the assistance
of (3.4a.29). If, in particular, the trace functions u~(x), ~(y) are assumed
linear in x and y respectively, rhea (3.4a.13) reduces i~ediately to the
other required result (3.4a.9) vi~.

coy (z~, z~) p~p~(a~o --b~o)(a~o - b~o) + p~a~,a~, +

Proo] o] (3.4a.17) and (3.4a.19)

Let us assume that

(3.4a.34)

and

(3.4a.35)

u~(x) = a~o + a~tx

vi(y) -= bio "~- bi,y

where

(3.4a.36) ~,-= ~/ -2~,~. ,

a is an arbitrary parameter, and p~ corresponds to the ratio y~/x~ in the
discussion of Coombs’ model above. The n, and ~ then vary, in opposite
senses, in proportion to the perpendicular distance of the point (x, y) from
the line y/x = y~/xi, at a rate dependent on the constant a.

Substituting these expressions in (3.4a.14) yields

(3.4a.37)

where

(3.4a.38)

and in general the coefficients in (3.4a.37) are linearly independent, given
that the coefficients a~o, b;o, a~, b;~ are linearly independent.
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For any prescribed density function ](x)g(y) of the statistically in-
dependent latent variates x and y, (3.4a.37) can be transformed into the
required form of (3.4a.17)

~;(x, y)-- ~oo + plo x + fl~oI)y + fl~’~)xy + p2o Ax) fl ~’h~(y).

The T~e II model is a degenerate case of the T~e I model in which

Pi ~ 1~ ~i

n~ = n = ~ + ~(y- x),
n~ = ~ = ~ - ~(y 

Substituting these in (3.4s.38), it is evident by inspection in this c~se thst
a~ ~nd a~o ~ ao~ ~re linesr functions of

Introducing the transformation

1
~ = ~

1
. = ~ (~ - ~),

~th the assumptions of the T~e II model, (3.4a.37) resdily ~elds

(3.4a.39)

where

and

(i)oeoo = ½(aio A- b;o)

alo
2V~ (at, 

"’ -½a(a;, - b;,)~11 ~--

, = (2 V~) -.
Given prescribed density functions for/(x), g(y), (3.4a.39) is readily trans-
formed into the required result (3.4a.19).
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ProoIs o] Results in Section 4.8

(Latent Class Model)

(1) Proof of the relations between the parameters of the latent linear model
and those of the latent dichotomy:

In the latent linear model

(4.3a.1) 8(yi Ix) = ~i(x) = ai + bix,

let x have a discrete distribution, taking the values xl, x~ with probabilities
gl, g2 (xl < x2, g~ A- g~ = 1). If x is in standard form,

8(z) = (~x~ + ~2z~) (4.3a.2)

and

(4.3a.3)

whence immediately

(4.3a.4)

~ X2 ~var (x) (glx~ + g~ 2) 1,

Equation (4.3a.1) then yields

(4.3a.5) ~1 =~ ~(x~) = a~ -- b~

and

(4.3a.6) ~ ~ ~(x~) = a~ + 

Soling (4.3a.5) and (4.3a.6) for a~ and b~ yields

(4.3a.7) a~ = ~g~ + ~g~

(4.3a.8) b~ = ~(~ -- ~i~).

(2) Proof of the result for the variance of the disturbance component.
:From (4.3a.1) we have

coy (y~, y~) b~b~.
149
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By (4.3.6), this yields in turn

coy (y~, yk) 

In this case, then, the factor matrix F takes the form

and the diagonal matrix C of nonzero latent roots reduces to the scalar

C = gig2 ~.. ~.

Further, since the variance of any observed variate y; is given by

var (y,.) -- a~(1 - a~),

the diagonal matrix U of coefficients of unique variation is made up of elements

u~ %/a~(1 a;) 

Substituting accordingly for F, U, and C in the expression for the covariance
matrix S of the disturbance components given by (3.1.24) and (3.1.25) yields
the scalar

~. ~{a,(1 a,) 8~-- -- gig2 ~}
vat (d) = Z = ;-1

If we assume that ~i -- ~, for all j, and a; -- ~ for all ~, this expression reduces
to
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Covariance Matrix

(,162) .139 .128 .122 .116 ,120 .114 .167 .152 .124 --.015 --.022 --.008 --.939 .019 .019 --.015 --,Otl .009 --,027

,130 (,120) .110 .105 .100 .103 .098 .135 .131 .107 --.012 --.019 --.907 --.034 .016 .017 --.013 --.010 .008 --.023

,145 ,085 (.100) .096 .091 .094 .090 ,124 .120 .098 --,011 --.017 --.006 --.031 .015 .015 --.012 --.009 .007 --.021

.115 ,115 .101 (.092) .088 .091 .086 .I19 .115 .094 --,01~ --.016 --,006 --,030 ,014 .014 --.011 --.009 .007 --.020

.120 ,110 .080 .104 (.083) .086 .082 .112 .109 .089 --.010 --.016 --.006 --,028 .014 .014 --.011 --.098 .007 --.019

.115 .105 .090 .I10 .095 (.089) .084 .116 .113 .092 --.011 --.016 --.006 --.029 .014 .014 --,011 --.008 .007 --.920

,120 .110 ,105 ,075 ,070 .075 (.030) ,110 .107 .087 --.010 --.015 --.006 --.028 .013 .013 --.010 --.008 .~07 --.019

.184 .124 ,121 .128 .113 ,110 .106 (.152) .147 .120 --.014 --.021 --.008 --.038 .018 .018 --.014 --.011 .009 --.026

,155 .125 .130 .009 .104 .120 .105 .149 (.143) .116 --.014 --.020 --.008 --.037 .018 .018 --.014 --.011 .009 --.025

,115 .125 .080 .079 .064 .100 .115 .109 .140 (.095) --.Oll --.017 --.006 --.030 .014 .014 --.011 --.009 .007 --.021

.011 --.009 --.026 --.002 --.038 --.026 .009 ,019 --.014 .016 (.~O1) .002 .OOl .004 --.002 -- 002 .001 .001 --.001 .002

--,019 --.019 --.026 .008 --.018 .005 ~.031 --.0£1 --.004 --.024 --.015 (.003) .001 .005 --.003 --.003 .002 .002 --.001 .004

--,015 --.005 .000 .009 .004 .000 .015 --.001 --.030 .010 --.054 --.024 (.000) .002 --.001 --.001 .001 .O01 --.000 .001

--,030 --.030 --.094 --.046 --.021 --.015 --.040 --.027 --.046 --.016 .032 .032 ,004 (.010) --.005 --.005 .904 .003 --.002 .007

,031 .041 .033 .019 .003 --.005 .029 .002 --.003 .027 --.028 --.018 --.013 --.007 (.002) ,002 --.002 --.001 .OOl --.093

.0£5 .015 ,020 .OlO .035 .030 .005 .030 .010 .010 ,015 --.025 .000 .005 .015 (.002) --.002 --.001 ,OOt --.003

.010 --.040 .046 --.006 --.021 --.015 .010 --.007 --.010 --.027 ,012 --.018 .004 .029 .003 .015 (,001) .001 --.001 .002

--.005 --.015 .0~i --.022 --,046 .010 --.015 .003 --.011 .009 .028 --.012 .009 .004 .039 .040 --.006 (.001) --.001 .002

.005 .005 .030 .009 --.016 --.020 --.005 .019 .040 .030 .000 --.004 --.030 .024 --.003 -- 040 .004 --.021 (.001) --.002

.000 --.030 --.016 --.044 --.039 --.015 --.020 --.003 --.014 --.014 --.002 --.Og2 .026 .OD9 .037 .005 ,021 .036 .016 (.004)

Lower triangle, observed covariances
Upper triangle, reproduced
Leading diagonal, communalities
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ProoJ oJ the Relations in Section 4.4

(Equations 4.4.1 and 4.4.5)

(1) Derivation of Equation 4.4.1

In this case, I evaluated separately the first four coefficients, c~o, c~1, c~
and c~3 given explicitly in (4.4.1) and (4.4.2). This led to a conjecture us 
the general result for c;,, which was as it happens correct. An elegant proof
of the general formula for all p _> 1 was kindly supplied by Dr. E. J. Burr of
the Department of Mathematics. The special case of c;o will be given first, and
this is followed by the proof supplied to me for the general case. In the follow-
ing it is convenient to omit the subscript j.

We wish to evMuate the integral

c, = ~(x)h,(x)g(x) (4.4a.1)

where

(4.4a.3)

with the inverse

~(x)- %/~-~ ~-~ exp -- dz

h,(x) = -~ (--)~ exp dx--- ~ exp --

g(~)=~(~)- ~ (~)

Case o] co
For p = 0, (4.4a.1) yields

(4.4a.2) co = ~ ~ ,_~ exp -- dz ~ exp -- dx.

We make the variate tm~fo~ation

[~, ~] = ,~ + ~, ~~

I ~u-v u+ov(4.4a.4) Ix, ~1 = ~-i +:~’ ~---4~J

which, being a rotation, has a Jacobian of unity.
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This transforms the line z = (z -- #z)/~ into the line
and we have

(4.4a.5) c,~ = ~ ....... ~ exp 2 1 + ~

-~exp

= . ....... v/~e~p - du~-~e~p - dv

= N{-~IV7 +
Using the same variate transformation, it was possible to evaluate

c;1, c;~ and c;~, and hence to conjecture the general formula. However, pro-
ceeding in this way yields successively more tedious problems in elementary
calculus.

General Result Sot p _> 1

We define the set of polynomials H~(x) by

",~ ox~ (-D = (-~)" o~ (-~),(4.4a .6)

whence

p = 0,1,2.--

(4.4a.7) H:+, (x) exp -- -- - d-~
"

The Fourier transform of g(x) is defined as

(4Aa.8)

~d h~s the prope~y

(4.4u.9) g(x)

It is well known that

(~Aa.10) exp (--~X’0~), ~ exp -- ~ , X > 
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are Fourier transforms of one another. Also

1
(iO)~’ exp (--~X’O~) exp (--iOx) 

_ 1 --~ exp (--½X’0’) exp (--i0~) dO.

By (~.4a.9) and (~.4a.10),

1 (ie)" exp (--~a ~) e~ (--iOx) de = ~ dx] Lx exp ~-~ ~]j.

Hence, by (4.4u.6),

That is, the Fourier transform of

(4.4a.11) 1 (~) ( 21-x~-~) ~÷~ H~ exp --

Evaluation o] c~ (p > 1)

We write

Then by definition of c~,

g(~) 

and by (4.4a.7)

(4.4a.12) g(u) 

is (io)" exp (-~x=¢).

V"(p + 1)! c~÷, -- g(~).

%/~ ~ ~(x)H~÷~(x) exp -- dx,

1 ~
dIH~(x) exp(_~)1~-~ f~. ~(~)

+1__2~ f~H~(x) exp (-~) exp 

on integration by parts, since

1~(~) - ~ exp (-(~ 2~ /"

We now find the Fourier transform of g(~).

G(~)- 1 f~%’/~r.~-,* g(~) exp (it~O) 
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where

where

X -- %/1 + ~.

(Alternatively, the convolution theorem applied to (4.4a.12) yields (4.4a.13)
immediately.)

Hence by taking inverse Fourier transforms, using (4.4a.11),

11 (~) (__1/z’~g(~) = %/~X~+~H~ exp\ 2~/"

Therefore

c~

that is,

),-’H~- ~ (~) exp (- 21- p = 1, 2, ... ,

1

(2) Derivation o/Equation 4.4.5

In the conditional probability function

~(x) ~ x ~ ~

~0~ x~ ~.
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We obtain a corresponding function e~* (x) such tha~

simply by defining

~*,.(x) -- X;o + (x;, 

Writing for the moment

c~, = q~i(x)h~(x)n(x) 

in the notation employed above, we have immediately

Given that

we have

h~(x)n(x) dx p = 0

= O, p = 1,2, ...

c,.*o = ~;o + (~;1 - ~;o)C;o
c,.*, = 0’;~ -- X~o)C~, p = 1, 2, .’.

so that, reverting to the notation of the main text,

(4.4.5) c;o = "h~o -t- 0,;,-- X,.o)N’[--gi/(1 -t- o-~)~z2l

n̄{~,/(1 A- a~)’/2}, p = 1, 2, ....
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Proo] o] the Relation in
Section 4.5 (Equation 4.5.1)

Given the conditional probability function

(4.5a.1) ~(x) -- 5% x _< 

--- f~;, x ~ x~,

we may rewrite this in the form

(4.5a.2)

where

(4.5a.3) ]~(x) = 1, x <_ 

---- O, x > x~.

It is then sufficient to determine the coefficients a;~ in the Fourier
expansion

(4.5a.4) ],(x) ,’~ ~_~

since the required Fourier coefficients, c~, for ~ (x) wi~ be given 

dx

whence

(4.5a.5) C;o = fb + (~i - ~i)’~o
c~, = (’r~ - B~)(x~,, p = 1, 2, 

Given that

(4.5a.6) a~ =

where l;(x) is defined by (4.5a.3),

l~(x)h~,(x)n(x) 

h,(z) 1~ (--)" exp (½x*) ~ exp

157
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and

we have

(4.5a.7) a;~ 

This yields immediately

NONLINEAR FACTOR ANALYSIS

n(x) - V~ exp (--½x2),

ff: 1 d~ exp (--½x 2) 1
-~ (--)~ exp (½x~) dx--; ~ exp (--½x’) 

%/~_~.~ (-)" ~ exp (- -½x~) dx.

1
(4.5a.8) a~o -- %//~-~

and

__ 1 [
~d~-~

1

exp (-½x~) dx = N(x;),

exp (-½x~)lz’

p = 1,2, .-- .

Finally, by (4.5a.5) we have

C~o = ~ + (’~ - ~;)N(:~3
1

ci, - ~ (~ -- ~)h~,-l(xi)n(xi), p = 1,2, -.- .



We have

(4.7.4)

where

APPENDIX 4.7A

Properties o] the Model (4.7.4)

Yi = ]i(x),

= ~i(x), X~o < x <

= 1, x >_ x~.

We first show that this model yields the property (2.3.22)

if and only if ~(x) is a step-function.
Consider two obse~ed wriutes j, k such that x,o > xn. Writing as usual

g(x) for the density function of ~he latent vafiate x, we have by (4.7.4)

a(y~) ~(x)g(x) g(x) dx.(4.7a.1)

We introduce

(4.7a.2) J -~ E(y~.)

¯ ~ ~- q~(x)g(x) 

G~ -~ g(x) dx,

with analogous notation for items k, ¢, so that

Similarly, we have

(4.7a.3) ~(y~) = {~(x)l’g(x) dx + g(x) 
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We introduce

(4.7a.4)

NONLINEAR FACTOR ANALYSIS

J~ ~ 8(y~)

¯ ;, --- {~(x)l’g(z) dx.

Then by (4.7a.2), (4.7a.3) and (4.7a.4) we 

(4.7a.5) J~ = ¢~ + G~.

We write

(4.7a.6) ¢~ = ~ + 0~,

where ~ ~ 0. Then by (4.7a.5) and (4.7a.6)

J~ = J- ~,(4.7a.7)
and

(4.7a.8) var(yi) = J-- 0;-- 

= J(1-- J)- 0~.

Further, by (4.7.4) and (4.7a.2) we 

(4.7a.9) 8(y,yk) = S(yk) 

This yields in turn

(4.7a.10)

(Y~o > Y~I).

coy (y;, y~) = K(1 - 

so that we have finally an expression for the correlation coefficient from
(4.7a.8) and (4.7a.10), 

K(1 - J)
(4.7a.11) r;~ = %/{K(1 --K) -- 0h} {J(1 - J) -- 

X~o > Xi~.

Rewriting this last in the form

1 - J / ~/g(l
r,~ = %/J(1

J) _ ~,"
-~;K(4.7a.12)

and noting that si~larly

~ - K / ~L(~%L) -- e,(4.7a.13)

X¢o ~ X~
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we see that for the property r;~ -- ai/a~ to hold, for all j, k, we must have

(4.7a.14)
V’K(1,- K) -- ~ 1 -- K

K %/K(1 -- K) -- 

It follows immediately that we must have 0~ = 0 for all k.
Now by (4.7a.2), (4.7a.4) and (4.7a.6), we 

(4.7a.15) 0, = {¢~(x)} g(x) dx {¢~(x)l~g(x) 

= ~(x) { 1 - ~(x)} 

where 0 _< ~(x) _< 1. Hence, 0~ = 0 if and only if q~(x) is equal to zero 
unity almost everywhere in the range x~o _< x _< x~l. If x is continuously
measurable, ~(x) is a step-function t~king the values zero and unity.

We turn now to the assertion in sect. 4.7 that the model (4.7.4) yields 
quasi-simplex. The formal basis for this assertion is the form of the ratio in
(4.7a.12). The expression (4.7a.12) reduces to the simplex property (2.3.22)
if and only if 0,. = 0 for all j. Provided, then, that 0; is "small" for all j, it
should prove difficult to distinguish the situation represented by (4.7a.12)
from the situation represented by (2.3.22), on the basis of a finite sample 
data. It is in this sense that the property (4.7a.12) can be considered to define
a quasi-simplex.
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The Translated Quadratic Model

From the general expression for a "translated function" model, viz.

(4.7.5)
we obtain the case where ~o is a quadratic function in x, whence we have

(4.7b.1) y~ = a(x - x~)2 -q- b(x -- x~) + 

where a, b and c are constants. Writing

k = l/x/~. - ~ - 1
where ~a, ~4 are the third and fourth moments of the distribution of x, we may
rewrite (4.7b.1) in the form

a
(4.7b.2) y~ = h2(x) q- {b -- a(2x~ -- #a)}x + a(x~ -- 1) - bx~-’b c.

From (4.7b.2) we obtain

8(y~) = a(x~ 1) - bxi q-c,

a2

a(y~) =

(4.7b.3)

(4.7b.4)

and

(4.7b.5)

Writing

(4.7b .6)

a2

~(y,y~) = -~ -at- [b -- a(2xi ~)} lb - a (2x, - ~)}

.+- {a(x~ 1) bx~ + c} a ~- - { (z~-i)-bz~+

ce -~ b "q- a~a

[3 = --2a

~1 = a/k,

we obtain from (4.7b.3), (4.7b.4) and (4.7b.5),

"r2 + (,~ + ~z;)(,~ + ~z~)
(4.7b.7)

ri* = ~{~ + (a + flxi) ~} {~ + (a + ~x~)~}"

162
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For the numerical example given in sect. 4.7 we substitute in (4.7b.7)
Che values a -- 0, ~ = 1, ~/ = 1, corresponding, say, to a = %/~, b = 0, in
(4.7b.1), with a normal density function for 

This yields

1 ~ x~x,
r;~ = ~/(1 + x~)(1 x~

whence in turn we obtain the matrix of Table 4.7.1 in which successive rows
or columns correspond respectively to x; = - 2, - 1, 0, 1 and 2.



APPENDEK 5.2

Covariance Matrix

(.029) .051 .050 .014 .o01 .o16 .008 .011 .004 .019 .040 .031 .057 .065 .026 .014 .o17 .015
.047 (.106) .095 -.o17 -.022 .003 -.007 .002 -.OLO .031 .066 .049 .099 .117 .018 -.007 .007 .003
.054 .10o (.090) .006 -.007 .o14 .002 .007 .o00 .032 .070 .053 .099 .114 .024 .006 .Oll .015
.006 -.014 .016 (.122) .069 .071 .056 .041 .046 .o16 .043 .032 .037 .029 .066 .083 .050 .066
.003 -.016 .003 .070 (.041) .037 .030 .021 .026 .005 .017 .o13 .009 .002 .030 .044 .023 .035
.011 .007 .o13 .086 .027 (.052) .042 .037 .028 .013 .026 .o21 .o31 .033 .070 .064 .056 .044
.013 .003 .007 .057 .038 .050 (.035) .031 .022 .008 .012 .01o .014 .o15 .059 .053 .049 .034
.017 -.001 .011 .043 .015 .045 .037 (.030) .o17 .008 .009 .008 .o15 .018 .061 .048 .051 .029
.006 -.005 .004 .038 .044 .024 .026 .019 (.018) .005 .o13 .010 .OlO .007 .028 .033 .022 .025
.035 .031 .034 .017 .002 .010 .007 .009 .003 (.013) .028 .021 .038 .043 .o17 .o12 .011 .o13
.027 .069 .048 .038 .01o .025 .006 .012 .009 .o31 (.072) .053 .089 .094 .017 .o19 .005 .028
.054 .046 .043 .029 .009 .o18 .003 .o16 .005 .023 .067 (.040) .067 .071 .016 .016 .006 .022
.050 .081 .089 .030 .006 .035 .013 .008 .006 .039 .099 .064 (.118) .13o .035 .023 .018 .031
.062 .116 .115 .032 .001 .030 .o12 .016 .009 .029 .088 .052 .143 (.149) .049 .026 .030 .o31
.027 .005 .025 .068 .023 .076 .050 .065 .022 .022 .026 .o19 .041 .040 (.131) .093 .11o .052
.o14 -.005 .004 .075 .056 .040 .055 .029 .040 .014 .o19 .o14 .021 .033 .086 (.082) .077 .052
.012 .o16 .000 .047 .026 .055 .050 .050 .022 .007 .004 .011 .018 .035 .096 .092 (.094) .o41
.025 -.003 .012 .059 .026 .042 .024 .o31 .028 .013 .029 .018 .030 .035 .046 .066 .037 (.039)

Lower trian~e, observed covariances
Upper triangle, reproduced covariances
Leading diagonal, communalizes

t~
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TABLE 5.8A. 2

Covariance Matrix

(64.5) 54.6 71.2 44.2 36.7 76.5 66.5 26.3 34.4 22.4 43.5 73.3 51.0 58.8 39.4 58.6 60.2 47.3
55.5 (47.2) 61.0 37.3 31.8 64.3 56.8 23.3 28.6 18.6 37.4 62.9 40.8 49.9 33.2 49.9 51.6 39.8
71.0 61.1 (79.1) 48.7 41.0 84.1 73.7 29.8 37.6 24.4 48.5 81.5 54.6 64.9 43.4 64.8 66.9 52.0
43.2 37.2 48.5 (30.3) 25.0 52.5 45.5 17.9 23.6 15.4 29.7 50.1 35.3 40.3 27.0 40.1 41.2 32.4
37.3 31.6 41.3 25.1 (21.4) 43.2 38.2 15.7 19.2 12.4 25.2 42.3 27.3 33.5 22.3 33.5 34.7 26.8
76.3 64.5 84.0 52.3 42.2 (90.9) 78.6 30.8 41.0 26.7 51.3 86.5 61.5 69.7 46.7 69.3 71.1 56.1
65.4 56.1 74.6 46.4 38.4 78.4 (68.8) 27.7 35.2 22.8 45.2 76.0 51.2 60.6 40.5 60.5 62.4 48.6
27.0 23.3 30.3 16.5 15.9 30.6 27.3 (11.9) 13.5 8.7 18.4 30.9 18.3 24.1 16.0 24.3 25.3 19.1
34.2 28.4 36.4 24.0 19.8 41.1 34.6 13.1 (18.5) 12.1 22.9 38.6 28.2 31.3 21.0 31.0 31.8 25.3
24.5 19.5 24.0 15.4 13.3 25.8 22.8 8.0 11.9 (7.9) 14.9 25.1 18.6 20.4 13.7 20.2 20.6 16.5
43.3 37.2 48.0 30.3 25.0 51.2 45.0 17.6 24.0 14.4 (29.7) 50.0 33.0 39.7 26.5 39.7 41.0 31.8
73.4 62.6 80.6 49.8 41.6 86.8 76.3 31.6 39.7 24.3 49.9 (84.0) 55.8 66.9 44.6 66.8 69.0 53.5
51.4 40.7 55.0 34.8 27.1 61.3 51.1 19.0 28.3 18.4 32.4 55.9 (45.8) 46.2 31.3 45.4 46.0 37.8
58.8 49.5 65.4 41.2 33.6 70.1 61.1 23.3 30.8 20.8 39.7 66.4 45.4 (53.6) 35.9 53.4 54.9 43.1
39.1 33.0 43.8 27.3 23.2 47.2 40.6 16.0 20.3 13.8 26.5 43.9 31.3 35.9 (24.0) 35.7 36.7 28.9
59.1 50.6 64.1 40.4 32.5 69.4 59.8 24.1 31.9 20.5 41.6 67.4 45.3 52.3 35.3 (53.2) 54.9 42.8
60.1 51.7 67.1 40.9 35.0 71.1 62.4 25.5 31.7 19.7 40.8 69.3 46.4 54.7 36.8 54.6 (56.7) 44.0
46.7 38.9 52.8 32.5 27.2 56.1 49.2 19.6 25.1 16.3 31.6 53.0 37.8 43.6 29.0 42.1 44.1 (34.7)

Lower triangle, observed covariances
Upper triangle, reproduced covariances
Leading diagonal, communalities
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TABLE 5.8A. 3

Orthonormal Polynomials

1 2 3 4 5

--.2807 .3428 --.3731 .3784 --.3638
--.2647 .2840 --.2452 .1621 --.0519
--.2486 .2287 --.1360 .0031 .1314
--.2326 .1769 --.0446 --.1066 .2176
--.2165 .1285 .0302 --.1749 .2332
--.2005 .0835 .0898 --.2088 .2010
--.1845 .0420 .1350 --.2147 .1397
--.1684 .0040 .1672 --.1988 .0647
--.1524 --.0305 .1874 --.1666 --.0118
--.1363 --.0616 .1967 --.1233 --.0810
--.1203 --.0893 .1964 --.0732 --.1363
--.1042 --.1135 .1875 --.0206 --.1737
--.0882 --.1342 .1712 .0310 --.1913
--.0721 --.1515 .1486 .0787 --.1891
--.0561 --.1653 .1209 .1199 --.1685
--.0401 --.1757 .0892 .1525 --.1323
--.0240 --.1826 .0546 .1752 --.0843
--.0080 --.1861 .0184 .1867 --.0289

.0080 --.1861 --.0184 .1867 .0289

.0240 --.1826 --.0546 .1752 .0843

.0401 --.1757 --.0892 .1525 .1323

.0561 --.1653 --.1209 .1199 .1685

.0721 --.1515 --.1486 .0787 .1891

.0882 --.1342 --.1712 .0310 .1913

.1042 --.1135 --.1875 --.0206 .1737

.1203 --.0893 --.1964 --.0732 .1363

.1363 --.0616 --.1967 --.1233 .0810

.1524 --.0305 --.1874 --.1666 .0118

.1684 .0040 --.1672 --.1988 --.0647

.1845 .0420 --.1350 --.2147 --.1397

.2005 .0835 --.0898 --.2088 --.2010

.2165 .1285 --.0302 --.1749 --.2332

.2326 .1769 .0446 --.1066 --.2176

.2486 .2287 .1360 .0031 --.1314

.2647 .2840 .2452 .1621 .0519

.2807 .3428 .3731 .3784 .3638
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