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CHAPTER I

INTRODUCTION

A frequently considered problem, in fact one listed as a fundamental
question by Thomson [15], concerns what metric or system of units is to be
used in factorial analysis. Although it is not so frequently considered in
some of the other areas of quantitative analysis, the problem of metric is
always there and always of fundamental importance. Some researchers have
become aware of a facet of the metric problem only after the discouraging
experience of attempting to find the inverse of a correlation matrix when no
inverse existed because of a property introduced by the metric utilized.

The general problem of metric in psychological measurement is far too
extensive to be covered in this monograph. Here only the properties of a
certain class of units will be examined.

General Statement o/Problem

Several years ago Cattell [3] stated that the psychological measurement
of behavior could be expressed in three kinds of units: (i) "raw" or "inter-
active" units which are neither dependent on any other scores of the in-
dividual measured nor upon the scores of any other individuals, (ii) "nor-
mative" units where the score of the individual is dependent upon the scores
of other individuals in the population, and (iii) "ipsative" units where each
score for an individual is dependent on his scores on other variables. Raw
units are the most familiar; they are used in all fields of science as well as
in many non-science areas. Their properties are well known and their use-
fulness is a matter of common accord. Normative units have been used for
many years especially in the social sciences. A factor which no doubt con-
tributes to the frequency use of normative units in psychology is the existence
of many measurement problems where it is extremely difficult to establish
an adequate zero point. Normative units are recognized as very useful in
psychological measurement, and in general their properties are quite well
known.

The properties of ipsative units are not well known. The purpose of this
monograph is to examine both from a theoretical and an empirical point
of view the properties of such units. The usefulness of ipsative measures
will not be questioned. Rather it will be accepted that instruments yielding
ipsative scores have been found to be useful, and, as a consequence, are being
administered with increasing frequency. It seems, therefore, important and
timely to examine some of their properties.

1
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Specific Aims of Study

This study is designed (i) to examine the relation of normative scores
based on raw units to normative scores based on ipsative units; (ii) to examine
the changes in the intercorrelations of a set of variables and their validity
coefficients occasioned by the conversion of the primary data from raw to
ipsative units; (iii) to determine analytically and empirically the relation
between the multiple correlation of a criterion with a set of variables in raw
score units and the multiple correlation of the same criterion with the same
set of variables in ipsative units; (iv) to compare the predictive efficiency
of a raw score matrix when a variable is deleted with the predictive efficiency
of an ipsative score matrix of the original variables with none deleted; (v) 
consider the influence of the change from raw to ip,sative scores on the multiple
correlation with a specified criterion when certain assumptions--such as
initially assuming complete independence of predictor variables--are made
with respect to the intercorrelations and validity coefficients of the variables
when in raw form; (vi) to demonstrate analytically and empirically that the
least square solution for predicting a criterion using all of the variables of an
ipsative set is identical with the least-square solution with any single variable
of the ipsative set removed; (vii) to determine in a more analytical manner
than has yet been done why certain c~bserved properties of ipsative scores
hold (for example, why are more than half of the elements in ipsative cor-
relation matrices negative?); (viii) to examine the relation between the first-
centroid residual of the intercorrelatio[L matrix of a set of variables and the
intercorrelation matrix for the same variables after conversion to ipsative
units.

Related Studies

The literature contains few studies closely related to the topics covered
here.* In Cattell’s article [3], calling attention to the differences among raw,
normative, and ipsative measurements, only fifteen references are cited,
and only one of these, Thomson [14], includes material relevant to this study.
Without presenting any mathematice~l evidence, Cattell concluded that,
%.. One may point out that the value of knowing whether a measurement
is ipsative, normative, or interactive is that the knowledge often safeguards
the experimenters against improper manipulation or interpretation of the
measurements" ([3], p. 302).

Cattell seems to imply that most experimenters are well aware of the
characteristics of these three types of measurement, but Thomson [15] gives
an example which suggests that even Cyril Burr did not have a clear under-
standing of the properties of ipsative w~riables. In his chapter on the relation
between test factors and person factors, Thomson cites an example designed

* Drawing on a prepublication copy of this study, J. A. Radcliffe derived and restated
some of the findings in the Australian Journa~ of Psychology, 15, No. 1, 1963.
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by Burt to show that, if the initial units are suitably chosen, the factors of
the one kind of analysis are identical with the loadings of the other, and vice
versa. Thomson states that he, "while agreeing that this is so in the very
special circumstances assumed by Burr, is of opinion that his is a very narrow
case, and that the factors considered by Burr are not typical of those in
actual use in experimental psychology" ([15], p. 263).

Guilford [6] in 1952 indicated that ipsative variables should not be used
in standard factor analytic procedures. The reasons advanced, however,
were not analytical. He pointed out that the correlation matrices based on
such variables as those obtained using the Kuder, a partially ipsative test,
have about two-thirds of their elements negative. Harris [8] attempted,
though, not too successfully, to relate the factors obtained from ipsative
variables to the set of factors that would have been obtained from the same
variables in non-ipsative units.

Although some observations will be made concerning the rank of an
ipsative score matrix, it is not a major purpose of this study to examine the
relation of ipsative variables to factor analytic procedures. The above quota-
tion from Thomson is also only indirectly related to this study and was given
to add weight to the statement made earlier that the properties of ipsative
measurements are not well known.



CHAPTF, R II

DEVELOPMENT OF IPSATIVE MATRIX

The purpose of this chapter is to make the concept of an ipsative variable
more meaningful to those unfamiliar with the term. The relation of ipsative
matrices to primary data, normative, and ipsative-standard matrices will
also be discussed. Contrived examples will be used for this purpose and for
the purpose of introducing some of the properties of ipsative units.

Definition of Ipsative Score Matrix

The term ipsative was suggested by Cattell [3] because it seemed a con-
venient one for designating scales in ~hich the units are relative to other
measurements on the person himself. ][Iere a comparable but more math-
matical definition suggested by Horst (personal communication) has been
used: any score matrix, which has the property that the sum of the scores
over the attributes for each of the entities is a constant, will be said to be
ipsative. The general term entity will be used throughout to designate any
organism or thing with measurable attributes.

Primary Data Malrix

Any set of scores can be made ipsative by simply adding a suitable con-
stant to the measure of each attribute for a specific entity such that the new
scores will sum to the same constant ~o.r all entities. However, unless pre-
cautions are taken to insure that the variables are in standard units before
"ipsatizing" the resulting scores will be devoid of meaning. This statement
will perhaps be better understood by reference to Table 1 which gives fictitious
primary data or raw scores for ten subiects or entities on four attributes.

Table 1 clearly shows that the units of measurement for the four
tributes vary in the extreme both with respect to means and standard devia-
tions. Attribute I measures could be thought of as scores on a qualifying
examination; Attribute II measures, as undergraduate grade point averages;
Attribute III measures, as scores on a general adjustment inventory; and
Attribute IV, as a measure of educational progression. In this instance At-
tribute IV has a constant value for each of the entities, as they are all first-
year graduate students.

The primary data matrix in Table, 1 could be made ipsative by adding
a suitable constant to the scores in each row, but the resulting scores would
be essentially nonsense units. It would appear, for instance, that each in-
dividual possessed much more of Attribute I than of any of the other at-

4
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TABLE 1

Primary Matrix of Raw Scores

Attribute
Entity I II III I V

1 700 3.8 34 5
2 600 4.0 33 5
3 650 3.6 31 5
4 550 3.1 22 5
5 400 2.8 12 5
6 500 3.2 22 5
7 45O 2.8 15 5
8 350 2.7 11 5
9 300 2.5 6 5

10 500 2.5 14 5

500 3.1 20 5
129.10 .54 9.98 0

tributes. Before ipsative scores can be meaningfully obtah~ed it is essential

to transform the measures for each attribute into some standard form; other-
wise the resulting units would be what Cattell has called "... a bastard
ipsative measure, formed by putting together interactive measurements
of quite different modality" ([3], p. 296).

Standard Score Matrix

As a preliminary measure prior to ipsatizing, the scores in Table 1 were
transformed into T-scores with a mean of 50 and a standard deviation of
10 except for Attribute IV which, as it was a constant, simply had 50 sub-
stituted throughout. These scores are given in Table 2. It should be noted
that even with this common standardizing procedure some valuable in-
formation may be lost due to the arbitrary equating of means and variances.
This is true because there certainly is something to be said for the probability

that real differences of standard deviation exist between tests. Equating the
standard deviations is, as Thomson has stated, "... in a sense a confession
of ignorance" ([15], p. 329).

Although Table 1 certainly contains more information than is available
in Table 2, the information in the latter table is more immediate. By direct
observation the column order in Table 1 was meaningful, but the row order
was meaningless: that is, differences between scores in the columns represent
behavioral differences, but in no interpretable sense can the differences be-
tween scores in the rows be treated as behavioral differences. In Table 2
the relationship among scores in the columns remains the same, and the
differences between scores in the rows have meaning in that they can be
compared with respect to how they rank the individual in the group. For
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TABLE 2

Standard 8.cores

Attribute
Entity I II III IV ~

1 65 63 64 50 242
2 58 67 63 50 238
3 62 59 61 50 232
4 54 50 52 50 206
5 42 44 42 50 178
6 50 52 52 50 204
7 46 44 45 50 185
8 38 43 41 50 172
9 35 39 36 50 160

10 50 39 44 50 183

50 50 50 50
10.0 10.0 10.0 10.0

example, the scores in the tenth row directly indicate that Entity 10 is at
the mean on Attribute I and a little more than a standard deviation below
the group mean on Attribute II. Henc, e, with respect to the group, it is
meaningful to say that his score on Att:cibute I is higher than on Attribute
II. This judgment could not have been made by looking only at the tenth
row in Table 1.

Ipsative Score Matrix

If one is only interested in the information contained in the rows and
is not concerned with the loss of the information contained in the columns,
Table 2 can be transformed into a still different form. This form is the ipsative
score matrix which emphasizes intra-individual differences, and changes
inter-individual relationships. The scores in Table 2 were transformed into
ipsative units by adding a constant to the entries in each row such that the
new scores for each entity given in Table; 3 sum to 100 within rounding error.

The constant to be added to each row can be readily determined by first
summing the row, then subtracting this. sum from 100, and finally dividing
by the number of variables, in this case four. For example, the sum of the
first row in Table 2 is 242; by subtracting this value from 100 and dividing
by 4, the constant, --35.5, is obtained[. This is the constant which when
added to the values in the first row of Table 2 yields the entries in the first
row of Table 3.

Note that the means of the attributes in Table 3 are identical. This must
be true if the scores previous to ipsatizing had identical means. (For proof
see Chap. IV.) However, the standard deviations of the attributes are not
equal and appear unrelated to the standard deviations found in Table 1.
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TABLE 3
Ips~tive Scores

Attribute
Entity I II III IV ~

1 29.5 27.5 28.5 14.5 100.0
2 23.5 32.5 28.5 15.5 100.0
3 29.0 26.0 28.0 17.0 100.0
4 27.5 23.5 25.5 23.5 100.0
5 22.5 24.5 22.5 30.5 100.0
6 24.0 26.0 26.0 24.0 100.0
7 24.7 22.7 23.7 28.7 99.8
8 20.0 25.0 23.0 32.0 100.0
9 20.0 24.0 21.0 35.0 100.0

10 29.2 18.2 23.2 29.2 99.8

24.99 24.99 24.99 24.99
3.65 3.64 2.71 7.29

Note, for example, that Attribute IV which was originally a constant is now,
when in ipsative form, the measure with the greatest degree of variability.
The resulting variability of such an originally constant score is a function
of the variance of the row sums of the original score matrix.

Ipsative-Standard Score Matrix

The relative values of strengths of the attributes of an individual when
compared with each other can be obtained by ranking his ipsative s~ores,
providing the means and variances .of the attributes were equated prior
to ipsatizing. If additional information is desired relative to how an in-
dividual’s ranking of an attribute compares with the ranking of the same
trait by others, the ipsative scores for a given attribute can be transformed
into standard scores by columns. These ipsative-standard scores are given
in Table 4.

The argument was presented above in reference to Table 1 that if the
means and the variances were not equated prior to ipsatizing then rank order-
ing an individual’s scores will have no meaning. However, if the assumption
can be made that the variances were equated prior to ipsatizing and that
only the means were different, then it is still possible to determine the rank
ordering of the relative value or strength of an individual’s scores. However,
under these circumstances it is absolutely essential to transform the ipsative
scores into deviation units for each attribute before the relative values or
strengths of an individual’s scores in relation to each other can be deter-
mined. The results obtained under these conditions will be identical to those
that would have been obtained had the means been equated prior to ipsatiz-
ing.
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TABLE’, 4

Ipsative-Standard Scores

~ttribute
Entity I II III IV

1 62 57 63 36
2 46 71 63 37
3 61 53 61 39
4 57 46 52 48
5 43 49 41 58
6 47 53 54 49
7 49 44 45 55
8 36 50 43 60
9 36 47 35 64

10 62 31 43 56

49.9 50.1 50.0 50.2
10.2 10.3 10.0 10.0

If the standardization group for any scale that gives ipsative scores
directly yields means that are different, then the above transformation to
deviation scores--not standard scores-- must be made before an individual’s
scores can be ranked. Inasmuch as the primary purpose of ipsative scores
is to make intra-individual comparisons, it is of the utmost importance for
users of ipsative variables to be aware of this necessity.

In the event that the raw score w,riances underlying a set of ipsative
scores were unequal, then the resulting ipsative scores are difficult if not
impossible to interpret and no transformation will restore the information
lost.

Effect on Interpretation Occasioned by Ipsative Trans]ormations

Each transformation of the variables makes a somewhat different inter-
pretation of an individual’s scores possible and in fact sometimes necessary.
In Table 5 the scores on the four attributes for individuals 2 and 10 are given
in each of the four types of units discussed previously in this chapter.

When the scores are in raw units there is no problem in telling whether
individual 2 or 10 has the higher score for a given attribute. However, the
scale locations of the scores of individu~,ls 2 and 10 are not obvious, that is,
it is unclear whether their scores arc above or below the mean and how much
distance is represented by the difference between any two scores. Further-
more, when the scale locations are unknown there is no basis for comparing
the scores for an individual on different attributes; that is, more information
is needed before it can be determined w:hether individual 10 ranks higher on
Attribute II or III.

When the scores are in standard units, it not only is possible to tell
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TABLE 5

Four Types of Attribute Scores for Two Subjects

Raw Scores Standard Scores

Attribute Attribute
S I II III IV I II III IV

2 600 4.0 33 5 58 67 65 50
10 500 2.5 14 5 50 39 44 50

Ips~tive Scores Ipsative-St~nd~rd Scores
Attribute Attribute

S 1 II III IV I II III IV

2 23.5 32.5 28.5 15.5 46 71 63 37
10 29.2 18.2 23.2 29.2 62 31 43 56

immediately whether individual 2 or 10 has the higher score for a given
attribute, but the location of this score on the scale of the given attribute
with respect to some base group is made clear. For example, the score for
individual 10 on Attribute I places him right at the mean and individual
2’s score is eight tenths of a standard deviation above him. It is also now
possible to compare the scores for an individual on the different attributes.
For instance, individual 10 has equivalent scores (with respect to the group)
for Attributes I and IV, being at the mean on both; he is below the mean
on Attribute III and his lowest score is on Attribute II.

When the scores are in ipsative units, it is no longer possible to determine
which of a number of individuals has the most of a specified attribute (i.e.,
scores the highest). The comparisons between individuals are now limited
to rank comparisons. Note the raw and standard scores for individual’s
2 and 10 on Attribute I. It is clear that individual 2 possesses more of At-
tribute I than does individual 10. But this order is just reversed when the
scores are transformed into ipsative units. This is true because individual’s 2
scores on Attributes II and III are higher than his score on Attribute I and
the situation is iust reversed for individual 10. As a consequence the r~nking
of individual 2’s score on Attribute I, relative to his other scores, is lower
than the ranking of individual 10 on Attribute I relative to his other scores.
The intra-individual comparisons are exactly the same as when the scores
were in standard units.

When the scores are in ipsative-standard units, it is possible to tell easily
how an individual’s ranking of an attribute compares with the ranking of
the attribute by others. However, standardizing the ipsative scores for each
attribute sometimes makes it difficult or impossible to make score comparisons



10 AN ANALYTICAL AND EMPIRICAL EXAMINATION

between the attributes for a given individual. For example, when in either
standard or ipsative score form, it was clear that individual 10 had equivalent
scores for Attributes I and IV. Wher., in ipsative-standard form, however,
it would appear that he ranks higher on Attribute I than on IV. This phe-
nomenon occurred because the variances of the ipsative variables were not
identical.

For a review of the effects of the various score transformations, consider
column comparisons as those between individuals for an attribute and con-
sider row comparisons as those between attributes for an individual. When
the scores are in raw units, column comparisons are meaningful, but row
comparisons are meaningless. In standard score units both column and row
comparisons are meaningful, and locations of scores on the scale are obvious.
In ipsative units the row order is meaningful, but column order is meaning-
less as far as the absolute strength of a given attribute is concerned; however,
it is possible within the column to compare the ranking of an attribute for
different individuals. When in ipsatiw~-standard units both row and colunm
comparisons are meaningless as far as ~bhe absolute strengths of the attributes
are concerned. Although the scores within the column can be used to com-
pare the relative ranking of an attribute for different individuals, these
scores cannot be used to show that individual 2’s score, for example, is
stronger in absolute strength than individual 10’s.

Effect o] Deleting an Attribute Prior to Ipsatizing

The example carried along from Table 1 through Table 5 was contrived
to demonstrate among other things the effect resulting from the inclusion
of a constant with the variables to be; ipsatized. The results are interesting,
but perhaps not very realistic because no one would knowingly include a
constant in a set of variables to be ipsatized. However, it should be noted
that when the scores are originally determined in ipsative form, as in the
Allport-Vernon Study o] Values, the underlying or raw variances are un-
known and cannot be estimated from the ipsative data. Hence, it is not
impossible that what appears as an ipsative variable may stem from an under-
lying raw-score constant.

Because the inclusion of a constant in the original set of raw scores is
probably atypical, another example of an ipsative set of data was obtained
by ipsatizing only the first three attributes in Table 1. This new set of
ipsative units is given in Table 6 along with the corresponding set of ipsative-
standard scores.

It can be noted from Tables 3 an,/l 6 that the order within corresponding
columns is not the same. The actual correlations between the three correspond-
ing variables of each set are far from perfect. They are, in order, .71, .68,
and .34. It can also be noted from observing the two tables that the standard
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TABLE 6

Scores Obtained by Transforming First Three
Attribute Measures in Table 1

11

Ips~tive Scores Ipsative-St~nd~rd Scores

Attribute Attribute
Entity I II III Y: I II III

1
2
3
4
5
6
7
8
9

10

M

34.3 32.3 33.3 99.9
28.7 37.7 33.7 100.1
34.7 31.7 33.7 100.1
35.3 31.3 33.3 99.9
32.7 34.7 32.7 100.1
32.0 34.0 34.0 100.0
34.3 32.3 33.3 99.9
30.7 35.7 33.7 100.1
31.7 35.7 32.7 100.1
39.0 28.0 33.0 100.0

33.34 33.34 33.34
2.85 2.79 .44

53 46 49
34 66 58
55 44 58
57 43 49
48 55 35
45 52 65
53 46 49
41 58 58
44 58 35
70 31 42

50.0 49.9 49.8
10.0 9.9 10.2

deviations for corresponding columns have different values. However, the
row order of the ipsative scores remains unchanged.

The corresponding columns of the ipsative-standard scores of Tables
4 and 6 of course correlate to the same degree with each other as the pairs
of prenormalized ipsative variables. Now, however, the row order has been
altered. For example, the ipsative-standard scores for individual 8 were
36, 50, and 43 in Table 4 whereas in Table 6 they are respectively 41, 58,
and 58.

This example makes it clear that altering the number of variables in a

set will sometimes alter the order within pairs of corresponding columns.
It also makes it clear that the row order is not changed until the transforma-
tion to ipsative-standard units is made. Of course when ipsative scores are

used it is the row order that is of prime importance. Hence, as it would
usually be desirable to keep this order independent of the number of variables,
it would be advantageous for interpretive purposes to use the scores in non-
normalized form.

Ipsatizing Under Conditions of Unequal Variance

It was implied above that the most essential prerequisite to ipsatizing
was equivalent variances for all of the attributes in the set. It is interesting
to note what occurs when this condition is not met. To show by example
the effect of ipsatizing a set of variables with unequal variances, the first
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TABLE 7
Effect of Ipsatizing on Primary Matrix Having
Attribute Measures wit:h Unequal Variances

Original Scores with Ipsative-Standard
Modified Variances II:,sative Scores Scores

Attribute Attribute Attribute
Entity I II III I II III I II III

1
2
3
4
5
6
7
8
9

10

M

65 76 57.0
58 84 56.5
62 68 55.5
54 50 51.0
42 38 46.0
50 54 51.0
46 38 47.5
38 36 45.5
35 28 43.0
50 28 47.0

50.0 50.0 50.0
10.0 20.1 5.0

32.3 43.3 24.3
25.2 51.2 23.7
33.5 39.5 27.0
35.7 31.7 32.7
33.3 29.3 37.3
31.7 35.7 32.7
35.5 27.5 37.0
31.5 29.5 39.0
33.0 26.0 41.0
21.7 19.7 38.7

33.3,i 33.34 33.34
4.13 9.25 6.36

47 61 36
30 69 35
50 57 40
56 48 49
50 46 56
46 53 49
55 44 56
46 46 59
49 42 62
70 35 58

49.9 50.1 50.0
10.0 10.0 9.9

three variables in Table 2 were used e~:cept that the standard deviation was

doubled for Attribute II and halved for Attribute III while the means were
kept constant. The resulting scores were then ipsatized and finally normalized.
The three sets of scores are found in Table 7.

A comparison of the ipsative-standard scores in Table 6 and Table 7
reveals that except for Attribute I, the attribute with the unchanged variance,
there is little similarity between the two sets of data. The correlation with
Attribute III in Table 6 with its counterpart in Table 7 is actually negative.
The correlations between the corresponding ipsative variables in Tables

6 and 7 are, in order, .93, .47, and -.57.

Summary

This chapter defined and gave a brief introduction to ipsative scores.
A set of attribute measures was defined as ipsative when the score sum over
all attributes for each entity is constant. Three sets of ipsative scores were
calculated from a fictitious set of primary data. Several observations, such
as the necessity for standardizing prior to ipsatizing, were made on ipsative
matrices in general. Observations on the specific examples showed: (i) the
effect on score interpretation necessituted by the transformation from one
type of score to another, (it) the effect, of deleting an attribute prior to ipsa-
tizing, and (iii) the effect of failing to equate the standard deviations of the

attributes prior to ipsatizing.



CHAPTER III

AN EMPIRICAL EXAMPLE

In Chapter II a set of fictitious primary data was utilized to introduce
the concept of an ipsative score matrix. The example to be developed in this
chapter is based on an actual sample of 129 students at the University of
Washington. As in the contrived example of Chapter II, the primary data
are in terms of raw units. Although some scales, such as A Study o] Values,
yield scores directly in ipsative units, it was necessary for the purposes of
this study to use raw scores because they can always be transformed into
ipsative units, whereas there is insufficient information to go from ipsative
units to raw scores. This is somewhat analogous to the observation that
raw scores can always be transformed into standard units, but unless the
original mean and standard deviation are known it is not possible to trans-
form standard scores into raw units.

Raw scores are essential here because several of the aims of this study,
listed in Chapter I, call for a comparison between raw and ipsative scores.
The measurement of the absolute value or magnitude of a trait is only pos-
sible with raw units. Admittedly, raw scores are not necessarily valid measures
of the absolute value or magnitude of a trait, but they are possible measures.
On the other hand ipsative scores, by definition, are relative measures, never
absolute measures--something that should always be remembered when using
scales yielding ipsative scores. Many years before Cattell coined the term
ipsative, Allport and Vernon in their manual for A Study of Values clearly
stated the reservations which must be kept in mind when interpreting
"ipsative" scores. They said:

The test measures only the relative s~rength of lhe six evaluative attitudes. A high
score in one value can be obtained only by reducing correspondingly the scores
on one or more of the other values. In interpreting the results, therefore,
it is necessary to bear in mind that they reveal only the relative importance
of each of the six values in a given personality, not the total amount of "value
energy" or drive possessed by an individual. It is quite possible for the highest
value of a generally apathetic person to be less intense and effective than the
lowest value of a person in whom all values are prominent and dynamic ([1],
p. 6).

Sample and Data ]or Empirical Example

The 129 students making up the sample for this study entered the
University of Washington in the Fall of 1953. Six predictor scores and a
criterion score were obtained for each student. The six predictors were:
(1) Guilford-Zimmerman I, a vocabulary test;. (2) Guilford-Zimmerman 

13
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TABLE 8

Intercorrelatio~s and Validity Coefficients with Grade
Point Average for Six Predictor Variables

Intercorrelations Validity
Predictor 1 2 3 4 5 6 Coefficients

1.000 .004 .546 .344 .572 .349
.004 1.000 -.178 .505 .203 .243
.546 -.178 1.000 .207 .356 .364
.344 .505 .207 1.000 .496 .595
.572 .203 .356 .496 1.000 .493
.349 .243 .364 .595 .493 1.000

.487
- .018

¯ 328
¯ 309
¯ 529
¯ 309

2.815 1.777 2.295 3.147 3.120 3.044 1.944

a mechanical knowledge test; (3) Cooperative English Test, spelling section
only; (4) Cooperative Mathematics Test, Part I only; (5) Cooperative Social
Studies Test, Part II only; (6) American Council on Education Psychological
Examination, Quantitative Scale only. The criterion score was the student’s
cumulative grade point average for the first two years of university study.
The complete set of raw scores is given in the Appendix. Table 8 gives the
matrix of intercorrelations of the predictor variables and the vector of validity
coefficients.

The examples in Chapter II served to demonstrate the differences be-
tween raw scores and ipsative scores as defined in Chapter I. For this reason
and because it is possible to compute the ipsative intercorrelation matrix
as a function of the raw score intercorrelation matrix, the ipsative scores
were not computed for the sample of 129 students. What follows will indicate
how this can be done. (Derivations of formulas in this chapter will be given
in Chapter IV.)

Ipsative Covariance and Correlation Matrices

Without loss of generality, it will be assumed in the mathematical
derivations that the original scores were transformed into normal units with
a mean of zero and a standard deviation of one prior to ipsatizing. Under
these circumstances the ipsative covariance matrix is given by

(1)

where

C is the ipsative covariance matrix,

I is the identity matrix.,
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r is the intercorrelation matrix for the original scores,
m is the number of predictors,
1 is a vector with all unit elements.

The ipsative eovarianee matrix is given in Table 9. Note that the sums
of the columns (or rows) are equal to zero within rounding error. This will
always be true of ipsative covarianee matrices regardless of the original
unit of measurement.

The reader familiar with matrix notation will of course be aware that the
elements in the principal diagonal of C are the variances of the ipsative
variables for the case when the variables prior to ipsatizing were in normal
units with a mean of zero and a standard deviation of one. As stated above
the original variances must all be equated before ipsatizing, but whatever
the value of the equated variances, it can be shown that the relative magnitude
of the resulting ipsative variances will be dependent on the intercorrelations
of the original variables.

Once the ipsative covariance matrix is at hand the ipsative correlation
matrix can be readily obtained by

(2) ,r = D~x/2CD~I/2,

where D~lz2 is a diagonal matrix of the reciprocals of the square roots of the
principal diagonal elements in C. Equations (1) and (2) show that it is 
sible to obtain the ipsative intercorrelation matrix as a function only of the
number of variables and the original intercorrelations. This is always true
whether or not the original scores were in normal units with a mean of zero
and a standard deviation of unity as long as it is known that the under-
lying variances were equated prior to ipsatizing. Starting with the inter-
correlations of the first three attribute measures given in Table 1 of Chapter
II, it is possible to demonstrate the correspondence between the intercor-
relations actually calculated from the ipsative scores and the ipsative inter-

TABLE 9

C Matrix of Ipsative Covariances of Six Predictor Variables

Predictor 1 2 3 4 5 6 ~

.5116 --.3114 .1443 --.1998 .0327 --.1776
--.3114 .8576 --.4067 .1342 --.1633 --.1106

.1443 --.4067 .6850 --.2501 --.0966 --.0759
--.1997 .1343 --.2500 .4009 --.0986 .0131

.0328 --.1632 --.0965 --.0986 .4099 --.0844
--.1775 --.1105 --.0758 .0131 --.0844 .4353

--.0002
--.0002

.0000

.0000

.0000
.0002

¯ 0001 .0001 .0003 --.0003 --.0003 --.0001 --.0002
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TABLE 10

Original Intercorrelation Matrix for First Three Variables of
Table 1 with Derived and Calculated Ipsative

Intercorrelation Matrices

Variable
Original

Intercorrelation
Matrix

Ipsative Intercorrelation Matrices

Derived from
Formula (2)

Calculated from
Scores in Table 7

I II III I II III I II III

I 1.000 .845 .953 1.00 .99 --.34 1.00 .99 --.32
II .845 1.000 .946 .99 1.00 .18 .99 1.00 .17
III .953 .946 1.000 --.34 .18 1.00 -.32 .17 1.00

correlation matrix obtained as a function of the original intercorrelations.
Table 10 gives all three matrices. The discrepancies between the two ipsative
matrices are due only to an accumulation of rounding errors.

The ipsative intercorrelation matrix for the empirical example is given
in Table 11. It was obtained by using Formula (2).

The validity coefficients for a set of ipsative variables are also readily
obtained if the original validity coefficients are known. The relationship
is given by

(3)

where

,ro = D~1/2 I-- m

Dc and m are as defined previously,
~ro is the vector of ipsative validity coefficients,
r, is the vector of original validity coefficients.

TABLE 11

Ipsative Intercorrelation Matrix of Six Predictor Variables

Predictor 1 2 3 4 5 6

1 1.000 --.470 .244 --.441 .072 --.376
2 --.470 1.000 --.531 .229 --.275 --.181
3 .244 --.531 1.000 --.477 --.182 --.139
4 --.441 .229 --.477 1.000 --.243 .031
5 .072 --.275 --.182 --.243 1.000 --.200
6 --.376 --.181 --.139 .031 --.200 1.000

.029 --.228 --.085 .099 .172 .135
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TABLE 12
Ipsative Validity Covariances and Coefficients

Variable Covariance Coefficient

1 .163 .228
2 -.342 -.369
3 .004 .005
4 -.015 -.024
5 .205 .320
6 -.015 -.023

~. .ooo .137

If the premultiplication by the diagonal matrix is eliminated from (3),
the balance gives the vector of validity covariances for the case when the
criterion has a standard deviation of one. Table 12 gives the vectors of
validity covariances and coefficients for the six predictor variables. Note
that the sum of the validity covariances is zero. This will always be true for
ipsative variables. Note also that the validity coefficients tend to sum to
zero and are generally less than the original values. For instance, compare
the corresponding values in Tables 8 and 12.

In comparing the correlation matrix and vector of validity coefficients
for the original variables with the ipsative set, the interesting thing to note
is the far greater number of negative correlations for the ipsative set. This
phenomenon will be discussed further in Chapter IV.

Relation o] Multiple Correlations

The major purpose for assessing human behavior is to predict the
outcome, or some aspect of the outcome, of a future event of social significance.
Rarely does a single measure supply enough information to do an adequate
job of prediction; in most instances researchers are faced with the problem
of combining various measures in order to predict the criterion at hand
effectively.

Procedures are well known for efficiently combining measures in a linear
fashion in order to predict best a criterion in the least-square sense. The
correlation between this best combination or weighted sum of measures and
the criterion is given by R, the coefficient of multiple correlation. The exact
method for computing R involves computing an inverse for the matrix of
predictor intercorrelations. However, it is only possible to compute an inverse
for matrices belonging to the square basic or nonsingular class, and ipsative
intercorrelation matrices do not belong to this class.

Even though it is not possible to compute the inverse for an ipsative
intercorrelation matrix, it is still possible to obtain a set of weights which
will yield a best least-square estimate of the criterion at hand. Actually, it
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is possible to utilize several methods to compute the multiple correlation
between a criterion and an ipsative set of variables, but the technique most
analogous to the inverse approach is the general inverse solution developed
by Horst [9]. This is an "exact" solution and is the one which will be utilized
for comparing the R’s obtained from ipsative scores with the R’s obtained
from raw scores.

The relation between the square of the multiple correlation coefficients
for these two types of variables can be expressed as

~R2 = R~ ~’1 1’~
-

1,r_11 ,(4)

where

~R~ is the square of the ipsative multiple correlation coefficient,
R2 is the square of the raw score multiple correlation coefficient,
~ is the vector of ~ weights for the raw score case,

--1r is the inverse of the original or raw score intercorrelation matrix.

The term subtracted from R2 in (4) is always positive or zero; hence ~R 
always equal to or less than R. For the numerical example of this study R
was found to be .591 and ~R was .470. Thus considerably more information
relating to the criterion was available in the raw score matrix than in the
ipsative score matrix.

Effect o] Deleting a Variable

It should be obvious that in most instances an ipsative matrix can be
made basic or nonsingular by the deletion of any single variable. Specifically
this applies when the intercorrelation matrix for the variables in raw score
form is basic. However, the researcher unfamiliar with matrix theory may
find it difficult to accept the idea that any single variable can be removed
from an ipsative set without affecting the validity of the battery, especially
in view of the variability of the validity coefficients (see e.g., Table 12).

To illustrate this point further, consider the research worker interested
in selecting candidates to be trained for the ministry. Let us say that this
researcher used as a measuring instrument the Allport-Vernon Study of
Values, and found that the Religious variable had the highest validity coeffi-
cient. He may find it difficult indeed to believe that this variable could be
deleted from the set without in the least affecting his ability to predict
success in a ministerial training program. Nevertheless, it is true that using
only the Theoretical, Economic, Aesthetic, Social, and Political scores the
multiple correlation will be identical with that which would have been
obtained if the Religious scale had been included. On the other hand, deleting
a predictor from the raw score matrix will have a variable effect on the
multiple correlation. The resulting R will always be less than the original R
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except in the case where the fl coefficient was zero for the variable deleted.
The actual decrement is given by

R~ = R~(5)

where

Rd is the multiple correlation after the deletion of variable i,
R is the original multiple correlation,

is the original f~ coefficient corresponding to variable i,
(r-l),, is the diagonal element from the original inverse corresponding

to the variable deleted.

Table 13 shows the decrement in R occasioned by the deletion of different

variables. It will be noted that after the deletion of either raw variable 3
or 6 the R did not decrease from the original value. This was so because the
~ coefficients for these two variables were near zero. In this example, the

information in the predictor variables relevant to the criterion is greater
after the deletion of any single variable than all the information contained
by the ipsative variables. As a matter of fact, the zero-order validity coeffi-
cients for raw variables 1 and 5 (.487 and .529) are both greater than the
multiple correlation obtained with all of the ipsative variables.

Relation of Ipsative Covariance Matrices to First-Centroid Residual Matrices

It has already been noted that ipsative intercorrelation matrices are
nonbasic and hence have a rank of at most one less than their order. The
ipsative covariance matrix also has this property, as the rank of a covariance
matrix is always the same as the rank of its corresponding correlation matrix.

Effect on Multi

V~riable
Deleted

None
1
2
3
4
5 ¯
6

TABLE 13

)le Correlation of Deleting a Variable

Scores in
Raw Units

R

¯ 591
¯ 568
¯ 579
¯591
¯ 586
¯ 529
¯ 591

Scores in
Ipsative Units

iR

¯ 470
¯ 470
¯ 470
¯ 470
¯ 470
¯ 470
¯ 470
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(6)
where

It has also been noted that the sums of the columns (or rows) of an ipsative
covariance matrix are all zero. These two properties also hold for any first-
centroid residual matrix.

Both the first-centroid residual and the ipsative covariance matrix can
be obtained by simple transformations on the intercorrelation matrix of
the variables prior to ipsatizing. For easy comparison (1), which gives the
transformation yielding the ipsative covariance matrix, is repeated below:

(i-- -- m Ir\ I --

The formula for the first-centroid residual (F) can be shown to 

rl l Pr
F = r -- 11rl ,

r is the original intercorrelation matrix,
1 is a unit or summing vector.

The above formulas and discussion may be interpreted as implying
that the physical relationship between the ipsative covariance matrix and
the first-centroid residual is closer than the physical relationship existing be-
tween the ipsative correlation matrix and the first-centroid residual. This
certainly is true for the case where the original variables were in normal units
with means of zero and standard deviations of unity. It will be proved that
under these conditions the ipsative covariance matrix is identically equal to
the first-centoid residual when the column (or row) sums of the intercorrelation
matrix for the variables in raw form are all equal.

In the empirical example of this study the column sums of the inter-
correlations for the pre-ipsative variables are far from equal as shown in
Table 8. The smallest of these values is 1.777 and the largest is 3.147. Con-
sidering the small number of variables, this is a rather large difference, hence
the requirement for algebraic identity is not met. Even so, the similarity
between the ipsative covariance matrix and the first-centroid residual is
striking. Table 14 gives these two matrices and also the matrix representing
their differences. For easy comparison all three matrices were rounded to
two places. It is clear from Table 14 that the ipsative covariance matrix
and the first-centroid residual based on the same original set of variables
are in this example identical for all practical purposes. This is in spite of
the fact that the column sums for the original correlation matrix were quite
variable, thus not meeting the condition for absolute identity specified earlier.

Number o/Negative Values in Ipsative Intercorrelation Matrices

It was mentioned in Chapter I that Guilford [6] has stated that cor-
relation matrices based on ipsative variables have about two-thirds of their
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TABLE 14

Comparison of Ipsative Covariance Matirx C and
First-Centroid Residual F

21

C Matrix

Variable 1 2 3 4 5 6

1 .51 --.31 .14 --.20 .03 --.18
2 --.31 .86 --.41 .13 --.16 --.11
3 .14 --.41 .69 --.25 --.i0 --.08
4 --.20 .13 --.25 .40 --.i0 .01
5 .03 --.16 --.i0 --.i0 .41 --.08
6 --.18 --.ii --.08 .01 --.08 .44

~ --.01 .00 --.01 --.01 .00 .00

Variable F Matrix

1 .51 --.31 .15 --.20 .03 --.18
2 --.31 .81 --.43 .16 --.14 --.09
3 .15 --.43 .68 --.24 --.09 --.07
4 --.20 .16 --.24 .39 --.11 .00
5 .03 --.14 --.09 --.11 .40 --.09
6 --.18 --.09 --.07 .00 --.09 .43

~: .00 .00 .00 .00 .00 .00

Variable Difference Matrix (C - F)

1 .00 .00 --.01 .00 .00 .00
2 .00 .05 .02 --.03 --.02 --.02
3 --.01 .02 .01 --.01 --.01 --.01
4 .00 --.03 --.01 .01 .01 .01
5 .00 --.02 --.01 .01 .01 .01
6 .00 --.02 --.01 .01 .01 .01

~ --.01 .00 --.01 --.01 .00 .00

elements negative. Actually, the number of negative values will depend on
two factors: the number of variables and the variability of the intercor-

relations.
Under certain assumptions the equation which gives the proportion of

negative values P(_) 

fl/,,, 1 (xS)(7) P(-) -- "-~ ~v~exp ,

where a equals the standard deviation of all of the off-diagonal elements
in the original intercorrelation matrix, and m is the number of variables.
This equation gives only an approximate estimate of the number of negative
values. Nevertheless, even with the additional assumption that the variance
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TABLE 15

Actual Number of Negative Values in a Number of Ipsative
Intercorrelation Matrices Compared with Number

of Negative Values Estimated by Formula (7)

Source

Thesis Example

Manual of Allpor~-Vernon
Study of Values [2]

Female Sample
Male Sample

Allport Study of Values

Matrix reported by
Ferguson, et al. [5]
Manual of Edwards’ PPS
[4]

Manual of Kuder Pref.
Record, Form C (12)

Number
of

Correlations P(_)

.2406 15 .755

.2360 15 .761

.2017 15 .796

.2232 15 .773

.1724 105 .651

.2120 45 .681

Number of
Negative Values

Estimated Actual

11 11

11 11
12 13

12 12

68 68

31 33

of the off-diagonal elements in an ipsative correlation matrix is equivalent
to the variance of the corresponding elements in the original intercorrelation
matrix, this formula can be used to estimate quite accurately the number
of negative elements in an ipsative intercorrelation matrix. This is illustrated

in Table 15.
Actually all that is necessary to estimate the number of negative values

is to determine the standard deviation of the off-diagonal values, then com-
pute the reciprocal of the product of that value by the number of variables,
and finally, using this reciprocal as the abscissa, determine P(_) from a normal

curve table. Of course, the number of negative values could be determined
much more easily by merely counting them. However, the close correspondence
between the estimated and actual number of negative correlations in Table
15 serves to emphasize the dependence of the signs of the intercorrelations
in an ipsative set on (i) the variability of the correlations and (ii) the number

of variables in the set. Furthermore, if we accept the underlying assumptions
(see Chapter IV), then it is clear from (7) that the proportion of negative
ipsative intercorrelations is always 50 per cent or greater inasmuch as the
upper limit of the integral can never be less than zero. It is also clear from
(7) and from Table 15 that the proportion of negative values tends to in-
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crease as the number of variables decreases. It is interesting to note that in
only one instance does the estimated number of negative values differ from
the actual number of negative values by more than one. In that one case
the difference was only two, and the test was the Kuder which is the only
test in Table 15 which is not perfectly ipsative.



CI~A~’WEI~ IV

MATHEMATICAL DERIVATIONS

In the preceding chapters several statements were made without proof
concerning the properties of ipsative variables. In this chapter proofs will
be presented for those statements and for other propositions not previously
stated. All developments will be given in matrix algebra notation.

1. Ipsative Intercorrelation and Covariance Matrices

Property 1.1

An ipsative intercorrelation matrix can be expressed as a simple func-
tion of the matrix of intercorrelations for the same variables prior to ipsatizing.

Definitions:

N is the number of cases. (For simplicity in notation N is considered
of sufficient size to avoid the necessity of considering degrees of
freedom.)

m is the number of variables.
X is the matrix of standard scores, each variable having a mean of

zero and a standard deviation of one.
Y is the matrix of ipsative scores corresponding to X.
r is the intercorrelation matrix of the X variables.
1 is a unit or summing vector.

By the definition of an ipsative matrix given earlier it is known that

(8) Y1 = K1,

where K is a constant. Without loss of generality, as far as the intercor-
relations of the variables in Y are concerned, K can be assumed to equal zero.
Then the transformation on X which yields Y is

From (9) it is clear that Y is obtained by transforming the elements of 
into deviation scores by rows. It is also clear from (9) and from the definition
of X that the variables in Y are in deviation scores by columns. Hence

(10) I’Y = 0’.
24
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Now if we let C be the covariance matrix for the Y variables then

y’y
(11) C = ~

Substituting (9) in (11)

(12) C= (I - "11m’-) ~- (I -11m’).

From the definitions it is clear that

X’X
(13) r = N ’

hence substituting (13) in (12) we 

(14) C= (I - 11m’)r(I - 11m’).

The diagonal elements of C are of course the variances of the corresponding
variables from Y. Letting Dc be the diagonal matrix corresponding to these
variances we may write the ipsative intercorrelation matrix (~r) 

1 I r --1/~
(15) ,r ~- D~/~(I - ~ lmr)r(I - m )DC 

Equations (14) and (15) make it clear that, when the intercorrelation matrix
is available for the variables prior to ipsatizing, the ipsative intercorrelation
matrix is readily obtained by "double centering" the r matrix and then pre-
and postmultiplying the resultant matrix by the reciprocals of the square
roots of its diagonal entries.

Property 1.2

The sums of the columns (or rows) of an ipsative covariance matrix
must always equal zero.

Starting directly with the variables in ipsative form it is first necessary
to convert them into deviation scores by columns. This is accomplished by
premultiplying the Y matrix by a centering matrix as in (16).

The eovariance matrix is then given by

(17) C = y’~y.
N
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Substituting (16) in (17)

(18) c =
N

As the matrices in parentheses are idempotent we can write

(19) C =
N

Summing by columns and multiplying out we have

(20) 1’C =

1’Y’1 I’Y
I’Y’Y -

N
N

Substituting (8) in (20),

(21) 1’C =

K1~1 l~Y
KI~Y

N

and (20) can be further simplified 

1’1

thus

= N;

(22) 1’C =
Kl~Y -- Kl~Y

or

(23) 1’C = 0’. Q.E.D.

Property 1.3

In the special case where the ipsative variances are equal, the sums of
the columns (or rows) of the ipsative intercorrelation matrix are equal 
zero.

Under the restriction stated in the above property, (15) sums 

(25) l’(,r) a~(1 ’ - l’ )r(I - 1- !m’) ,

where a is a constant, and this expression reduces to

(26) l’(,r) = Q.E.D.
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Property 1.4

Ipsative intercorrelation
have no regular inverse.

First we recall (15)

matrices are nonbasic or singular and thus

(15)
1 1’ --1/2

The matrices in parentheses are special eases of Guttman’s [7] rank-
reduction theorem and therefore have rank one less than their order. Their
order is of course the same as the order of r. It is well known that the
maximum rank of a matrix resulting from a series of matrix multiplications
cannot exceed the rank of the factor of lowest rank. Therefore, it immediately
follows that ~r is not basic.

2. Validity Coe~cients ]or an Ipsative Set

Property 2.1

The validity coefficients for an ipsative set of variables can be expressed
as a function of the intercorrelation matrix and vector of validity coefficients
for the same variables prior to ipsatizing.

Additional definitions:

V is a vector of criterion scores with mean of zero and variance of
unity.

ro is a vector of validity coefficients for the variables in pre-ipsative
form.

~r~ is the vector of validity coefficients for the ipsatized variables.
De is the diagonal matrix of the variances of the ipsatized variables.

Because of (10) and the above definitions we can write

D_I: 2 Y’V
N ’(27)

from (9) in (27)

(28)

By definition

(29)

D_,/~ (I -11m’)X’Vjro = ~ c
N



28 AN ANALYTICAL AND EMPIRICAL EXAMINATION

Substituting (29) in (28) we 

(30) ,re = D-~~/2 I - m ]to.

From (14) and (30) it is clear that the vector of ipsative validity coeffi-
cients can readily be obtained as a function of the intercorrelation matrix
and vector of validity coefficients for the same variables prior to ipsatizing.

Property 2.2

The sum of the covariance terms obtained between a specified criterion
and a set of ipsative variables is zero.

Let T be the vector of covariance terms between the specified criterion
and the set of ipsative variables.

Y’V
T= N ’(31)

from (9) in (31)

(32) T -
N

Summing the elements of T we have

(33) I’T =
N

which simplifies to

(34) I’T = (1’ - l’)X’Y
N

or

(35) I’T = 0’. Q.E.D.

Property 2.3

In the special case where the ipsative variances are all equal the sum of
the ipsative validity coefficients is zero.

In the special case stated in Property 2.3, (30) can be rewritten 

1 1’~
(36) ,to = KI I- m ]r~’

where K is the reciprocal of the constant standard deviation. Summing the
validity coefficients in (36) we have

(37) l’(,ro) g(l’ -- l’) rc
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or

(38) l’(,ro) = 0’. Q.E.D.

3. Multiple Correlation in Ipsative Case

Property 3.1

The multiple correlation of a set of ipsative variables with a criterion can
be expressed as a function of the multiple correlation for the pre-ipsatized
variables and their beta-coefficients, and except in one rare special case the
ipsative multiple correlation is always less than the multiple correlation for
the same variables prior to ipsatizing.

It is well known that in most instances the square of the multiple cor-
relation of a set of variables with a criterion is given by the formula

R2 = r~r-lro,(39)

or

(4o) R~ 1=

where R is the multiple correlation and the other symbols are as previously
defined. But these formulas cannot be applied to the ipsative case because
the ipsative intercorrelation matrix has been proved to be nonbasic or singular
and thus has no regular inverse. However, it was mentioned in Chapter III
that an analagous procedure, yielding an exact least-square solution for the
regression weights, has been developed by Horst [9]. This procedure yields
a "general" inverse which can be manipulated in much the same manner as
the regular inverse. If we let parentheses around the regular inverse symbol,
i.e., (-1), symbolize the general inverse in (41), the multiple-correlation
equation for an ipsative set of variables with a criterion which is analagous
to (40) is from (9) and 

1 WX(I_.llm~.)[(I_(41) ,R =

If we let

(42) X’X = S,

I 1’ ,
-- m/A

!

then it can be readily proved that the general inverse, W, of the matrix
in the brackets in (41) is given 

(43) w = (s-’
\
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Substituting (43) in (41)

(44) ’R2 = 
TZ-=~ ’]~ - m ] ’

which Mmediately simplifies further, bemuse ~ this instance the u~t vector
is orthogonal to the general ~verse, to

1
(

S-~1 I’S-~. ,.(45) ,R = V’X Z-’ ix
Because of (13) and (42) we note 

--1

(46) S-’ = ~.
N

From (13), (29), (42), and (46) in (45) 

(47) ,R~ = rcr r~ - 1,r_~1

It is well known that

(48) fl’ = r~r-~,

and from (39) and (48) ~ (47) we 

(49) ,R~ = R~ _ fl’l 1’~1’r-’1 Q.E.D.

Equation (49) makes it clear that the square of the multiple correlation
for the ipsative set is equivalent to the square of the multiple correlation
obta~ed with the pre-ipsative variables less the square of the sum of the ~
coefficients divided by the sum of all the elements ~ the inverse of the pre-
ipsatized intercorrelation matrLx.

If the fraction on the right in (49) is positive, ~R will be less than 
The numerator term can never be negative as it is the square of the sum of
the ~ coefficients. The denom~ator can also never be negative as it is the
sum of all the elements in a Gramian marrY. Therefore, except in the rare
ease where the sum of the fl coefficients for the pre-ipsatized variables is
exactly zero, ,R will always be less than R. When the sum of the fl coefficients
is equal to zero ~R will equal R.

4. Effect on R o] Deleting a Variable ]rom Ipsative Set

Property 4.1

The least-square estimate of a criterion using all of the variables of an
ipsative set is identical with the least-square solution with any single variable
deleted.
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As in the above developments we let X be an N X ra basic matrix,
and, rewriting (9),

(9) Y = X(I _1 1’I

we note that the rank of Y is m -- 1. Hence we can let

(50) Y = uv’,

where the common order of u and v’ is m - 1.
Now consider the expression

(51) YS -- Z =E,

where Z is a vector which we wish to estimate from the matrix Y, and B
is a vector of least-square regression weights.

Substituting (50) in (51) we 

(52) uv’B -- Z = E.

Let

(53) v’B = b.

Then from (53) in (52), we have,

(54) ub -- Z = E.

It is well known that the solution for b that best satisfies (54) in the least-
square sense is

(55) b = (u’u)-’u’Z.

Referring to (53), we note that for the solution of B there are more
unknowns than equations; hence an infinite number of solutions exist. It
can be easily demonstrated that one such solution is

(56) B = v(v’v)-lb.

This is the general inverse solution developed by tIorst, and it has also
been proved [9] to be a least-square solution for the weights. Although other
solutions for the weights exist they will have a larger sum of squares. In-
asmuch as frequently some of the weights are negative, solutions other than
the general inverse will tend to have larger negative weights. Experience
has shown that this will lead to unstable estimates. Thus the general inverse
solution, though only one of an infinite number, is generally to be preferred.

From (55) in (56)

(57) B = v(v’v)-%’u)-~u’Z.
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Substituting (57) in (52) we 

(58) uv’v(v’v)-’(u’u)-’u’Z - z 
which reduces to

(59) u(u’u)-lu’Z - Z = 

The vector indicated in (59) by u(u’u)-lu’Z is the best least-square
estimate of Z using all the variables in Y. The next steps in the development
will prove that the least-square solution given by (59) is identically equivalent
with the least-square solution after the deletion of any single variable from
Y (indicated by Y(~)).

From (50) it is obvious that v’ has as many columns as Y, and if 
delete a column from Y the equality indicated in (50) can be maintained 
deleting the corresponding column from v’. This is indicated below as

(60) Y(,) = uv~,),
where the i’s in parentheses indicate that the ith colunm has been deleted
from both Y and

The best estimate of Z will now depend on the determination of
in the expression

(61) Y.)B(~) -- Z = 

Substituting from (60) in (61)

(62) uv’(,)B(,) -- Z 

and letting

(63) v~,)B(,) = 

we can rewrite (62) 

(64) u]-- Z = E,

and analogous to (55) and (57) we 

(65) ] = (u’u)-’u’Z,

and

(66) B,, = ~)({)(~)~i)V({))--I(utu)--lufZ.

Substituting (66) in (62)

(67) UV~I)V(1)(V~i)V(1))--I(u’u)--luIZ Z =E,

which reduces to

(68) u(u’u)-lu’Z -- Z --- 

Equation (68) proves the identity of the least-square estimate of 
from Y,) with that of Z from Y as it is identical with (59).
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Lest the reader unfamiliar with matrix algebra should get the impression
that the same solution would be found if two or more columns were deleted
from Y, attention should be called to (66). It is clear from (66) that a solution
cammt be found for B,) unless an inverse exists for v~)v,) but, because
the original order of v’ was m -- 1 by m, if more than one column is deleted
then v~,~v,;) will be a major rather than a minor product and, of course,
an inverse will not exist.

5. Effect o] Deleting Variable ]rom Raw Score Set

In the previous section it was proved that the deletion of a variable
from an ipsative set did not decrease the information in the set. (Here the
word "information" is used synonymously with the phrase "ability to predict
a criterion.") On the other hand, the deletion of a variable frgm a raw score
set will in general decrease the information available. Of course, the decre-
ment in this case will depend on the variable deleted as illustrated in Table
13 of Chapter III.

Although no decrement in information is occasioned by the deletion
of a single variable from an ipsative set, there is in general a decrement in
information caused by the transformation from raw to ipsative units (see
Property 3.1). It is interesting to compare this information loss with that
occasioned by the deletion of a variable from a raw score set. This has been
done empirically in Table 13 of Chapter III. In this section the equation
will be developed for the loss in information occasioned by the deletion of a
variable from a raw set in order that it can be compared with the expression
for the information loss brought about by the conversion from raw to ipsative
units.

Property 5.1

The loss of ability to predict a criterion occasioned by the deletion of a
variable from a raw set can be expressed as a function of the corresponding
~ coefficient and the corresponding diagonal element of the original inverse.
(This is not an ipsative property, but it is necessarily included for comparison
with the ipsative case.)

First we let r be the matrix of intercorrelations of the variables in pre-
ipsative form. Next, without loss of generality, we can assume that the variable
which we wish to delete is represented in r by the last or ruth row and column.
We will let r~ be the matrix of intercorrelations of the remaining variables.
Then as Horst [9] has shown

(69) ....... r-1 (r-1)’~(r-1)~=
r_l ,

LO, i
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where

(70)

where

0’ is u null row-vector,
(r -1).~ is the last column of r -1 including the diagonal*element,
(r-~)~’. is the last row of r -1 including the diagonal element,
(r-~)~m is the diagonal element.

Letting r, be the vector of validity coefficients, we have

Lr~ 3

r~ is the vector of validity coefficients corresponding to the variables
in r~,

r,= is the validity coefficient corresponding to the variable which
is to be deleted.

In the foregoing the subscript d was used to designate the intercor-
relation matrix and the vector of validity coefficients which remained after
the variable in question had been deleted. Consistent with that notation
we will let R~ be the multiple correlation between the remaining predictor
variables and the criterion. Then, ~n~logous to (39), we may write

Using the partitioned matrices given in(69) and (70), we can rewrite

02) ’-~ ’ ...:... ~.:~.r cdr~ ro~ = [ro~ ! r c=] ¯

i o
From (69), (70), and (71) in 

(73) R~ =

which multiplies out to

(74) R~ = r~r-aro -
r’dr-’)

It is well known th~ ~, the vector of beta coefficients, is given by

(75) f~ = r-’ro,

and as (r-~)’~. is simply the ruth row out of -~ i t i mmediately follows that

(76) /~,= = (r-’)~.ro.

Hence we observe f~, is the ruth element from the vector of fl coefficients.



WILLIAM V. CLEMANS 35

(79)

where

Of course where R is the multiple correlation of the predictors with
the criterion when no variables have been deleted we can write

(77) R2 = r~r-lr~.

Substituting (76) and (77) in 

(78) R~ = R2 - ~

The ratio to the right of the negative sign in (78) indicates the decre-
ment in the square of the multiple correlation brought about by the deletion
of the mth variable. It should be noted that both terms in this ratio are
always positive--the numerator is squared and the denominator is the diago-
nal element of the inverse of a Gramian matrix. Inasmuch as neither the beta
coefficients nor the elements of the inverse are altered in any way except
location by rearranging the order of the variables, (78) can be rewritten for
the general case as

R~ = R~ f~(r-l),,’

is the f~ coefficient corresponding to the ith variable,
(r-l), is the ith diagonal element from the inverse of full order.

6. Negative Values in Ipsative Intercorrelation Matrix

It has already been proved (Property 1.2) that the column sums 
an ipsative covariance matrix must be zero. It was also proved (Property
1.3) that when the ipsative variances are equal the column sums of the
ipsative intercorrelations are zero. Both of these properties make it clear
that ipsative intercorre]ation matrices will have a large proportion of negative
values. It will be shown in this section that the actual proportion of negative

values varies as a function of (i) the number of variables and (ii) the variance
of the original intercorrelations. This has already been demonstrated em-
pirically in Table 15 of Chapter III.

Unless some assumptions are made about the relationships of the pre-
ipsatized variables, it is very difficult to determine an expression which
will give the proportion of negative values in the resulting ipsative inter-
correlation matrix. For this reason three developments will be presented.
First, the assumption will be made that the original variables are orthogonal.
Second, the assumption will be made that all of the original variables are
correlated with each other to the same degeee. And, third, the less restrictive
case will be considered where the off-diagonal elements are not necessarily
constant, but the column sums of the original intercorrelation matrix are
all equal.
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Property 6.1

When the variables in non-ipsative form are orthogonal, the ipsative
intercorrelations will all be a negative constant value determined only by
the number of variables.

Under the restriction stated in Property 6.1, r, as defined in (13), be-
comes the identity matrix, and the covariance matrix, C, given in (14) sim-
plifies to

11’
(s0) c = i -

m

It is clear that the diagonal elements of (80) are given 

(m- l~i(81) Dc = \------~--/ 

(82)

and from (15), (80), and (82) we 

(83) ,r - -- I - ¯
m 1

From (83) it is clear that under the assumption that the original variables
were orthogonal, the resulting ipsative matrix of intercorrelations has the
property that all of its off-diagonal elements are negative and constant in
value, the typical off-diagonal element being

(84) ,r. = ¯
m-- 1

Property 6.2

When the variables in non~ipsative form ~re all correlated with each
other to some constant degree, a, the ipsative intercorrelations will be exactIy
the same as if the original variables had been orthogonal as in Property 6.1.

Under the restriction given we have

(85) r -- I -]- a(1 1’ - I),

and substituting (85) in (14), we 

((86) C = \I-- m][l-~ a(11’

which simplifies to

(87)
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From (87), it follows that

(88) De =

and

(89)

(1 -- a)(~ -- 1)I,

D.~ ~/~ ~(
m

= i - a)(m - 
From (14), (15), (87), and (89) we have

m (1 -- a)(I -- 11m’)(90) ,r = (1 -- a)(m -- 1) - ’

which reduces to

As (91) is identically equal to (83), Property 6.2 is proved.

Property 6.3

When the column sums of the pre-ipsative intereorrelation matrix are
all equal and the off-diagonal correlations are distributed normally, the
proportion of negative values in the ipsative intereorrelation matrix can be
determined readily from tabled values of the normal curve.

Under the assumption that the sum of the columns (or rows) of the
original intereorrelation matrix are all equal we have

(92) rl = ~1,
where/c is the sum of any column. Expanding (14), we have

I l’r rl 1
(93) C = r

m m m2

Substituting (92) in (93) and simpli/yi~g we 

kl 1
(94) C = r - --

m

The typical element in C is given by

(95)
m

Because of (92), k~/m is equal to the mean of all of the elements in r including
the diagonal elements of unity. The mean of the off-diagonal elements will,
of course, always be less than k~/m. Thus, under the assumption that the
off-diagonal elements are distributed normally, the number of negative off-
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diagonal elements in the ipsative covariance or correlation matrix will always
exceed fifty per cent.

It should also be clear that the greater the number of variables the
closer ]~/m will approximate the mean of the off-diagonal elements. This
is true because the effect of the unit elements in the diagonal is less as the
total number of elements increases. Hence, the number of negative inter-
correlations is a function of m, the number of variables.

Let Z be the sum of all but the diagonal element in any column; then

/~ Z 1
(96) m - m q- m

Now, under the assumption that the off=diagonal intercorrelations are dis-
tributed normally, the subtraction of Z/m from these elements would make
precisely one half of them negative. It is clear the subtraction of the additional
amount, l/m, as indicated in (95), will make more than one half of the off-
diagonal elements negative. Under the assumptions given in Property 6.3,
the proportion of negative values in the off-diagonal elements will be given by

(97) P(_) -- -~ a~exp ,

where a in (97) is the standard deviation of the off-diagonal elements in the
original intercorrelation matrix, and m is the number of variables.

Formula (97) holds because the "zero" point in the normal distribution
has been shifted 1/m units in the positive direction for the reasons discussed
ubove. The shift in standard units is lima. The area under the normal curve
from minus infinity to 1/ma gives the proportion of negative values which
will be found in the ipsative intercorrelation matrix.

7. Relation o] Ipsative Covariance Matrices to First-Centroid Residual

In Table 14 of Chapter III an empirical example was presented showing
the close resemblance between the first-centroid residual of ~n intercor-
relation matrix and the ipsative covariance matrix obtained from the same
original variables in normalized form (mean of zero and standard deviation
of unity). In this section a proof will be presented showing that these two
matrices are identical under the restriction that the sums of the columns
(or rows) of the original intercorrelation matrix are all equal.

Property 7.1

When the original scores are in normalized units with a mean of zero
and standard deviation of unity and the sums of the coIumns (or rows) 
the original intercorrelation matrix are all equal, then the ipsative covariance
matrix and the first-centroid residual are identical.
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Because of the restriction on r, (92) still holds

(92) rl = It1.

Letting F be the first-centroid residual we have

(9s)

and substituting (92) in (98)

(99)

rl l’r
F =r

I’rl ’

kl 1’

which is identically equivalent to the ipsative covariance matrix as given
in (94). Q.E.D.

Subtracting the first centroid from a matrix of course has the effect
of removing "information" from the matrix. As a matter of fact, the first
centroid approximates Hotelling’s [11] first principal component, and, as
a consequence, its removal approximates the removal of the greatest portion
of variance possible by subtracting from the original matrix the major
product of two vectors.

Property 7.2

Under certain circumstances it can be shown that the information loss
occasioned by removing the first centroid is equivalent to the information
lost by transforming the original scores to ipsative units.

Without loss of generality we can assume that the original scores, X,
are in normalized form with mean of zero and standard deviation of one and
the criterion scores, V, are also in normalized form. Then the square of the
multiple correlation can be written as,

1
(100) ~2 = ~ V,X(X,X)-IX, 

and, when XPX does not have a regular inverse, it can be proved that the
square of the multiple correlation can be written as

1
(101) R~ = ~ V’XWX’V,

where W is the general inverse of X’X. Under the present score assumptions
(98) may be rewritten 

1 ( X~XI~lPX~X~(lo2) ?" = -~ x,x - l’x’x~ 1’
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since

(103)

or

(104)

Now let

(105)
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X’X

F-x~Xi ] .

/ X1 I’X’\Z = II -
\

then as the matrix in parentheses is idempotent

X1 lrX’\
(106) Z’Z = X’ I -- ~-X~-~.)X.

From (103), (104), and (105), it is clear that Z can be thought of as a 
matrix containing all of the information remaining in the first-centroid
residual. Summing the columns of Z as given in (105) we have

(107) I’Z = Or.

The matrix Z is thus composed of a set of deviation scores, but, of course,
it is not a basic matrix. Indicating the general inverse of Z’Z by

(108) W = (Z’Z)(-1),

we can, because of (101), write the square of the multiple correlation 
a set of "first-centroid residual variables" as

1
(109) oR~ -~ -~ V’ZWZ’V.

It can be readily proved that the general inverse, W, of Z’Z is

(11o) w =- (z - 1 1’\ x, -’/z 1 1’~
1’ 1/

Substituting from (105) and (110) in (109),

1 ( X11’X’\ [ 11’~
(111) oR~ = ~ V I -- --i~x~X-d-)XkI -- 1’ 1/

xl
-1’1/ ~, F-xT27 )v’

which simplifies to

1 1 VrX1 lrX~V
(112) °R~ = ~ V’X(X’X)-IX’V -- -~ I’X’X1
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From the assumptions it follows that the validity coefficients of X with V
can be expressed as

1 X’V.(113) to =

From (100), (103), and (113) in 

(114) oR2 = R2 r’~l l’ro

Now rewriting (49), the equation for the square of the multiple correlation
obtainable after X has been ipsatized, which is

(49) I ’

we observe that the information loss expressed by (114) is identical with the
loss in (49) under the assumption that the variables in X were orthogonal,
because, under that assumption, ¢~ equals ro and r equals r -1. More generally,
the information lost by removing the first centroid is equivalent to the
hfformation lost by ipsatizing whenever the two ratios on the right of (114)
and (49) are identical.

It is interesting to note that if the original validity coefficients sum to
zero no information relevant to the criterion is lost by removing the first
centroid. On the other hand, if the original /3 coefficients sum to zero no
information relevant to the criterion is lost by converting the original scores
to ipsative units.

8. Correlation Between Set oJ Absolute Measures and Their
Ipsative Counterparts

Property 8.1

Under a very special restriction a set of ipsative variables will cor-
relate perfectly with their absolute counterparts.

We will assume that X is the same as defined just previous to (8) and
Y is as given in (9). Then the matrix of intercorrelations of the variables
in X with their ipsative counterparts can be written as

I I ~ ~-~/2
1X’X(I-

where Dc is as used in (15). Because of the definition of X, (115) can 
rewritten

1 1’
(116) r,~ =r(I- m)Dc 
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Equation (116) gives the intercorrelation matrix of a set of absolute measures
with their ipsative counterparts. ~

Under the assumption that the absolute measures were all correlated
with each other to some constant degree a we can write

(117) r = I -I- a(1 1’ -- I).

In order to determine D~t under this condition we substitute (117) in (14)

(118) C= (I -11m’)I + a(11’ - I)(I-11m’) 

which simplifies to

(119) C= (I - a)(I -11m’)¯

From (119) it is cIear that

(120) D-’/2 = ~
m

(1 -- a)(m -- 1)I.

Substituting (117) and (120) in (116)

(121) r~ = (1 a)(m - li [I -J¢ - a(1 1’ - I)] I -   

which simplifies to

(122) rx~ =

or

1 -- a)(m-- 1) (1 -- a) I-- Im/ 

-- a) (I-- 1~’).(12z) rx~ = ~m-~_ l

Actually we are most interested in the diagonal elements of r~ as they are
the correlations between each absolute measure and its ipsative counterpart.
These diagonal elements are all equal and from (123) they are given 

~ml - ~) m-- 
rx,~, = -- 1 m ’(1~4)

or

(125) ~(m - 1)(1 - 
r.,., =

m "

It can be shown that the constant a in (125) can vary from 1 to -1~On - 1).
With this range of values for a, it may be seen from (125) that in general,
a set of ipsative variables, derived from a set of absolute measures correlated
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with each other to a constant degree, will not correlate perfectly with their
absolute counterparts. However, when a has the value --1/(m -- 1),

(126) rx,~, = 1;

hence under this very special restriction a set of ipsative variables can cor-
relate perfectly with their absolute counterparts.

9. Importance o] Equating Means and Variances Prior to Ipsatizing

Definitions:

N
G
H
X

Z

is the number of entities.
is an N X m matrix of raw scores.
is the N X m matrix corresponding to G with equated variances.
is the N X m matrix corresponding to G with equated variances
and means of zero.
is the diagonal matrix of corresponding standard deviations of G.
is the ipsative matrix obtained by transforming to deviation units
the rows of X.
is the ipsative matrix obtained by adding the same constant, k, to
each of the elements of Y such that the sum of an entities’ scores
is some specified value, mk.

From the definitions,

(127)

(128)

(129)

and

(130)

Property 9.1

H = GD:1,

Z= Y + k11’.

If the column means of the pre-ipsative matrix are equal, the column
means of the resulting ipsative matrix must be equal.

Without loss of generality the means prior ot ipsatizing can be assumed
to be zero as in X. The matrix Z is quite general and corresponds to any
ipsative matrix obtained from X. The means of Z are from (130)

I’Z I’(Y --b kl 1’)(131)
N - N
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Substituting from (129) in (131)

I’Z I’X(I -- 11m’) + kNl’
(132)

N - N ’

but from (128) it is clear that

I’X = 0’;

thus it follows that (132) reduces to

(laa)
l’z
N - kl’,

or the means of the variables in Z are all identical and equal to the constant
added to the elements of Y.

Property 9.2

If the variances but not the means were equated prior to ipsatizing,
transforming the resulting ipsative scores to deviation units will yield inter-
pretable results.

Because of Property 9.1, it can readily be determined whether the means
were equated prior to ipsatizing. If the means are not equal, of course,
comparison of one score with another for a given entity should not be made.
Property 9.2 implies the ipsatizing of a matrix such as H. Hence, we begin
by letting T be the ipsative matrix obtained from H or

(134) T= H(e --11m’) + Icl ’.

Without loss of generality /~ can be assumed to be zero in which case the
rows of T sum to zero, that is

(135) TI’ = O,

but the sums of the columns of T are quite obviously from (134) a function
of the sums of the columns of H and hence are not equal.

Tra.nsforming the columns of T to deviation units we have

Note that the term 1~11’ from (134) dropped out of (136) as/~ was assumed
to be zero. From (127) and (128) (136), we have

(137)

or from (129)

(138)
I-- ~-~)T = Y,
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but as Y is the ipsative matrix obtained from X the matrix with equal means,
Property 9.2 is proved.

Property 9.3

If the variances were not equated prior to ipsatizing, normalizing after
ipsatizing will not make the resulting scores meaningful.

It was illustrated in Chapter II, and is considered to be self-evident,
that ipsative scores are meaningful only if the means and variances of the
underlying absolute or raw scores are equivalent. The development of Property
9.2 made it clear that failure to equate the means could be corrected by
transforming the ipsative scores to deviation units. The question now is
whether the effect of failing originally to equate the variances can be com-
pensated for by an operation on the ipsative scores.

Property 9.3 implies the ipsatizing of a matrix such as G defined above,
or at best G after transformation to deviation scores which we will call U
as defined below:

Letting P be the ipsative matrix obtained from U we have

The question is whether normalizing P will yield a matrix equivalent to Y.
Letting D~ be the diagonal matrix of standard deviations of P, then P is
normalized by

(141) PD[~ = U(I - 

m/ ~ m/ ’

but these two matrices are quite obviously not equal. Hence Property 9.3
is proved.

or from (139) in (141)

Now from (128) and (129) we observe 

From (142) and (143) it is clear that PD~-~ will equal Y only if



CHAPTER V

SUMMARY AND RECOMMENDATIONS

Summary

It was pointed out in the introduction that the properties of ipsative
units are not well known. This study was designed to give a more complete
and perhaps a better understanding of such units. In this chapter the prop-
erties of greatest significance will be reviewed and their consequences dis-
cussed. The numbers designating the properties coincide with that in Chapter
IV.

Property 1.1

An ipsative intercorrelation matrix can be expressed as a simple function
of the matrix of intercorrelations for the same variables prior to ipsatizing.

The implication of this property is that there is always a set of raw
or absolute measures underlying the ipsative set. These measures may be
very difficult or impossible to obtain, but nevertheless in theory they are there.
Recognition of this fact should help the user of ipsative variables to avoid
misinterpreting them.

Property 1.2

The sums of the columns (or rows) of an ipsative covariance matrix
must always equal zero.

This property of ipsative variables can be put to work as an excellent
intermediate check when computing intercorrelations for an ipsative set
of data. It also, of course, implies that there will be a large number of negative
values in any ipsative intercorrelation matrix.

Property 1.3

In the special case when the ipsative variances are equal, the sums of
the columns (or rows) of the ipsative intercorrelation matrix are equal to zero.

This is a special case which in actual practice will probably never be
encountered. Nevertheless, empirical observations in addition to those re-
ported ’here have led the writer to believe that the column sums, of the
intercorrelation matrices of the ipsative variables in common use, will ap-
proximate zero.

46
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Property 1.4

Ipsative intercorrelation matrices are nonbasic or singular and thus
have no regular inverse.

This is a very important property, and should be well understood by
all researchers using ipsative variables. Much time and money can be ex-
pended to no avail in trying to find the regular inverse of an ipsative inter-
correlation matrix. If an exact least-square solution for estimating some
criterion is desired, the researcher must either delete a variable from the
ipsative set or utilize the "general inverse" approach developed by Horst
[9]. No modification of the ipsative intercorrelation matrix is necessary if
iterative procedures are utilized. Iterative procedures may be utilized without
altering the final multiple correlation whether or not a variable has been
deleted from the original set. However, deleting a variable will usually reduce
the labor involved in determining weights by iterative techniques.

Property 2.2

The sum of the covariance terms obtained between a specified criterion
and a set of ipsative variables is zero.

Whatever the validity coefficients would have been for the underlying
absolute scores of the traits corresponding to those being measured by a
given ipsative set of variables, the resulting validity covariances will sum
to zero. A knowledge of this property should assist the researcher to avoid
false interpretations of the relation between a trait and some specified criterion.
The researcher must always keep in mind the reservation voiced by Allport
and Vernon [1] that these are relative not absolute measures.

Property 3.1

The multiple correlation of a set of ipsative variables with a criterion
can be expressed as a function of the multiple correlation for the pre-ipsatized
variables and their f~ coefficients, and except in one rare special case the
ipsative multiple correlation is always less than the multiple correlation for
the same variables prior to ipsatizing.

This property makes it clear that the researcher should strive to obtain
absolute measures. Regardless of how adequately the job of prediction is
performed by a set of ipsative variables, the predictions are as accurate as
those possible with absolute measures of the same traits only in one rare,
special case. Admittedly absolute measures may in some instance be more
difficult to obtain than ipsative measures, but as long as the less difficult
approach is not the optimal approach it can be considered only a temporary
solution. Those interested in test construction should endeavor to develop
techniques for obtaining absolute scales for measuring all attributes of
behavior.
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Property 4.1

The least-square estimate of a criterion using all of the variables of an
ipsative set is identical with the least-square solution with any single variable
deleted.

The discussion of Property 1.4 implied that a variable must be deleted
from a complete ipsative set before a regular inverse exists for the inter-
correlation matrix. Property 4.1 and its development in Chapter IV make
it clear that the ability to predict any criterion is unaffected by the deletion
of any single ipsative variable. This is true whether we delete the variable
with the highest or lowest zero-order validity coefficient. Again this property
should impress the test user and researcher with the highly dependent inter-
relationship of ipsative variables.

Property 6.1

When the variables in non-ipsative form are orthogonal, the ipsative
intercorrelations will all be a negative constant value determined only by
the number of variables.

This property serves to emphasize further the complex interdependency
of ipsative variables even in this special case where the underlying absolute
measures have zero correlations with each other. It also clearly illustrates
the importance of the number of variables in determining the magnitude
of the ipsative intercorrelations. In fact, in this special case the magnitude
of the intercorrelations is determined exactly by the number of variables
alone.

Property 6.2

When the variables in non-ipsative form are all correlated with each
other to some constant degree a, the ipsative intercorrelations will be exactly
the same as if the original variables had been orthogonal as in Property 6.1.

This property also illustrates the importance of the number of variables
in determining ipsative intercorrelations. It also shows that the resulting
ipsative intercorrelations are completely independent of the intercorrelations
of the underlying absolute measures in the special case where these absolute
measures are correlated with each other to some constant degree.

Property 6.3

When the column sums of the pre-ipsative intercorrelation matrix are
all equal and the off-diagonal correlations are distributed normally, the
proportion of negative values in the ipsative intercorrelation matrix can be
determined readily from tabled values of the normal curve.

Although generally the properties of ipsative variables are not well
known, the fact that ipsative intercorrelation matrices have a large number
of negative values has long been recognized. The development relating to
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Property 6.3 in Chapter IV makes it clear why there will always have to
be a high percentage of negative correlations in an ipsative set. Furthermore,
the development in Chapter IV and the illustration presented in Table 15
of Chapter III make it clear that the actual number of negative correlations
can be determined quite accurately as a function of the number of variables
and the variance of the intercorrelations. This property again demonstrates
the complex interdependency of ipsative variables.

Property 7.1

When the original scores are in normalized units with a mean of zero
and standard deviation of unity and the sums of the columns (or rows) 
the original intercorrelation matrix are all equal, then the ipsative covariance
matrix and the first-centroid residual are identical.

The discussion above has at several points implied that an ipsative set
of variables contains less "information" than would the set of underlying
absolute measures for the same traits. However, none of the above properties
reveals the loss of "information" quite as clearly as Property 7.1. All re-
searchers in psychology familiar with quantitative techniques are aware that
the first centroid contains a tremendous portion of the relevant variance in
any intercorrelution matrix. To state that the ipsative covariance matrix
corresponds exactly (under the restrictions given) to the residual remaining
after the removal of the first centroid from the intercorrelation matrix of
the absolute measures, is the same as stating that a tremendous amount
of "information" is missing in such an ipsative set. The example presented
in Table 14 of Chapter III supports the hypothesis that this property will
hold very well even when the restriction on the column sums of the original
correlation matrix is not met.

It is not unreasonable to state, then, that ipsative covariance matrices
contain essentially the same amount of "information" as the first-centroid
residual obtainable from the intercorrelation matrix of the absolute measures
for the same traits. Furthermore, the fact that this information is missing
from an ipsative intercorrelation matrix will make it next to impossible to
make anything psychologically meaningful out of a factor analysis of such
data.

Property 8.1

Under a very special restriction a set of ipsative variables will correlate
perfectly with their absolute counterparts.

This is another property bringing into focus the difference between
ipsative variables and their underlying absolute counterparts, and it further
illustrates the necessity of interpreting ipsative scores with caution. The
statement of Allport and Vernon quoted in Chapter III emphasizes this need.
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Property 9.1

If the column means of the pre-ipsative matrix are equal, the column
means of the resulting ipsative matrix must be equal.

The discussion in Chapter II demonstrated that if the means and vari-
ances of a set of scores were not equated prior ot ipsatizing the resulting scores
would have little meaning. Property 9.1 offers a fool-proof technique for
checking on whether the means were equated prior to ipsatizing. This check
is possible even when the ipsative scores are obtained directly and the under-
lying absolute scores are unknown.

This property further implies that no set of ipsative scores should be
utilized in which the means are not equal or very nearly so. Fortunately,
if only the means were different prior to ipsatizing and not the variances,
then there is a transformation possible which will convert the scores to
"true" ipsative units. This transformation is given in Property 9.2.

Property 9.2

If the variances but not the means were equated prior to ipsatizing,
transforming the resulting ipsative scores to deviation units will yield inter-
pretable results.

The development presented in support of Property 9.2 in Chapter IV
makes it clear that if only the restriction on the means was not met prior
to ipsatizing, then transforming the obtained scores into deviation units by
variables will correct the fault. However, the further transformation of the
obtained ipsative scores into standard units will serve no useful purpose.

Property 9.3

If the variances were not ecluated prior to ipsatizing, normalizing after
ipsatizing will not make the resulting scores meaningful.

This property along with the discussion in Chapter II makes the burden
placed on the shoulder of the ipsative test-maker clear. He must be as certain
as he can possibly be that equal variances are maintained for the absolute
scales underlying his ipsative scales even though he cannot observe these
absolute measures. This seems to be somewhat of a paradox, but once rec-
ognized the clever test-maker will probably find ways of dealing with the
problem. If he fails to do so the resulting ipsative measures will have little
meaning even in the relative sense.

Recommendations

Not all of the properties discussed above lead immediately to recom-
mendations. Some suggestions have already been made in the foregoing part
of this chapter. Some of these suggestions can be stated more positively as
recommendations. For instance, when computing intercorrelations for ipsa-
tive variables an extremely valuable check is to determine the sum of the
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variance of each variable in turn plus the covariances of that variable with
each of the others. This sum should be exactly zero. In addition, when an
external criterion is involved, the sum of its covariance terms with each of
the ipsative variables should also be exactly zero within rounding error.

Some of the properties place restrictions on the use and analysis of
ipsative data. Property 1.4 makes it clear, for example, that it is impossible
to determine regression weights for a complete set of ipsative variables by
calculating a regular inverse. However, generally the deletion of a variable
from an ipsative set will make it possible to compute an inverse. It is recom-
mended that a variable be deleted when it is desired to make predictions
from an ipsative set.

Sometimes circumstances may arise where predictive weights are desired,
but it does not seem wise to delete a variable arbitrarily. In these instances
either of two approaches is recommended. The first is an iterative procedure
developed by Horst [10]. In some instances this procedure may reach an
optimal point prior to the selection of all the variables. For this reason and
if an exact least-square solution is desired another method of determining
regression weights is recommended. It also was developed by Horst [9],
and is called the general inverse solution. The general inverse solution will
yield weights for all of the variables in an ipsative set. This general inverse
is not be to confused with the regular or usual inverse.

Property 7.1 implies that it will be extremely difficult, if not impossible,
to obtain psychologically meaningful results from the factor analysis of a
set of ipsative intereorrelations. It would seem that performing such an
analysis would serve no purpose other than determining the rank of the
matrix. For this reason, if such a set of data is factor analyzed, it is recom-
mended that no attempt be made to rotate the resulting vectors to simple
structure form.

All ipsative intercorrelation matrices are bound to have a large per-
centage of negative elements. This is made clear by Properties 6.1 and 6.3.
Also from the first of these properties it is clear that for any symmetrical
distribution the covariance terms will cluster around zero. This implies that
in general ipsative intercorrleation matrices will have many near zero ele-
ments. It is strongly recommended that the values and even the signs of
the correlations of ipsative attribute measures should not be confused with
the values and signs which would have been obtained as correlations for
absolute measures of the same attributes.

One of the first things to check when examining an ipsative instrument
is the difference between each pair of means for the standardization popula-
tion. Each of these differences should be zero. If they are not zero, it is recom-
mended that the scores be transformed into deviation units before inter-
pretation is made. If this operation is not performed errors in interpretation
will result. This is true, as the discussion above particularly in Chapter II
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made clear, because ipsative scores can have meaning only if the underlying
absolute measures have identical means and variances; furthermore, Property
9.1 states that if the means for the underlying absolute measures are equal
then the means of the resulting ipsative measures must be equal. Property
9.2 shows that failure to equate the means can be corrected by transforming
the ipsative scores into deviation units. On the other hand, Property 9.3
makes it clear that failure to equate the variances cannot be corrected by
a transformation on the ipsative scores.

This statement leads naturally to another recommendation, i.e., that
those constructing instruments which yield ipsative scores directly should
exercise great caution in making as certain as possible that the variances
for the underlying absolute variables are all equal. No suggestions as to how
this can be done will be made in here but no doubt ideas which will contribute
to satisfying this requirement will suggest themselves to test makers.

Property 8.1 should make it eminently clear to anyone using ipsative
variables that the magnitude of such scores must never be confused with
the magnitude of absolute measures for the same set of traits. Ipsative scores
are relative scores. It is quite possible that u person obtaining a low ipsative
score on a particular trait actually possesses more of the characteristic in
question than a person obtaining u much higher ipsative score. It is imperative
that users of ipsative variables interpret them in the relative sense only.
It can further be recommended, because of Property 9.2 and the empirical
examples of Chapter II, that when these interpretations are made it is
important to use deviation scores, not normalized scores.

A number of the observations made in this study suggest that non-
ipsative measures of a series of traits would be superior to ipsative scores
because the former contain more information. The argument is mathematically
sound, but the reader is cautioned that it is not ususally an easy task to
develop "absolute" measures that correspond to the variables in an ipsative
set. Indeed, it was the difficulty of obtaining valid "absolute" measures that
led to the development of some of the available ipsative instruments. There
is evidence that forced choice instruments yielding ipsative scores are not
as influenced by the tendency to respond in the socially accepted manner
and that they cannot be as easily faked as instruments designed to measure
traits more directly.

The difficulty of obtaining directly measures that reflect precisely the
absolute counterparts of ipsative measures is illustrated by the studies of
Wright and Talbott. Wright [16] devised a set of rating scales designed to
assess directly the traits included in the Edwards Personal Preference Sched-
ule. Talbott [13] using Wright’s scales compared their efficiency with the
EPPS for predicting ten criteria. In eight instances the multiple correlation
was higher using the EPPS than using the scales devised by Wright. This
finding runs counter to what would be expected from the mathematical
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viewpoint developed here. But the mathematics is not threatened; instead
this finding simply demonstrates the difficulty of developing "absolute"
measures for some traits. Therefore, let there be no misunderstanding, some
traits that can be relatively easily compared using ipsative techniques may

be very difficult to assess validly using instruments designed to yield more
direct or "’absolute" measures. A set of measures said to yield scores that

are the "absolute" counterparts of those yielded by an ipsative instrument
should not be considered superior unless it can be demonstrated empirically

that it does indeed contain more information.
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APPENDIX

TABLE 16

Raw Scores of the 129 Subiects on Six Predictor
Variables and the Criterion

Predictor Variables* Criterion* Predictor Variables* Criterion*
Subject 1 2 3 4 5 6 GPA Subject 1 2 3 4 5 6 GPA

001 i0 ii 28 12 17 22 29 040 14 i0 15 14 i0 43 21
002 35 25 36 21 2543 10 041 24 14 14 16 14 32 20

003 09 07 08 13 07 31 20 042 16 06 06 04 12 23 14
004 51 25 34 23 24 49 34 043 49 19 35 26 14 48 34
005 22 21 19 24 12 52 15 044 20 21 02 18 2044 30

006 12 47 09 23 05 50 17 045 25 06 24 12 12 40 I0
007 08 35 Ol 09 11 38 16 046 38 31 13 45 21 50 28
008 18 17 06 04 16 17 15 047 18 28 09 24 28 57 25

009 13 09 I0 10 11 44 13 048 09 08 Ol 09 04 27 17

010 62 12 44 25 31 62 38 049 36 10 19 14 21 31 26
011 25 34 30 22 14 41 18 050 21 28 08 18 12 37 23
012 15 44 O0 14 06 17 24 051 31 12 14 12 09 33 18
013 16 41 14 23 19 38 20 052 23 17 16 13 15 42 27
014 17 22 16 12 17 36 22 053 09 18 28 09 08 33 23
015 24 33 24 34 19 47 20 054 58 38 36 43 35 63 38
016 25 26 09 20 16 27 17 055 19 16 05 17 13 37 16
017 22 18 07 10 17 36 22 056 35 43 09 31 32 52 18
018 14 29 02 16 12 33 20 057 26 19 17 26 19 36 26
019 37 11 16 12 19 42 24 058 13 23 00 11 18 23 21
020 06 26 0408 00 50 18 059 22 14 12 21 17 44 15
021 21 03 25 12 06 38 23 060 24 04 12 14 20 17 30
022 37 23 17 28 27 53 35 061 31 14 32 26 20 54 31
023 41 22 18 30 22 53 24 062 17 11 24 12 16 44 22
024 19 46 10 16 14 39 14 063 25 36 09 19 20 43 37
025 26 45 08 24 14 39 19 064 43 21 18 11 23 43 27
026 26 22 12 22 06 45 13 065 31 06 25 12 19 42 25
027 18 28 14 15 19 37 21 066 12 23 10 11 10 23 16
028 28 23 18 32 22 68 27 067 15 24 11 06 11 50 17
029 16 21 13 16 11 40 15 068 35 37 21 34 12 59 22
030 18 03 07 04 04 28 13 069 27 20 10 11 15 33 21
031 15 11 22 02 05 22 04 070 27 12 37 21 28 45 20
032 18 48 O0 23 17 27 13 071 26 05 12 15 16 31 28
033 36 42 11 13 1644 29 072 39 29 34 18 19 54 17
034 21 45 05 26 18 44 14 073 13 03 07 14 08 36 18
035 36 12 15 25 21 44 25 074 19 27 09 29 09 35 20
036 28 10 19 17 19 42 26 075 19 21 07 19 21 49 25
037 11 4409 09 04 29 19 076 36 15 28 21 17 52 21
038 23 29 13 36 16 56 19 077 62 15 41 11 12 32 24
039 32 35 21 25 16 48 19 078 28 37 09 14 14 33 20

54
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TABLE 16--(Continued)

Predictor Variables* Criteriont Predictor Variables* Criteriont
Subiect 1 2 3 4 5 6 GPA Subiect 1 2 3 4 5 6 GPA

079 26 37 07 24 18 45 29
080 15 38 16 16 16 55 23
081 18 10 14 10 18 50 19
082 13 4005 28 09 44 18
083 09 21 04 07 06 26 12
084 28 39 09 24 23 44 14
085 34 06 09 07 11 27 31
086 29 11 07 15 12 47 13
087 22 19 13 30 20 45 26
088 28 44 24 24 08 41 19
089 07 17 21 11 09 41 21
090 30 01 12 10 14 48 27
091 33 41 22 22 31 51 21
092 12 26 21 15 15 49 23
093 36 34 27 30 35 51 35
094 31 23 21 22 14 47 32
095 35 18 16 23 18 53 25
096 12 24 10 09 04 34 18
097 31 25 20 29 18 36 24
098 19 37 03 24 27 52 26
099 48 50 24 41 28 61 36
100 29 12 32 16 15 43 20
101 20 30 12 11 15 45 19
102 22 16 14 03 17 37 17
103 15 07 37 16 07 44 18
104 08 28 11 28 16 56 18
105 39 23 17 30 31 46 22
106 15 33 33 35 11 56 13
107 27 00 29 15 14 40 23
108 19 06 37 06 17 48 19
109 43 36 40 14 27 38 22
110 20 33 02 15 17 47 14
111 24 05 14 16 09 32 20
112 32 15 11 06 16 38 27
113 10 02 18 05 04 33 17
114 06 13 06 06 04 29 21
115 11 14 10 16 10 46 14
116 01 25 08 27 08 26 17
117 10 13 12 10 14 37 27
118 13 41 10 35 16 50 24

119 34 39 27 37 26 48 29
120 10 21 00 05 06 27 17
121 18 40 05 24 10 44 10
122 19 39 02 21 07 35 10
123 12 22 06 18 16 54 15
124 29 18 16 23 25 57 25
125 10 22 18 23 08 44 25
126 19 27 05 16 13 39 24
127 31 21 09 15 23 47 26
128 17 2600 11 06 30 08
129 35 17 39 14 21 52 30

* Predictor Variables:
1. Guilford-Zimmerman I, Vocabulary
2. Guilford-Zimmerman VII, Mechani-

cal Knowledge
3. Cooperative English, Form OM,

Spelling
4. Cooperative Mathematics, Form

X, Part I
5. Cooperative Social Studies, Form

X, Part II
6. A. C. E., Quantitative Section, 1948

t Decimals omitted



56 AN ANALYTICAL AND EMPIRICAL EXAMINATION

TABLE 17

Statistical Data for Empirical Example in Chapter III

Predictor
Variables 1 2 3 4 5 6 f~ ~2/r~

1.881 .114 --.718 --.226 --.777 .093 .226 .027154
.114 1.520 .423 --.832 --.104 --.018 --.151 .015001

--.718 .423 1.637 --.049 --.037 --.401 .021 .000269
--.226 --.832 --.049 2.170 --.359 --.815 .118 .006417
--.777 --.104 --.037 --.359 1.847 --.385 .359 .069779

.093 --.018 --.401 --.815 --.385 1.792 .012 .000080
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