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1. CANONICAL ANALYSIS

The theory of canonical correlation (Hotelling, 1935, 1936) was originally
developed to extract the most predictable criterion composite when several
criteria and several predictors are available. The theory has since proved to
have other applications. Included within the more general structure of
canonical analysis are several important analytic techniques among which
are canonical correlation in the ordinary sense, certain types of factor analysis,
discriminant function analysis, methods for the scoring of categorical data
and several quantification or scaling procedures used in the social sciences.
A unified treatment is possible through the use of pseudo-variates and
suitably defined conditional inverses. Canonical methods have two desirable
properties. The results are invariant with respect to the choice of unit of
measurement for any of the variables and they are often optimal by certain
accepted measures of association and reliability.

Some Basic Theory

Given n observations on each of two sets of variates x and y, where

x. -- x~., i -- 1, 2, .-. ,pvariates,

y. -- y;., j = 1, 2, ... ,qvariates,

a = 1, 2, ... , n observations,

coefficients a and c are to be determined such that the correlation between
a’x and ¢’y is maximum. In other words, letting

&l = ~:(x~ - ~)(x~ - ~),,

&2= ~ (y. - ~)(yo - ~)’,

8,2= ~(xo- ~)(yo-~),,

the quantity a’$12¢ is to be maximized subject to the conditions a’Sna =
c’$2~¢ -- 1. Introducing Lagrange multipliers p and ~, the function

= - ~ "a’S - ~) - ½~(c’&~c ~b a~S~c ~p~ na --

must be maximized with respect to a and c. Differentiation with respect
to a and c gives the two sets of equations,

(1.1)
0~b _ S~2c - pSna = 0,

0a
1
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(1.2)
0¢ _ $21a -- YS22¢ = 0.
0¢

Multiplying (1.1) on the left by a’ and (1.2) by c’ shows 

p -- ~ ~ a~ql~C,

(1.3) S~2c -- ~S~a = 0,

(1.4) S~,a - pS~c = O.

Soling (1.4) for c and substitut~g ~ (1.3) yields

(1.5) - = o,
with k = p~. ~remultiplying by S]~ this becomes

(z.6) (n - xI)a = 
The canonical weights a are the elements of the pr~cipal vector of the
c~nonical correlation matrix R = S]~Sz~S~S~z . From (1.4), the c~nonical
weights for the y v~riates ~re, up to ~n ~rbitrary norm~izution,

(1.7) c = S~S~za.

The l~rgest root of R is the squared canonical correlation between the two
sets, k = p~. Prem~tiplying (1.5) by ~,

(1.S) X = a’S~a

Equations (1.3) t~ough (1.8) fu~ish the basic compututionM equations
for all types of canonical analysis. Because of the symmetry between x and y,
there ~re a parallel set of equations ~ terms of c corresponding to (1.3)
t~ough (1.8). ~y two canonical variates whether from the same or ~erent
sets are ~correlated u~ess they correspond to the same root.

Pseudo-Varia~s and C~diti~al Inverses

One or both of the sets of v~riates x and y may consist of pseudo-variates,
0 or I scores ~dic~t~g class membership. For example, in ~ one-way analysis
of variance layout with p meas~ements on each of ~ groups, we wo~d have

x= = x~=, i = 1,2, ..- ~pvariates,

y~ = y~= , i = 1, 2, ... , k pseudo-v~riates (groups),

where y~ = = 1, if the ath observation belongs to the ~th group, y~, = 0
other~se. For categorical d~ta both x and y are pseudo-vari~tes. It shoed
be noted that a set of pseudo-variates is not the same as a set of dichotomized
variables. In the former all elements of the vector variate except one must
be zero, while ~ the latter there are no restrictions on the number of ones
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and zeros. The sum of products (SP) matrix for a set of pseudo-variates
is always singular while for a set of dichotomized variables the sum of products
matrix will be nonsingular and may be handled as a set of continuous variables.

In the above example the SP matrix for the second (y) set of variates 

(1.9) $22 = D2 -- ~ n~m’,

where D2 is a diagonal matrix and n~ is a vector, both with elements ni ,
which is the number of observations in the jth group. Since S~I = 0, the
matrix S~ is singular and cannot be inverted in the usual sense. This difficulty
can be eliminated and symmetry preserved by defining a unique conditional
inverse of S~ .

Let E be an idempotent matrix so that E2 = E, where E is generally
not of full rank. A vector v is in the space of E if Ev = v. The matrix A will

be considered in E if its row and column vectors are in E, that is, if EA =
AE = A. If A and A-1. are matrices in the space of E, then A-1. is the
conditional inverse of A if AA-~* = A-I*A = E. In general, for any square
matrix A,

(1.10) -~* =E[ A + r( I -

where r ~ 0 but is otherwise arbitrary. The matrix in brackets is nonsingular.
The conditional inverse of A is made unique by inverting A within its own
space. Equation (1.10) can be obtained by pre- and postmultiplying the
identity

[A A- r(I - E)][A + 7(I - -~ = I ,

by E. If A is factored into its roots and vectors so that

A~x~ = R~,x,D,x,L~,x~, , r <_ p,

then

E =RL’ an A-1° =RD-~L’.

The idempotent E can be determined from the restrictions on A. If the
columns of A satisfy the r restrictions U’A = 0 and the rows satisfy A V = 0’,
and if U’V = P, then

(1.11) E = I -- VP-IU’.

For the matrix S~2 , the restrictions are 1’$22 = 0’ and $2~1 = 0, so that

1
(1.12) E = J = I -- ~ 11’.

This approach is convenient since the conditional inverse of S2z is simply

(1.13) S~~* = Jn~’J.
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This can be verified directly, JD~IJS~2 = JD~IS~2 = J. Whenever x or y
consist of pseudo-variates and conditional inverses are substituted for the
ordinary inverses, the basic equations of canonical analysis, (1.3) through
(1.8), remain valid. It should be noted that if y consists of pseudo-variates,
then l’c = 0. It will often be convenient to adjust the category scores so
that the score distributionhas zero mean. The adjusted score vector ~ differs
from c by a translation and satisfies the condition n~’~ = 0. Defining the
idempotent matrix

(1.14) Q~ = I - 1 ln’~ ,
n

the following relations hold between J, Q2, ¢, and ~:

~ = Q~c, c = J~,
(1.15)

Q2J = Q2, JQ~ = J.

Similar relations hold between the quantities J, Q1, a, and ft.

Multiple Measurements on Several Groups

For a set of p measurements on each of k groups the SP matrices are

1
S~ : D~---n2n~,

n

S~ = GD2,

where I’S~ = I’S~ = O’ and G = (X; - ~). Then the canonical weights
for the x set satisfy

or

(GD~G’ -- ~Sl~)a = 0.

But GD~G’ = B, the between SP matrix, and S~ = T, the total SP matrix,
so that the above is equivalent to

(1.16) (S -- kT)a -- 

This is the equation for the discriminant function weights obtained by
msximizing

a ’Ba
X - a’Ta ’

the ratio of the between to the total sum of squares or the correlation ratio.
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Letting W ="T -- B, we’obtain the alternative form

(1.17) (B -- /~W)a -- 

where ~ = h/(1 -- h) is the largest root of W-lB. The weights ¢ are given by

c = S~*S~la -- JGa.

Premultiplying by

yields

(1.18)

Q2 = I - 1 ln~
n

~ = Ga,

a somewhat simpler expression. The adjusted weights ~ are the means of the
canonical variates for the k groups. The weights for a set of pseudo-variates
may be given the alternative interpretation of scores assigned to the categories
in such a way as to maximize h. This interpretation will generally be more
meaningful and the vector ~ will generally be a more convenient form for
these scores than c. The tilde notation serves to indicate that the weights
are being interpretated as scores as well as the change in origin.

Categorical Data

For categorical data, both x and y are sets of pseudo-variates and the
SP matrices are

Sn = D1-- ln~n~

$2, = D, -- ~ n,m’ ,

S~ = N~ -- ~n~n~ ,

where N~, is the matrix~of cell frequencies, n,, and n~ ~ n, are*the marginal
frequencies. Then

which reduces to

(1.19) (JD~1NI~D~N’,I -- )d)a = 

Premultiplying by Q1 = I -(l/n)ln~,

(1.20)
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The conjugate weights are

(1.21) c = $22 $21a J ~ N~la.

Premultiplying by Q~ and putting a = J~ gives the score vector,

(1.22)

If the scores ~ are assigned to the first set of categories, then ~ is the vector
of mean scores for the second set of categories.

2. CANONICAL FACTOR ANALYSIS

A principal distinguishing feature of different applications of canonical
analysis is the normalization requirements imposed upon the canonical
weights. Every such normalization implies a factorization of some matrix.
The following theorem is of fundamental importance.

A Factoring Theorem

If T and B are symmetric of order p, where all roots of T are
positive and all roots of B are non-negative, then there is a square
nonsingular matrix L and a diagonal matrix D such that T = LL’
and B = LDL’.

The matrices L and D may be identified by noting that

(2.1) L’T-IB = L’(LL’)-ILDL ’ = nL’,

showing that the elements of D are the roots of T-1B (including zero roots}
and the columns of L are the left-hand vectors of T-IB satisfying

(2.2) I(T-~B -- ~I) = 

Note that for L to be of full rank there must be vectors corresponding to
zero roots. Let L be the matrix of left-hand vectors. It may be readily verified
that A = T-1L is the matrix of right-hand vectors. It follows that

(2.3) L = TA.

The requirement that T = LL’ implies the normalization

L’T-IL = I,

or equivalently,

(2.4) A’TA = I.

Similarly, if A is normalized so that A’BA = I, then L = BA provides a.
factorization of B. The following more general corollary may be established,
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For any matrix V -~ clT -~ c2B, where cl and c~ are arbitrary
constants subject only to the conditions that all roots of V are
non-negative and if A is the matrix of right-hand vectors of T-IB
normalized so that A’VA = I, then L = VA provides a factorization
of V.

Identification of Matchidg Factor Pairs

If A is the matrix of canonica~ weights for the first set of variates,
normalized so that A’S~IA = I, then from the factoring theorem L = SI~A
is a factor matrix for S~1 . The matrix C of weights for the second set of
variates may be normalized, independently of A, so that CIS2~C = I. Then
K = S~2C is a factor matrix for $2~ . This procedure has been suggested
by Bartlett (1948) as a technique for matching the underlying factors for
two sets of variates. The paired factor variables are the canonical variates.
In effect, the factor matrices for both sets of variates are simultaneously
rotated by orthogonal transformations until a factor from one set is maximally
correlated with a factor from the other set, identifying the first factor pair.
These factors are held fixed while the second pair is identified, and so forth.
This method of identifying matching factor pairs has been applied in Appendix
A, to data of K. J. Jones (1965). Factors underlying occupational classifi-
cations are related to factors of the Guilford-Zimmerman Temperament
Survey.

A factorization of the S~ matrix is also implied by this procedure.
From (1.3)

(2.5) S~C = S~AD~.

Assuming the rank of C is n2 and postmultiplying by K’ yields

(2.6) SI~ = LD~K’.

This factorization remains valid when the rank of C is less than n~.

Relation to Maximum-Likelihood Estimation in Common-Factor Analysis

The following connection between canonical analysis and maximum-
likelihood estimation is due to Rao (1955). The common-factor analysis
model assumes that the observed vector variate x is the sum of a specific
part s and a common part g where the specific parts are uncorrelated with
each other and with the common parts, that is,

(2.7) x = s + g
and

L~_~Lg~
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It follows that

(2.8) ~Z~ = U + O.

A canonicM analysis between the sets x and g will determine the linear
composites a’x and c’g with maximum correlation. The SP matrices are

$1~ = S, S~2 = $12 = S- U.

Then the weights a satisfy

[S-I(S - U) M]a = 0,

or the equivalent form

(U-’S- vI)a = 0,

with ~ = 1/(1 -- ),). For r such components the set of left-hand vectors 
will satisfy

(2.9) L’U-’S = D,n’.

For arbitrary U, these equations may be solved for L and by suitable normal-
ization a factorization, 0 ----- LL’ is possible. A unique U and L may be deter-
mined by requiring that the diagonal elements satisfy

(2.10) diag (S) = U + diag (LL’).

These are the maximum-likelihood estimates of U and L (Lawley, 1940).
A solution may be obtained by iterating between (2.9) and (2.10), provided
the process converges. The factor scores ctg are unknown because the common
parts g are undetermined. The best linear function of the observed variables
x for estimating the factor scores are the variates a’x since they correlate
most highly with the factor variables. The results are independent of the
choice of units and therefore it does not matter whether the SP matrix, the
eovarianee matrix, or the correlation matrix is used.

3. DISCRIMINANT FUNCTION ANALYSIS AND SCALING THEORY

Discriminant function analysis, introduced by Fisher (1936) as a classifi-
cation procedure, supplies a theoretical basis for certain scaling procedures
in the social and biological sciences (Rao, 1948). Most scaling methods
amount to the location of a set of groups or objects within a Euclidean
metric space given some direct or inferred measure of the intergroup distances.
The fundamental assumption underlying this approach to scaling is that
the distance between two groups is given by Mahalanobis’ D~. If a set of
measurements x; , j = 1, 2, ... , /c groups, have means r; and a common
covariance matrix Z, the then squared distance between the groups j and h is

(3.1)
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The sample estimate of Din is proportional to

(3.2)

where W is the combined within-groups SP matrix. The coordinates of the
groups for
multidimensional representation of the intergroup configuration, or in
psychometric terminology, a multidimensional scale for the groups. It follows
that any factor matrix U of W provides a multidimensional scale with
coordinates for the jth group z; = U-1R~ and intergroup distances

(3.3) d~ = (z~- z~)’(z~- z~) 

If the canonical weights A, which satisfy

(B - uW)a = 
are normalized so that A’WA = I, implying the normalization

(3.4) C’S~C

then both C and ~ are a set of coordinates for the groups on a multi-
dimensional scale with

(3.5) d~ = ~ (c~. - ~ = ~ (~, - ~, .)
r r

These are the principal scale components since they successively account
for the largest amount of discrimination between the groups. Like any
orthogonal factor matrix, the coordinate matrix C may be rotated to an
orthogonal simple structure.

Discriminant analysis was applied by Jones and Bock (1960) to ratings
of six cultural groups on "ways to live" using data collected by Morris
(Morris ~nd Jones, 1955). Their results are given in Appendix 

Rather than inferring the intergroup distances from measurements
on the relevant variables, a multidimensional scale may be constructed
from direct measurements of the intergroup distances. The latter approach
has been taken in the development of multidimensional scaling methods in
psychology (Richardson, 1938; Young and Householder, 1938; Torgerson,
1952). In distance observation methods the intergroup distances, din , are
determined by subjective estimation. The principal scale components are
determined from a factorization of the matrix M with elements

(3.6) rn~n= - ½(d~ - 3~. - c~~.n + 35..).

Under the assumption that there are a set of latent variables x such that

d~. = (x~ - x~)’W-’(x, - x~),
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the two types of scales are identical. To demonstrate this, let W = UU’ and
z; = U-lx~̄  . The type of factorization is arbitrary. Then

d~ -- (z;- z~)’(z;- zh),

and after some straightforward computation we find that

m;~ = (z; - ~)’(zh - z) = (xi - ~)’W-’(x~ ~)
or

(3.7) M = G’W-1G.

The group sizes are effectively equal so that ¢ = 8 and we can take B = GG~.

The two scales are identical if the vectors c, = 8r = G’ar are the principal
vectors of M. From a well-known theorem on characteristic roots

ch (G’W-’G) ch(W-’GG’) = ch (W-~B)

except for zero roots, and

(G’W-1G - ~I)c = G’(W-~B - M)a = 0,

so that the vectors c, are, in fact, the principal components of M. If it is
assumed that there is only one underlying variable or dimension then

D~ = (r;- rh)2
0-2

or

(3.8)
D;~ = ~’i --0- Th

Equation (3.8) together with the assumption that D~.~ = normit(P;h)
constitutes Thurstone’s (1927) Case 5 law of comparative iudgment, where
P;~ is the proportion of times obiect j is preferred to obiect h. When a direct
estimate of the signed distances, D;~ , is available, rather than extracting
the principal component of the M matrix, a least-squares solution for a~ --
T~/~ in the model

(3.9) di~ = a~. -- ~ ~- ~;h

may be substituted.
Making use of conditional inverses where necessary, the computational

procedures of this section may be applied to categorical data but the model of
Section 4, which assumes an underlying bivariate normal distribution, will
often be more appropriate.
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Other Uses o[ Canonical Analysis Related to Discrimination

The notion of a linear discriminant function between/~ groups may be
extended to more general formulations and methods. Given a measurement x
and a set of pseudo-variates Yi corresponding to/c groups, then for the two
sets, (x, 2) : y~, th e fi rst canonical variate gi ves the best quadratic function
of x for discriminating between the groups. More elaborate discriminant
functions are easily determined in this manner.

The discrimination situation may be extended in another direction.
Consider a two-way analysis of variance layout with a set of measurements x
and pseudo-variates y; and z~ corresponding to the two ways of classification.
Then the two sets of variates x : (y; , z~) form the extension to the
two-way classification. The SP matrix of the right-hand set lies within a
space whose idempotent is

(3.10) E = j2 .

The canonical weights for the pseudo-variates will be the corresponding
main effects.

The two preceding generalizations may be combined to obtain the
best quadratic transformation for the elimination of interaction in a two-way
design. The first canonical variate for the two sets (x, 2) : (yl , z~) is the
required transformation on x.

4. SCORING CATEGORICAL DATA

The use of canonical scoring for categorical data was introduced by
Fisher (1938) and important contributions to the theory and applications
have been made by Guttman (1941, 1950) and Lancaster (1957, 1958).
Without assumptions as to the nature of the underlying distribution, canonical
scoring can be justified on the grounds that it maximizes discrimination
and association between the ways of classification. A stronger and more
directly interpretable model is based on the assumption of an underlying
bivariate normal distribution. Under this assumption, the canonical scores
provides estimates of the category locations on the two underlying variables
and the canonical correlation estimates the correlation coefficient of the
distribution. To demonstrate this it will be necessary to obtain an expansion
of the joint frequency matrix in terms of the score vectors ~o and ~.

From (2.6), S~2 can be factored into the form,

S~2 = LDoK’.

Making the substitutions
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~s = N" -- _l n~n~ ,

L = SnA = Sn(J~) DI A,

K = $22C = S22(JO) = D~,

gives the identity

(4.1) N,~ -- ~n,n~ = D~D,O’D~.n

This may be ~itten ~ the form

(4.2)

The bivariate normal d~tribution may be expanded ~ the tetrachoric series
or Me~er identity,

(4.3)

where po is the correlation in the distribution und H~(x) and H,(y) ~re
Hermite polynomials, Ho = 1, H, = x, H~ = x= - 1, etc. Assu~ng that
the frequencies n, reset kom an underlying bivariate normal distabution,
~s the number of categories becomes l~rger (4.2) ~pproaches (4.3) (Lancaster,
1957). Therefore, the following ~pproxim~te identifications m~y be made
between the discrete and cont~uous distributions:

1 1
(4.4)

a~ --~ H~(x) %/~! ’ co ---+ Ho(y) .V/-~ng! ,

(4.5) p. --+ p~, x. -~ xg,

(4.6) tr R -~ k X~
X0(1

1 -- Xo

where r = rank R = min(/~, l) -- 1. From the first component which identifies
x and y, the higher components may be computed from the Hermite poly-
nomials of x and y. Correspondence (4.6) allows a prediction of the largest
root of R and so of all the roots, from the trace of R. The largest root will
generally amount to only a small fraction of the total trace and the adequacy
or goodness of fit of the assigned scores cannot be evaluated by the proportion
of the trace removed. An example of canonical scoring for ratings of social
class (Hollingshead 1949) is given in Appendix 

In the previous discussion, the order among the categories was dis-
regarded or assumed unknown but often prior knowledge of the category
order exists. The categories may be ordered in one direction or in both
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directions. If the canonical scores conflict with this prior order, three alter-
natives are available.

The prior order can be abandoned in favor of the order of the
canonical scores.

The correlation between the categories may be maximized
subiect to the order constraints on the scores. This amounts to a
problem in nonlinear programming on the score differences. This
type of solution requires access to an electronic computer.

The categories can be scored from the marginal distributions.
If the underlying distribution is bivariate normal, then the
marginal distributions are normal and the category mean esti-
mated from Pearson’s centroid formula may be used as the
category score. The marginal scores may be regarded as approxi-
mations to the canonical scores since they converge to the same
values as the number of categories becomes indefinitely large.
The marginal scoring method was introduced by K. Pearson
(1913) and has been in use for many years.

When the order of the categories in only one direction is known, as
with "successive categories" data, marginal scores can be assigned only to
those ordered categories. Scores for the other set may be obtained from
what is in a sense one-half a canonical analysis, the mean category score.
This method for successive categories data is computationally much simpler
than Thurstone’s "successive intervals" solution and appears to give results
about as good provided the distribution of object scale values is approxi-
mately normal. Scoring the categories rather than the boundaries between
the categories makes available simply computed estimates of the efficiency
and reliability of the discrimination. Thurstone’s method is compatible with
the bivariate normal assumption. It amounts to assuming the normality of
the conditional distribution ](x I Y;), J = 1, 2, ... , l objects. This is less
restrictive since it does not require the normality of ](y). Thurstone’s method
will therefore be appropriate even when the distribution of object scale
values is seriously non-normal.

5. ASSOCIATION AND RELIABILITY

To include both continuous and pseudo-variates in the same formulation
and for simplicity of presentation let

p -= rankS11 , q = rankS~2,

r = rankR -- min(p,q), t = n-- 
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Association

For the regression of a variate x on a set of variates y, the squared
multiple correlation, p2(x, y) is the proportion of total variation accounted
for by the regression and is essentially (except for the bias in small samples)
independent of the sample size. The multiple correlation is, therefore,
measure of the efficiency of discrimination or prediction. When y is a set
of pseudo-variates, then p(x, y), the square root of the correlation ratio, is
a measure of the efficiency of the discrimination between the /c groups.

For two sets of variates, the canonical correlation, p(x, y), is one type
of generalized association measure. But this depends only on the largest
root of R. An alternative measure depending on all the roots is the root
mean square canonical correlation, ~(x, y) = (~)1/2, where ~ = (l/r) 
Cram~r (1946) has suggested using } as ~ measure of ~ssoci~tion ia categorical
d~t~. When the bivariate normal assumption is v~lid a more appropriate
me~s~e of association can be obtained from (4.6). At least ~pproximately,
the trace of R ~nd its largest root are related by

tr R = ~ ~
ko(1

This equation may be solved for ko by ~ simple iter~tive tec~ique. T~ke
Xo,o = 0 and

trR

continuing until the change in k0 is sufficiently smM1. Then pc
estimate of the correlation in the underlying population and is a measure
of the association in the two-way table. For categorical data tr R
(see Section 8), so that pc is ~ monotonic function of the chi square for inde-
pendence. The upper li~t of pc is Mw~ys one. From an application
of L’HSpitM’s rule,

(5.1) lim X,(1 --

which is the m~ximum value attainable by tr R. Pearson’s contingency
coefficient is a lower bound to pc ~nd its limiting v~lue as the number of
c~tegories in both directions becomes indefinitely l~rge. For X < 1, ~s r ~ ~,
X~ ~ 0, and

tr R(5.2) Xo~ 1 + trR - n + x~"

The often-mentioned inability of the contingency coefficient to re~ch the
proper maximum of oae is due to its ~symptotic character. For a k X 2
table, pc reduces to the phi-coefficient.
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Reliability

The concept of reliability as used in psychological test theory, is a
general term encompassing several specific types of reliability measures
(Cronbach, 1947). These distinctions will not be made here and we will
define a single reliability measure whose specific interpretation depends
upon the nature of the replications.

Given the multiple regression situation with a single criterion variable
and s predictors, the reliability is defined as the proportion of the estimation
variance that is not error. Let

1
v~, - t - s (SSx - SSB),

then the reliability is estimated by

(5.3) ¢_v.--v~_ 1 --1
v~ F ’

where F is the variance ratio. Expressed as a function of ~,

(5.4) ~ = 1 - t-E~s "

The quantity ~b estimates the correlation between the predicted values for
two replications of the x variable. Since ~ is ~ monotonic function of ~, any
sc~e constructed from the c~nonic~ approach has maximum reliability.

As an example of the use of these measures of ~ssociation gnd reliability
consider the ratings of l objects by m judges where there are k < m rating
categories. The judges are regarded ~s replications or parallel measurements
so that s = l -- 1 and n = ml. For arbitrary (not necessarily canonical)
scores a,

-’S S-~*~
X = a ~ ~ ~a ~’N~D~N~

a’S,~a

This expression m~y be simplified somewhat by noting that D~ = mI and
~ = (1/m)N~,~ ~e the object scale values, so that

~ = m ~’D,~"

Then p = ~*/~ is ~ measure of the efficiency of the discrimination and

is an index of scale reliability.
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The quantity

~bo -- 1 t-s ’

with Xo estimated from tr R, estimates what the reliability would be if
canonical scores were assigned to the categories.

6. GENERALIZED CANONICAL ANALYSIS

Intra-Class Correlation and Generalized Association

As a starting point for the extension of canonical correlation to m sets
of variates consider first the intra-class correlation r} between two measure-
ments x and y based on a paired sample of size n,

~, (x. -- M)(yo -- 
(6.1) r~ -- ½[~ (;. _ M)2 + ~ (y. _ M)2] 

1

A generalized measure of association can be developed from the intra-class
correlation of the deviation scores of x and y,

(6.2) rx(x, y)

The expression (6.2) will be referred to as the intra-class correlation between
x and y even though it differs somewhat from (6.1).

The modified intra-class correlation between m variates is

2

(6.3) rt(xl , x2 , ... , x,~) m(m - l) ~ SP (x, , xi± E SSx,
m

or the average sum of crossproducts over the average sum of squares. While
the intra-class correlation is a measure of the association between rn variates
it is not a generalization of the product moment correlation coefficient since
it does not reduce to the latter when m = 2. However, the maximum value of

ac SP (x, y)
r~(ax, cy) -- ½(a~ SSx -~ c~ SSy)

with respect to variation of a and c is the product moment correlation between
x and y, p(x, y). For an arbitrary set of weights a,,
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¯ ¯ " ~ amxm) --
2

m--1

1

I.~<~ a,al SP (x, , x;).1a~ SSz~

A generalized product moment correlation among m variates may be defined
as

(6.4) p(xl , x2 , "’" , x,~) max r, (alx~ , a2x2 , ."

Generalized Canonical Correlation

It is now possible to define the generalized canonical correlation for m
sets of variates as the maximum value of the generalized product moment
correlation for the m linear composites aSx~, i = 1, 2, .-. , m, with respect
to variation of the a~. Then

(6.5)
p(x, , x2 , xm) max r,(a;x~ , ’x ... a~x~)

l
~ m~x , 1 ¯

m 1-- a~S,a~

This is equivalent to m~ximizing the quantity

’~ , = (m-- 1)r~+ (6.6)

Let S be the sum of products m~trix for the m sets combined and let S~ be
a diagonal super-m~trix with elements S, . Horst’s term "super-matrix"
will be used to refer to a matrix whose elemeats are matrices. Let a’ =
[a; a~ ̄  .. ag] be the vector of combined weights, then

a’Sa

It follows that ~t the maximum ~ ~nd a satisfy

(6.7) (S~S - 7I)a = 0.

There is a single set of orthogonal canonical variates a~x, one for each root
of

In deMing with the problem of how best to weight m similar measure-
ments in the absence of a criterion, several authors (Horst, 1936; Edgerton
and Kolbe, 1936; Wilks, 1938a; Lord, 1958) from ~erent starting points
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have arrived at the same solution, namely, weighting each standaxdized
variable by its loading on the principal axis of the correlation matrix. These
are the generalized canonical weights for a single variable per set.

Alternative Generalizations

The extension of canonical correlation to more than two sets of variates
has been based upon the generalized association measure,

(6.8) r~ - -- -- -m-lE ,
i

In the above expression the z, are the cowri~nces of the wri~tes ~nd ~
the variance of their sum. This approach has the ~dvant~ge of solutions
which are the roots and vectors of ~ m~trix but it is not the oMy possible
generalization. For example, Horst (1961) suggests four generalized canonical
correlations, one of which is equivalent to m~ximizing r, . The other three
definitions require more complex computational procedures and will not be
~ven here. Still another generalization is possible from a realization of

E E
h

The maxi~zation problem for h h~s ~ solution ~ terms of roots and vectors
for the c~se of a single v~riute per set but not otherwise. This association
me~sure is closdy related to Loevinger’s coefficient of homogeneity discussed
in Section 7. From the inequMity

1

it follows that h ~ r,.

Identifying Matching Factors for Several Sets of Variates

The technique described ~nd illustrated in Section 2 for match~g
factors underlying two sets of v~ri~tes c~n be extended to severM sets of
v~riates (Horst, 1961). The m~trices of c~nonicM weights A~, i = 1, 2, -. ¯ , 
~rdnorm~lized to fulfill the conditions

(6.10) di~g (A~S,,A,) = 

Then the matrices

~re the correlations between the matching composite v~riates, a~x, where
i = 1, 2, .-. , m sets of vari~tes and g = 1, 2, ... , r matching groups of
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composites. For two sets of variates

Vll= I, V2, = I, V1, = Dp ,

so that the composites for a given set of variates are uncorrelated and the
composites are uncorrelated between sets except for matching pairs. For
more than two sets of variates the composites will, in general, be correlated
both within and between sets. The factors for more than two sets of variates
will then be oblique. The oblique factors for the ith set can be interpreted
from an examination of the oblique factor matrix (primary pattern),

(6.11) F, = S,,A,(A~S,,A,)-~.

When matching factors across several sets have been identified, it may
by hypothesized that there are common factors underlying all m sets which
account for this congruence. The sum of the matching composite variables
across sets gives an estimate of these underlying factors. If the original set
of combined weights are normalized so that A’SA -- I, then L = SA is an
orthogonal factor matrix of S, the SP matrix for all variables combined.
The factor variables are generalized canonical variates a~’x, g = 1, 2, -. ¯ , r.

Discrimination and Scaling

Since in generalized canonical analysis there are no within-group repli-
cations, the approach to scaling is not a generalization of scaling in canonical
analysis but certain analogous quantities may be defined by considering
the two-way table of m similar measurements on n individuals or experi-
mental units. Let x~. be the score of the ath individual on the ith variate.
Since the mean on each ;¢ariate is always zero, ~, -- ¯ = 0, and

SSB = the between-individuals sum of squares

= m

SSI = the interaction sum of squares

=

where

= ~SS,-SSB,

SST = SSB-{-SSI = ~(x,. - Z)2,

SS, = (x,. - e,)

Then the correlation ratio is

(6.12) 0 ~ SSB . SSB 1
=SST = ~SS,-- ~7"
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It follows that generalized canonical analysis maximizes the correlation
ratio and also the variance ratio

(6.13) F = (m - 1)(n - 1)SSB (m -- 1)3".
(n-- 1) SSI = m-3"

Thus, we have quantities that are analogous to the correlation ratio and
variance ratio in canonical analysis but are not generalizations of them.
For an arbitrary set of weights a, the individual scale values are u, = a’x o .
The canonical weights optimally discriminate in the sense of maximizing
the correlation ratio. If more than one scale component is extracted, the
most appropriate normalization is

(6.14)
, (SSBh 3"°

U~Uo = \SSI/~ - m- ~/~’

where Uo is the vector of individual scores on the gth canonical variate and
3’° is the gth root of S~IS. All the preceding results hold if each variate is
a linear composite of a set of variates and so apply to the general case of m
similar sets of variates.

Since ~ = ~ = 0, the interaction sum of squares reduces to

which is the within-individuals sum of squares. Therefore, the canonical
weights maximize the ratio of the between-individuals to the within-indi-
viduals sum of squares or the internal consistency of the measurements.
In this regard it will be helpful to distinguish between within-set weights
and between-set weights. Let the weights a for m sets of standardized variates
be represented by the following model

a~ = Biw~, w~S,wi = 1,

where #~ are the between-set weights and w~ are the within-set weights
and i = 1, 2, ¯ ¯ ¯ , m. For the B’s fixed and equal, the canonical weights w~
will maximize the average correlation between the m variates wfx~ . This
will tend to produce variates that are most nearly equivalent measurements
in the sense of uniform intercorrelation. For fixed values of the w~ the canonical
¢3’s tend to produce homogeneity by assigning small weights to the deviant
sets and effectively eliminating them. The canonical weights a represent
an equilibrium between these two tendencies.

Scoring Categorical Data-Scalogram Analysis

The canonical method of scoring two-way contingency tables may be
extended to m-way tables. There are m sets of pseudo-variates and the
sum of product matrices are
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1
S, = N, --nin~

n

where N, = D~ , i, j = 1, 2, ... , m. Both S and Sd are of rank ~/~, -- m
and lie within the subspaces whose idempotent Jd is a diagonal super-matrix
with elements J~ . The conditional inverse of Sd is

$7~1. --_ JdD-1J~,

where D is a (~ /~,) X (~ k,) diagonal matrix whose elements are 
marginal frequencies. The vector of canonical weights or scores a is the
principal vector of

(6.15) S~I*S = JdD-~N

and satisfies

(6.16) (J~D-1N - ~,I)a = 0.

Let Qe be a diagonal super-matrix with elements Q~ = I - ln~/n , then

(6.17) Q~a =

Premultiplying (6.16) by Q~ gives

(6.18) I( D-~N - l:n ln’)-~/I1~=0,

where n’ ~ [hi n~ ... n~’] and n’l = ran. The term --ln’/n has the effect
of subtracting out the largest root of D-~N, which is always unity.

An attitude item for which each individual must indicate his opinion
by making one of k mutually exclusive responses ranging from disagree
strongly to agree strongly, has been used by Likert (1932) for the con-
struction of attitude scales. The responses of n individuals on m items of
this type form an m-way contingency table. The canonical scoring of such
an m-way table was introduced by Guttman (1941) and is known in the
psychological and sociological literature as scalogram analysis.

The bivariate normal model for two-way tables can be generalized by
considering the joint distribution ](u, x~) of the scale values u and the scores
on the ith item, x~ , for a population of individuals. Assume that, given
the proper score assignments, the items are parallel measurements and that
](u, x~) is bivariate normal and identical for each of the m items. Then

(6.19) ](u, z~) = ](u, x~) ..... ](u, x,~)
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and

f(u, x) 1 ~]f(u, x,)
m ¯

is the same bivariate normal distribution where the set of values {x} is the
union of the sets {x~}. It follows that ](u, x) may be expanded in the form

(6.20) ](u, x) = I(u)](z) 1 -F,-1 ~ H,(u)H,(x) 

where Ho(u) and Ho(x) are Hermite polyno~als and 0 is the correlation in
the common distribution. The discrete frequency counterpart of ](u, x)
is the matrix Z~ ~th elements,

z~.,) = 1, if the ath indi~dual makes the rth
response to the ith item,

= 0, otherwise,

where

a = 1, 2, ¯ .. , n individuals,

r = 1, 2, ... ,/c~ categories in the ith item,

i = 1, 2, ..- , m items.

The matrix Z has dimensionality (~]~ ]~) X n and marginal frequencies
z a = m and z~ = n; where j is an index running over all values of
r(i). Estimates of the category locations on the latent variables u and 
may be obtained from a canonical scoring of the frequency matrix Z12 ̄
From (1.20), the scores for the item categories satisfy

But Dz, = mI, ZI~Z~I = N, zl = n, and z = mn, where N and n are as pre-
viously defined. On substitution,

which is identical to (6.18) with 0~ = 7/m. This result shows that any problem
in the canonical scoring of an m-way contingency table is eq~valent to the
scoring of a related two-way table.

The estimate of the item intercorrelations is the generalized product
moment correlation

~-- 1 mO~- 1
(6.22) p(x~ , x~ , ... x~) maxr~ = =’ m--1 m--1
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It seems worthwhile to repeat some remarks made in connection with
two-way tables. The largest root 02 will be only a small fraction of the trace
even when the model is completely valid. No intensity effect is implied by
the U-shaped character of the second component since this would be expected
from the quadratic nature of H2(x). In the discussion of two-way tables it
was pointed out that when the categories have a know order, marginal scores
supply a convenient approximation to canonical scores. The response cate-
gories of attitude items are ordered and marginal scores could be substituted
for the canonical within item scores. The between-item weights may be
canonically determined from the principal component of the item inter-
correlations. This "mixed" method of combining marginal within-item scores
and canonical between-item weights provides a good approximation to a
complete scalogram analysis.

Association and Reliability

Since the correlation ratio is 02 =- "~/m, a suitable measure of the efficiency
of the discrimination is

(6.23) 0 = (~)1/2.

Similarly, in a manner analogous to (5.3), we can take as the measure
of reliability

1
¢~=1-~(6.24)

with

(m

Then

(6.25)

Let

then

-- a’Sa = variance of the linear composite a’x,

2 1
n -- 1 a,S,a, = variance of the variate a,’.x,,

a~Sa s2
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and

(6.26) ~m - m-- 1 1 ----~, j = a.

The quantity ~bm is equivalent to coefficient alpha (Kuder and Richardson,
1937; Guttman, 1945; Cronbach, 1951) which has been used extensively
as a reliability measure in the area of psychological testing. It follows that
maximizing ~ is equivalent to maximizing alpha.

7. A CLASSIFICATION OF MEASUREMENT BASED ON
CATEGORICAL RESPONSES

Much of the data in the social and biological sciences is categorical in
nature. In this section the canonical scoring approach is related to other
methods of quantifying categorical data which have been developed in
the psychometric area. These methods are classified according to the context
or purpose, the type of response or form of the data and the method of
quantification.

A. Context

The context is determined by the nature of the variates and experimental
units. The indefinitely large number of measuring instruments and things
that may be measured has been dichotomized according to their human
or non-human character. For variates we have either items or judges and
for the experimental units either objects or subiects. The context determines
only the interpretation of the results. The two dichotomies determine four
types of context:

1. Items )< obiects--physical measurement,
2. Items X subjects--attitude measurement, mental testing, diag-

nostic testing, etc.,
3. Judges )< obiects--ratings of the attributes and performance

of things, preference measurement,
4. Judges )< subjects--ratings of the attributes and performance

of individuals.

B. Response

The nature of the response required determines the form of the data.
In each case there is a set of/~ categories ordered with respect to an under-
lying continuum. The labeling of the categories may differ, for example, a
single Likert item with k response categories, a set of/~ Thurstone attitude
statements and /~ problems graded in difficulty are analogous although the
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labeling of the response categories are considerably different. Although
canonical scoring will be possible in principle, the simpler marginal scoring
is usually more feasible. Position responses as opposed to order responses
correspond to Thurstone’s (1929) maximum probability and increasing
probability items. Responses are grouped into four types, accompanied by
typical instructions.

1. Single position response (Likert technique).
Instruction: Check the statement that best represents your opinion.

2. Fixed number of position responses (Modified Thurstone technique).
Instruction: Check the five statements that best represent your

opinion.

3. Any number of position responses (Thurstone technique).
Instruction: Check the statements that you agree with.

4. Order response (Method of constant stimuli, graded dichotomies).
Instruction: Check all stimuli that are less than x~ (x is rated higher

than or passes these categories).

While only response type B1 allows a direct application of canonical
scoring the other three may be handled by transforming or interpreting the
data as type B1. The data of response types B2 and B3 may be interpreted
as replicate observations. Canonical scores would then maximize the internal
consistency of the individual’s responses. There is some evidence that fixing
the number of statements to be endorsed produces better results than leaving
the individual free to endorse any number (Guilford, 1954) and we would
also expect better results from a canonical scoring since each individual
receives equal weight. In response type B3, the individuals are weighted
according to the number of statements they endorse.

Response type B4 is essentially the cumulative form of B1. The trans-
formation from B4 to B1 amounts to the determination of the limen or
threshold category. When the categories are numbered 1, 2, ... , lc, the
number of positive responses is an estimate of the limen category and placing
a one in this category and zeros elsewhere gives the corresponding B1 response.
Without replications canonical scoring is not possible but marginal scoring
is still appropriate.

Methods of Quantification

The methods of quantification are classified according to the way in
which scores are assigned to the response categories within a given set or
multiple choice item and the relative weight given to each item. Sometimes
prior weights and scores are used, chosen from considerations external to
the data. Prior weights are almost always equal and prior scores are often
the natural numbers 1, 2, ..- , /~. The alternatives are as follows.
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C. Within-set scores

1. Canonical
2. Marginal
3. Prior

D. Between-set weights

1. Canonical
2. Prior

Several common measurement techniques can be located within this
framework. For m-way tables there are six possibilities. For example:

1. Scalogram analysis; A2, B1, C1, D1. Both within-item scores and
item weights are optimally assigned but the order among the
categories is disregarded.

2. Likert scale; A2, B1, C2 or C3, D2. At first, Likert (1932) used mar-
ginal scoring but found that the natural numbers 1, 2, ... , k
gave satisfactory results.

3. Most reliable Likert scale, approximate scalogram; A2, B1, C2 or
C3, D1. Marginal item scoring is used but the items are weighted
for maximum reliability as measured by KR 21. (The actual
procedure in constructing a Likert scale is between (2) and (3)
since the accompanying item analysis amounts to the optimal
assignment of 0, 1 weights.)

4. Scoring response categories so as to maximize the average inter-
item correlation; A, B, C1, D2. Equal prior weights and canonical
scores is equivalent to maximizing the average inter-item corre-
lation. This requires extensive computation and apparently has
not been used. It is included here for completeness.

For two-way tables, only the case where one way of classification is
¯ ordered will be considered. There are then three ways of scoring these ordered
categories.

5. Canonical scoring of two-way contingency tables; A, B, C1.
This is the procedure discussed at length in Section 4.

6. Preference measurement from ratings in successive categories;
A3, B1, C2. The judges are regarded as replicate measurements
and marginal scores are assigned to the rating categories. (This
is not Thurstone’s solution.)

7. Method of constant stimuli; A2, B4, C2. An order response must
be made at all k levels. Often, as in bio-assay, a similar procedure
is used but each individual or experimental unit responds to
only one level. In this case, although the scale of measurement
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can be determined in the sense of assigning marginal scores to
the categories, the individuals or units cannot be located on
this scale.

8. Thurstone scale; A2, B2 or B3, C3. In Thurstone’s (1929) method
of attitude scale construction, the scores for the categories
(statements) are determined previous to the experiment from
the ratings of iudges.

9. A set of problems graded in difficulty; A2, B4, C3. The individual’s
score is the number of correct answers. This gives the location
of his limen category. The categories for the corresponding B1
response would have scores 1, 2, ¯ ¯ ¯ , k.

A set of/~ dichotomized variables, as problems in an achievement test,
may be classified in two different ways depending on whether they more
closely approximate the requirements of a set of parallel dichotomies or
a set of graded dichotomies. Parallel dichotomies are approximately equal
in difficulty with uniform intercorrelations. They are equivalent to /~ two-
category Likert items. The most appropriate measure of intercorrelation
between the k items is r,. A set of graded dichotomies has a definite order
with the proportion of positive responses or passes decreasing from left
to right, that is, p~ > p; when i < j. A set of/~ graded dichotomies is the
same as a type B4 or "order" response to a set of k categories. In this case,
an appropriate measure of association between the /~ items is Loevinger’s
coefficient of homogeneity, H, (Loevinger, 1947). Perfect association occurs
when each individual passes all items up to a point and then fails the remaining
items. Under these circumstances H, will be one but r, will not, since it
can attain the value of one only when pl = p~ ..... pk ¯

The homogeneity coefficient may be derived by considering the previously
introduced association measure

h = ~ I’(C - C~)I

where C = [~,]. The matrix Cd is the covari~nce matrix of a perfectly un-
correlated (heterogeneous) set of variables ~nd the matrix ~’ is the covariance
matrix of a perfectly correlated (homogeneous) set of continuous variables
with the same variances. When the variables are dichotomized the maximum
correlation between two items is dependent upon the p’s and is one only
when they are equal. But since we are dealing with graded dichotomies
the p’s will differ considerably. The covariance matrix for a set of perfectly
or maximally associated graded dichotomies with proportions io~ is

(7.1) V, = V~, = p~q~ ,
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where i < j and p~ > p; (see Guilford, 1954). Substituting V for 66’ in the
expression for h, we have

I’(C -- C~)I
(7.2) H, = I’(V C~)I

From the fact that p~q~ <_ a~a~ it follows that H, >_ h which gives the
double inequality

(7.3) H, >_ h >_ r~ .

The equality relations hold only when pl = P~ ..... P,. ̄

8. TESTS OF HYPOTHESES

To include both continuous and ps~udo-variates in the same formulation
let p = rank Sn , q = rank S~ , and t = n - 1. Hypotheses in canonical
analysis may be classified as tests of independence, partial independence,
or rank.

Independence

These tests evaluate the hypothesis that the population canonical
correlations are all zero. Some hypotheses of independence in the general
sense of canonical analysis are:

1. Independence of two sets of continuous variates,
2. Independence in contingency tables,

3. Non-significance of a discriminant function for k groups, or
equivalently,

4. Equality of mean vectors for /c groups (one-way analysis of
variance).

If at least one set has a multivariate normal distribution, then the
likelihood-ratio statistic

(8.1) A(p, q) = II 

is distributed as L(p, q, t), multivariate an alogue oftheF di stribution.
Even when there is considerable deviation from normality as in the case
of categorical data, the test will still be asymptotically valid. The moments
of this distribution were first obtained by Wilks (1932) and a series expansion
for the distribution by Box (1949). The first term of the series provides
u good approximation to the exact distribution (Bartlett, 1938). The quantity

-M log~ L(p, q, t)

is approximately chi square with pq degrees of freedom, where

M = t- ½(p+ q+ 1).
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The distribution theory for L(p, q, t) as well as its generalization is
discussed in some detail by Anderson (1958), using slightly different notation.
His U(p, q, no) = L(p, q, no ~ is notsymmetric in p andq.The fol lowing
identities will be useful for obtaining some exact F tests.

L(p, q, t) --- L(q, p, 

L’/"(2, q, t) = L(1, 2q, 2t - 2),

1 -- L(1, q,t) = q. F(q,t-- q).
L(1, q,t) t-- 

If either p or q = 1 or 2 an exact F test is possible.
As an example, take the case of a set of q measurements on each of two

groups and the hypothesis of no discrimination between the groups, or
equivalently, equality of mean vectors. Then p = rank $11 = k - 1 -- 1
and the R matrix has only one root. Then A = 1 -- h is distributed as L(1, q, t)
and

1 -- L ~ q F(q,t- q),

allowing an exact F test. This can be expressed in terms of the distance
between groups. Let

n

where

= - -
is a measure of the distance between groups, then

X n~n~ d~ = q F(q, t - q)
(8.2)

1 -)~ - u = n t- q

(ttotelling, 1931).

Partial Independence

Given three sets of variates x (p X 1), y (q X 1) ~nd z (r X 1), 
the combined SP matrix for x and y about their regression on z is

The partial canonical correlation m~trix of x ~nd y conditionM on z is

rr-~rr r~-~U

The ]~rgest root of R~= is the squ~red p~rtial canonical correlation of x
snd y conditional on z, p~ (x, y) [ z. The fol]o~ng ideatity may be established,
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(8.4) I -- Rx(y.,~ =- (I -- Rx~)(I - R~y,~).

Tests of partial independence evaluate the hypothesis that the population
partial canonical correlations are all zero. Some examples of hypotheses
of partial independence are:

1. A subset z of the variates (y, z) is sufficient to account for the
association with x or the discrimination between groups.

2. One or more hypothetical discriminant functions (coefficients
determined by considerations external to the data) account for
the discrimination between groups.

3. A subset of the variates (or groups) have equal canonical weights
(or mean vectors).

The likelihood-ratio test of partial independence is

(8.5)

distributed as L(p, q, t - r). The test will be exact when either x or y has
a multivariate normal distribution about its regression on z.

For example,

[I - Rx~,] = n(p, q, t -- r)

gives a test of the hypothesis that the subset z (r X 1) of (y, z) [(q + r) 
is sufficient to account for the association with x (p X 1). Hypotheses of the
sufficiency of one or more hypothetical discriminant functions are equivMent
to the above hypothesis. Consider the two sets of variates x (p X 1) and
v [(q + r) X 1] and the hypothesis that the hypothetical variates z (r X 
M~v account for the association or discrimination when x is a vector of
pseudo-variates. We can define a set of variates y (q X 1) -- M~v such that

is a nonsingular transformation, otherwise y is arbitrary. Then

and

ch

The test for sufficiency of the hypothetical variates z is then

distributed as L(p, q, t - r). For a single hypothetical discriminant function
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z = m’v and two groups, R~, and R,, are of unit rank with nonzero roots
and ¢(z), respectively. Then

1 - x(v)
1 - ¢(z)

is distributed as L(1, q, t - 1), 

~ - ~ - q .... F(q, t -- 1 -- q).1--)~ t-l--q

When expressed in terms of the distance functions d~2(v) and d~(z) this
becomes

(8.6)

where

d, 2(v) 
n

+- d 2(z)
n~n~

(Fisher, 1940). By taking

t-l-q
F(q,t- 1 - q),

Ira’(v, - v2)]2
d~(z) = m’Wm

IvIl
1 ’Vli

we obtain a test of the hypothesis that the variates in the set VII have equal
canonical weights.

Rank or Dimensionality

When the canonical variates are estimated from the data, a test of
sufficiency is equivalent to a test of the rank of the population counterpart
of R. Tests of rank evaluate the hypothesis that the first r significant estimated
canonical variates or discriminant functions are sufficient to account for
the association or discrimination between x (p X 1) and y (q >(1). Bartlett
(1941) has suggested that after the elimination of the association due 
the first r canonical variates, from the symmetry between the two sets of
variates, the residual determinant

(8.7) A(p -- r, q -- r) 

~ distributed approximately as L(p - r, q - r, t - r) in large samples.
This test of rank does not apply to categorical data under the bivariate

normal assumption since the residual population roots will not be zero
unless the largest root is zero. A test of goodness of fit for the bivariate
normal model based on the first component would be more ~ppropri~te.
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Largest Root and Trace Criteria

There are two other useful test criteria. If II - RI is distributed as
L(p, q, t) then kx , the largest root of R has the largest-root distribution.
The marginal distribution of the largest sample root has been determined
by Roy (1945) from the joint distribution of all the roots. Upper percentage
points of this distribution have been computed by Heck (1960). This criterion
is most appropriate as a test of the significance of a single canonical variate
or discriminant function since it will tend to have greatest power against
the alternative of unit rank, for a fixed value of the sum of the population
roots¯

Since all the roots of R lie within the range from zero to one, the expansion

1 2

will be valid with probability one for all roots, and

(S.8) --log, II-R[ = trR q- ½trR’ q- ~trR e q- ....

Under the null hypothesis, as n -* ~,

-nlog, II-Rl-~ntrR

which will be asymptotically chi square with pq df. Using the trace criterion
in the test of independence for a k X l contingency table,

n tr R = n tr (S~ S~S~ S~) = n tr (JD~N~D~XN:~)

_ D_I D_I ~. n~-ntr( ~ N12 ~ N21J) = - 1
~,~., . \n~ni(S.9)

n

is distributed as chi square with pq = (k -- 1)(l -- 1) dr. This is the familiar
chi-square test of independence in contengency tables (Williams, 1952).

Independence Ior Several Sets o] Variates

If there are m sets of variates x, , each set with a multivariate normal
distribution, then the hypothesis of the simultaneous independence of all
m sets of vanates~s equivalent to the hypothesis that all the generalized
canonical correlations,

p,(x~l, x~ , -.- , x~) ~/" -- 1
m--l’

are zero. The likelihood-ratio criterion
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i

is distributed as L(p, l) = L(pl , p~ , ... , p,~ , O, generalization ofL(p, q,
symmetric in all the p~ . The moments of the distribution of L(p, t) were
found by Wilks (1935) and a series expansion for the ~stribution by Box
(1949). The ~st term of the series provides a good approximation to the
exact distribution. Let p = ~ p~ ,

~) = ~-- ~p~),

M= 1 ,

then -M log, L~, t) is approximately chi squ~re with g(p) 

Partial Independence ]or Several Sets o] Variates

Let S,~ be the SP matr~ of the vector variate

x’ (1 X p) = [x~ x~ ... x~]

about its regression oa z (r X 1). Then the generalized partial cano~cal
correlation between ~he m sets x~ conditional on z is

(8.11) p(x, x~, ... x~ ~z) ~- 1, , m~l~

where ~ is the largest root of (S,~)~S~ . A test of purtiM independence
evaluates the hypothesis that z accounts for all of the association between
the m sets or that all the generalized partial canonical correlations ~re zero.
When x has a multivariate normal distribution about its regression on z,
under the n~l hypothesis

is distributed L(p, - r).

Hypothesis oI Rank in Common-Factor Analysis

The commo~-f~ctor ~nalysis model assumes there exists a set of r
variables f that account for the association between the observed variables
Let f be aa arbitrary set of l~tent wri~bles. With no loss of generality the
latent wri~bles f ~re required to be uncorrelated with unit variance. Then

S=,, = S(I- R:~) = S 

Letting S,. = L, then
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(8.12) S~I, = S - LL’.

Under the hypothesis of the independence of the observed variables x about
their regression on f,

is a diagonal matrix. It follows that if r latent variables are sufficient, then

(8.13) So = U + LL’.

If U and L are maximum-likelihood estimates under the model (8.13), then

(8.14) [S;’SI = IU-’(S- LL’)I =

is the likelihood-ratio test statistic for the hypothesis that r factors are
sufficient. Fdr large samples -n log, ~U-’(S - LL’)[ is distributed approxi-
mately as chi square with ~[(p -- r) 2 - p -- r] degrees of freedom (Lawley,
1940). The criterion is not distributed as L(1, 1, ... , 1, t - r) becauso
the regression variables f have been estimated from the data.

General Trace Criterion

All the tests we have considered may be regarded as hypotheses on
the structure of a covariance matrix, Ho: Z = Zo . The likdihood-ratio
criterion is in each case of the form

~nd from ~he theory for such tests (see Wilks, 1938b), i~ is known th~
--n Iog~ {S~’S~ is ~symptotica]]y chi squ~re with degrees of freedom, v, equal
to the number of independen~ parameters in ~ minus the number of inde-
penden~ p~rameters in ~o ¯ Under the null hypothes~s
S ~ (I/n)~o , so tha~ for su~ciently larg~ n the conditions 0 < ~ < 
will be vMid for ~ll roots of S~’~ with probability ~pproach}ng one. Under
these conditions the expansions

for ~ll ~ , and

(8.16) -log, ]Sj’S] = tr (I 

+ ~ tr (~ - S~’S)~ + ~ tr (~ - S~’~~ + ..-

will be v~lid. The ~st term vanishes for m~ximum-l[kelihood estimates

-n log, ~S~’S[ ~ ~ tr (I 

which ~l be asymptoticMly chi squar~ with ~ degrees of freedom.
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For a test of the independence of m sets of variates So = Sd and

(8.17) ~ tr (I - S~’S)2 = n ~ tr R,

is distributed as chi square with g(p) -- ~’.~<; p~p~ degrees of freedom,
where R, is the canonical correlation matrix between the ith and jth sets.
The separate chi-square tests of independence between two sets are pooled
to obtain the over-all criterion.

The determinantal criterion (8.14) for a test of the sufficiency of 
factors may be replaced by a trace criterion. Let E = S - LL’ be the matrix
of residuals after the removal of r factors. The likelihood-ratio criterion

--n log, IU-I(S - LL’)I

is approximately equal to

2
n

(8.18) ~tr [I -- U-I(S - LL’)] ~ = n ~ e,
i<i UlUf

which is asymptotically chi square with ½[(p - r) ~ - p - r] degrees of
freedom.

APPENDIX A

Canonical Factor Analysis of Intercorrelations Between
Personality Characteristics and Occupational Preference

To investigate the importance of personality characteristics in the
determination of occupational preference, K. J. Jones (1965) administered
the Guilford-Zimmerman Temperament Survey and an occupational pref-
erence inventory based on Roe’s occupational categories to a small group
of high school students. Canonical factor analysis was applied to Jone’s
data to provide an example of this method. To reduce the amount of compu-
tation, only four of the eight Roe categories were used:

1) business contact,
2) technology,
3) outdoor,
4) general cultural.

For the same reason, only five of the ten G-Z scales were included:

5) social,
6) emotional stability,
7) obiectivity,
8) thoughtfulness,
9) personal relations.
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Four occupational factors were in this way paired with four personality
factors.

TABLE A1
Matrix of Intercorrelations

1 2 3 4 5 6 7 8 9

1 1.00 .00 --.14 .09 .08 .03 --.10 --.16 --.15
2 .00 1.00 .43 --.37 --.19 .09 .05 --.17 .01
3 --.14 .43 1.00 --.15 --.22 .18 .12 .08 .15
4 .09 --.37 --.15 1.00 --.08 --.09 --.22 .06 --.30

5 .08 --.19 --.22 --.08 1.00 .24 .22 --.36 .22
6 .03 .09 .18 --.09 .24 1.00 .71 .13 .57
7 --.10 .05 .12 --.22 .22 .71 1.00 .12 .53
8 --.16 --.17 .08 .06 --.36 .13 .12 1.00 --.20
9 --.15 .01 .15 --.30 .22 .57 .53 --.20 1.00

TABLE A2
Canonical Weights

A C

I II III IV I II III

1 .46 .08 --.30 .83 5 --.41 .92 --.28
2 .82 --.42 --.35 --.70 6 .92 --.37 .43
3 --.32 --.65 .56 .70 7 --.30 --.29 --.63
4 .73 .30 .68 --.32 8 --.78 .42 .78

9 --1.02 --.30 --.05
.56 .38 .22 .16

TABLE A3
Factor Matrices

L K

.43

.96
-- .72

.31
.24

I II III IV I II III

.54

.48

.01

.49

.19 --.34 .71 5 --.20
--.78 --.30 --.31 6 --.07
--.83 .48 .27 7 --.37

.55 .68 --.08 8 --.35
9 --.58

.55
-- .48
-- .46

.06
--.55

--.60
-- .01
--.32

.87
-- .36

.45

.74

.23

.14

.44
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APPENDIX B

Discriminant Analysis Applied to Ratings of Morris’s "Ways to Live"

During a world tour Morris asked six groups of college students to
indicate their preferences for thirteen "ways to live." The six student groups
participating were: U. S. (white), U. S. (negro), India, Japan, China (pre-
communist), and Norway. The list of "ways to live" is as follows.

1. Refinement, moderation, restraint; preservation of the best attain-
ments of man.

2. Self-sufficiency, understanding of self; avoidance of outward activity.
3. Sympathy, concern for others; restraint of one’s self-assertiveness.
4. Abandonment, sensuous enjoyment of life; solitude and sociality

both are necessary.
5. Energetic, cooperative action for the purpose of group achievement

and enjoyment.
6. Activity; constant striving for improved techniques to control

nature and society.
7. Flexibility, diversity within self; accept something from all other

paths of life.
8. Carefree, relaxed, secure enjoyment.
9. Quiet receptivity to nature yields a rich self.

10. Dignity, self-control; but no retreat from the world.
11. Give up the world and develop the inner self.
12. Outward, energetic activity; use of the body’s energy.
13. Let oneself be used; remain close to persons and to nature.

Discriminant analysis was applied to Morris’s data by L. V. Jones
and R. D. Bock (1960) and their results are summarized in Tables B1 through
B5. One "way" was omitted from the analysis because of an error in trans-
lation into Chinese.



TABLE B1
Between-Groups Crossproducts Matrix, B

Way 1 2 3 4 5 6 7 8 9 10 11 12

1 28.22
2 -3.37 71.27
3 1.79 56.22 67.73
4 1.58 -1.53 -15.02 9.82
5 .64 -13.91 6.15 -6.16
6 16.86 -8.80 8.97 -4.51
7 29.65 -37.12 -34.28 5.38
8 11.61 -25.37 -18.14 -1.22
9 -4.56 70.91 48.38 4.36

10 42.34 27.88 32.72 2.58
11 9.41 61.02 46.78 2.41
12 7.36 -5.03 6.42 -6.09

51.58
23.59 25.70

-14.46 7.89 59.14
-3.34 3.54 29.42

-22.83 -10.43 -37.40
8.95 32.87 18.73
3.73 .95 -23.26

.38 7.82 8.86

17.72
-29.13 79.48

--.78 29.96 89.92
-18.89 55.73 44.31 69.60

6.23 -7.47 8.36 -6.44 7.55



TABLE B2
WiLhin-Groups Crossproducts Matrix, W

Way 1 2 3 4 5 6 7 8 9 10 11 12

1 637.11
2 113.30 743.69
3 175.56 61.89 688.05
4 -4.72 107.79 -49.93 824.85
5 20.32 -178.91 109.77 42.08
6 .44 -29.12 30.60 3.65
7 .56 44.47 -18.34 142.24
8 50.71 32.93 7.43 214.72
9 55.40 185.50 94.19 62.86

10 153.84 122.69 133.30 -115.66
11 38.54 236.74 79.96 17.55
12 4.70 12.21 73.61 44.34

830.32
195.16 638.44

-22.61 7.89 786.57
11.31 -20.52 131.96

-77.43 -77.79 67.27
17.19 91.17 1.90

-109.75 -29.65 67.92
169.21 197.63 -48.04

927.45
110.58 608.76

-89.30 37.13 849.38
36.56 182.66 125.13 690.77
9.98 10.40 63.90 -6.85 797.38
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TABLE B3
Discriminant Function Weights, A

Way al as a3 a4

1 .013139 .013618 --.002754 .003038
2 --.014712 --.004098 .000487 --.006875
3 --.015051 --.000774 .001093 --.028165
4 --.001095 .003030 --.003466 .016797
5 --.004946 .001029 .027915 .008204
6 --.000457 .011249 .005901 --.004736
7 .016187 .008244 --.008534 --.005995
8 .007683 .000912 .002130 --.009582
9 --.018562 .003452 --.017691 .011624

10 .001343 .023713 --.002583 .003899
11 --.008339 .010496 .012308 .010210
12 .005681 --.001607 --.007641 --.011609

TABLE B4
Group Mean Scores on Canonical Variates

Canonical Variate
Group 1 2 3 4

1 U.S.w .5669 3.8803 .3521 --1.3281
2 U.S.n .6105 4.4896 .7844 -1.5961
3 India --.3245 4.8085 .6591 -1.7434
4 Japan --1.0336 4.1608 .6359 --1.2574
5 China -.2183 3.6052 1.0256 --1.8301
6 Norway -.3537 4.0315 .0750 --1.9074

Variance .3243 .1553 .0927 .0598

TABLE B5
Intergroup Distances

Group U.S.w U.S.n India Japan China Norway

U.S.n .6319
India 1.9229 1.0133
Japan 2.7258 2.9479 1.1591
China 1. 3978 1. 5820 1. 6010
Norway 1.2827 1.7397 .9727

1.4533
1.2161 1.1097
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APPENDIX C

Canonical Scoring o] Ratings o] Social Class Membership by Nationality

In his study of the social structure of "Elmtown," Hollingshead (1949)
asked a group of raters to classify families into groups according to prestige
in the community. Table C1 is a classification of the adolescents of the

community according to their families’ social class and nationality. A group
labeled "American" has been omitted. The scores assigned to the class
categories should conform to the assumed order of the class structure. The

optimum scoring compatible with this constraint assigned the same value
to the first two social classes. This indicates that in this case a distinction
between the first two social classes does not contribute to the discrimination.
The same results would be obtained by combining classes 1 and 2 and ignoring
the order constraint.

TABLE C1
Frequency of Class Membership by Nationality

Social Class

Nationality 1 2 3 4 Total

Norwegian 4 46 68 35 153 .43
Irish 2 30 50 20 102 .58
German 2 16 40 21 79 -. 20
Polish 0 0 13 20 33 - 3.25

Total 8 92 171 96 367

~ 4.59 4.59 .54 -5.72 p -~ .28
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