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PREFACE

Prediction problems frequently arise in which the regression weights
must be based on a relatively small number of criterion observations. In such
cases, current techniques permit the utilization of only a very few predictors,
even though many more may be available. Unless one or more of the pre-
dictors is closely related to the criterion, accurate predictions cannot be made.
The possibility of increasing the accuracy of prediction under such circum-
stances through the use of reduced-rank methods is investigated in this study.

On the basis of normal regression theory, a general reduced-rank model
is formulated in terms of prediction from factor scores. The problems of
selecting a method of factoring, of selecting an optimal subset of prespecified
size from among a given set of factors, and of selecting an optimal rank are
considered. It is shown that in the absence of criterion observations, the
optimally chosen reduced-rank solution will be the one that accounts for the
greatest proportion of variance in the full-rank predictor matrix. Prediction
either from subsets of the original predictors, which are equivalent to tri-
angular factors, or from principal-axes factors is considered. It is concluded
that, when degrees of freedom are sufficiently limited, the most accurate
predictions obtainable will be those based on the largest principal-axes factors.
As a tentative solution to the problem of optimal rank, estimates are derived
which are intended to indicate the accuracy of prediction to be expected
when regression weights computed on the basis of data in one sample are
applied to data in other samples.

An empirical comparison of five reduced-rank methods is carried out,
employing a variety of ranks, sample sizes, and criteria. The five methods
include prediction from the principal-axes factors, selected in three different
ways, and from the original predictors, selected in two different ways. The
results indicate that weights computed by the method of largest principal-
axes factors on samples with as few as 30 cases can give predictions as accurate
as those from weights computed by conventional techniques on samples of
several hundred cases.

The present monograph was submitted as a doctoral dissertation at the
University of Washington in July 1962. The writer wishes to thank his
sponsor, Professor Paul Horst, for the invaluable blend of criticism and
encouragement that he provided. The work for the present monograph was
largely supported by Office of Naval Research Contract Nonr. 477(33) and
Public Health Research Grant M-743(C7) (principal investigator: Paul
Horst). Acknowledgment is due Mrs. Judy Goodstein and Mrs. Helen Ranck
for their work in typing and proofreading the manuscript.

GEORGE R. BURKET
Pittsburgh, Pennsylvania
October, 1963
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CHAPTER

INTRODUCTION

Basic Requirements

Accurate predictions of an individual’s degree of success or failure in
such socially significant activities as a college course, training for some voca-
tion, or a particular lob would be of incalculable utility, both to the individual
concerned and to the community. Remarkably accurate predictions of this
nature can be obtained with existing statistical techniques, provided that two
basic requirements are satisfied. First, there must be measurements available
on a number of variables related to performance in the activity of interest.
It must be possible to obtain these measurements on any individual before
he engages in the activity. Second, such measurements must be obtained for
a large number of persons who subsequently engage in the activity.

The first requirement can almost always be met. Indeed, it is usually
possible to find many variables having at least some relation to performance
in the criterion activity. To obtain measurements on a large number of
variables may be expensive, but accurate predictions of many activities are
of sufficient value to warrant large expenditures. The second requirement is
much less likely to be satisfied, since the number of persons who actually
engage in a particular activity is often limited. This is particularly true for
activities requiring an unusual degree of ability, where accurate predictions
are apt to be most desired. Many socially significant activities are full-time
occupations which individuals must pursue for years before their success or
failure can be determined. If the number of persons engaging in such an
activity is too small to permit application of existing techniques, no feasible
expenditure will yield accurate predictions. We need new techniques.

The Statistical Model

A system for obtaining the best possible predictions for a given criterion
would be the following. First, determine all variables, termed predictors, not
statistically independent of the criterion. Then obtain measurements of pre-
dictors and criterion on a sufficiently large validation sample so that every pos-
sible configuration of predictor values is represented by a large number of
cases. Compute the criterion mean for each of these configurations. To make a
prediction for a particular case, determine the configuration of the predictors
for that case. The prediction will be the criterion mean for cases in the valida-
tion sample having that configuration.

1
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Such a system is unworkable because of practical limitations on sample
size and number of predictors. Under certain circumstances, moreover, a
much simpler system could give equally accurate predictions. If, for example,
the criterion means were known to be functionally related to the predictors,
it would only be necessary to determine this function. In practice, such a
functional relation is virtually always assumed. It may also happen that a
small subset of all variables statistically related to the criterion will give pre-
dictions as accurate as the entire set. Even where a very large number of
independent predictors is readily available, the number that may actually be
used is limited by the available sample size. This is because it is necessary
to have many more cases than tl~ere are parameters in the assumed functional
relation between predictors and criterion mean. Otherwise one could not
obtain stable estimates of these parameters.

In least-squares or regression theory and also in correlation theory, the
mean of the criterion is assumed to be a linear function of the predictors. In
correlation theory, predictors and criterion are assumed to be random vari-
ables having a joint multivariate normal distribution. In regression theory,
the criterion is assumed to be a normally distributed random variable, while
the predictors are thought of as being fixed. Anderson (1958, p. 61) recom-
mends using one model or the other depending on whether or not the predictors
may be considered random. Mood (1950, p. 312) states that, in practice, most
correlation problems can be more appropriately handled by regression meth-
ods. In many cases, the two models have led to equivalent procedures; under
the null hypothesis, estimates of regression weights, test criteria, and prob-
ability theory are all the same. However, when the null hypothesis (viz., that
predictors and criterion are independent) is not true, the probability theory
differs.

In prediction problems in psychology, the predictor variables are generally
random rather than fixed, and the null hypothesis is rarely true. Thus cor-
relation theory would appear to be more appropriate. However, since correla-
tion theory is considerably more complex and difficult to apply than regression
theory, the latter is generally used, with the hope that the practical differences
between conclusions drawn from the two models will be negligible. In the
present study, prediction problems will for the most part be considered within
the context of regression theory.

It may prove useful at this point to make the distinction between actual
prediction problems and validation problems. In validation problems, the
goal is to demonstrate a systematic relationship between a number of "inde-
pendent variables" and a "dependent variable." To accomplish this, one
formulates the null hypothesis of no relationship and hopes to reject it at
some level of confidence. Thus, for validation problems, correlation theory
and regression theory are equivalent. In prediction problems, on the other
hand, the null hypothesis is assumed to be false. The goal is to obtain a
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regression equation which, when applied to predictor measures in future
samples, will give the most accurate estimate possible of the corresponding
criterion values. Having obtained such a regression equation, one would also
wish to have estimates or confidence intervals indicating the accuracy to be
expected when the regression equation is applied to new samples. In valida-
tion problems, the multiple correlation is often used as a measure of relation-
ship between the dependent and independent variables. It is sometimes
termed a validity coefficient, or simply a validity. In prediction problems,
the correlation between the prediction and the criterion in new samples may
be used as a measure of accuracy of prediction. Such a coefficient may be
termed a weight-validity to distinguish it from the multiple correlation
coefficient between the prediction battery and the criterion in the original
sample.

Purpose o] the Study

The present study is concerned with prediction problems as opposed to
validation problems. Regression theory in its current form is adequate for
those applications in which the available number of cases far exceeds the
available number of predictors, i.e., in which the number of degrees of free-
dom is large. In such cases, weight-validity will be very close to battery
validity, and the least-squares estimates of the regression weights will provide
optimal predictions. But when the number of predictors available is relatively
large in relation to sample size, as is perhaps more often than not the case,
problems arise that lack satisfactory theoretical answers. One such problem
is that of estimating an index, such as weight-validity, that will provide some
idea of the accuracy of prediction to be expected in new samples. A more
important problem is that of determining the regression weights which will
give the most accurate predictions possible in new samples.

These optimal weights will not in general be given by the conventional
least-squares solution applied to all available predictors. For example, if
the number of predictors is the same as the number of cases in the sample, the
least-squares weights for an arbitrary subset of predictors will usually give
better weight-validity (though lower validity) than the weights for the entire
set. More generally, in such an extreme case, any lower-rank approximation
to the matrix of predictor values would give better predictions than the
complete matrix. As the situation becomes less and less extreme, there must
come a point where some ranks and some methods of rank reduction and not
others are preferable to the complete matrix. At a still less extreme point, the
entire set of predictors will presumably give better predictions than any
reduced-rank approximation. Still, when predictors are discarded, the loss of
accuracy of prediction may be so slight as to be more than offset by the prac-
tical savings of not having to measure as many predictors.

Thus in any prediction problem where the number of degrees of freedom
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is limited, the question of rank reduction arises: can the complete predictor
matrix be improved upon, and if so, which method of reduction and which
rank will give the greatest improvement? When its purpose is to give more
accurate prediction by increasing degrees of freedom, the much-studied
predictor selection problem is a special case of the rank-reduction problem.
Predictor selection methods are more often used, however, in situations where
an upper limit on the size of the prediction battery is given by considerations
of cost. The emphasis is thus on obtaining an optimal set of predictors of a
particular size rather than on obtaining optimal predictions regardless of
battery size. Perhaps because of the prevalence of the former emphasis,
particularly before the advent of electronic computers, the problem of pre-
dictor selection has received a great deal more attention than the general
problem of rank reduction.

Most methods of predictor selection are alike in selecting first the variable
having the highest single validity, and adding, step by step, the variable
which, together with those previously selected, will give the greatest increase
in the multiple correlation with the criterion. These so-called accretion
methods differ with respect to computational procedure and method of
deciding how many predictors to use. Perhaps the computationally simplest
such method is the square-root .(or triangular-factoring) method described
by Summerfield and Lubin (1951). Horst has generalized and extended this
method for absolute (1955) and differential (1954) prediction of multiple
criteria. Horst and MacEwan (1960) have described a method which 
essentially the reverse of the accretion method. Here one eliminates at each
step the predictor contributing least to the multiple correlation. The accre-
tion and elimination methods will not in general result in the same battery,
nor will either of them necessarily give the battery of given size having the
highest obtainable validity.

Horst (1941) has suggested two models for reduced-rank prediction. His
rationale is based upon the factor analysis hypothesis that the predictor matrix
is basic only because of the presence of error or specific factors. One of these
models assumes the presence of specifics. Accordingly, the matrix of predictor
intercorrelations is augmented by the vector of criterion correlations and com-
munality estimates are placed in the diagonal prior to factoring. Least-squares
weights are then computed for the common factors. This method was tested
by Leiman (1951) using 12 predictors and computing weights on samples 
30 cases. A rank-3 solution gave weight-validities which were significantly
higher than those obtained with the full-rank solution. This method has the
disadvantage of being difficult to treat theoretically, since the nature of
communalities and of the factor scores (which are not unique) are not well
understood. The other model suggested by Horst accomplishes rank reduction
by attempting to remove error factors rather than specific factors. Here the
best least-squares approximation to the predictor intercorrelation matrix is
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used, the principal-axes solution. One advantage of this method is that it is
theoretically straightforward. Another advantage is that rank reduction is
accomplished independently of the criterion and thus does not capitalize
on the errors in the criterion.

Virtually the exact opposite of this model has been implicitly suggested
by Guttman (1958). Since the inverse of the predictor correlation matrix 
directly involved in computing regression weights, one might well base pre-
dictions on the best lower-rank approximation to the inverse rather than on
the approximation to the intercorrelation matrix. The best set of factors for
approximating the inverse is, as Guttman points out, the worst for approxi-
mating the intercorrelation matrix. In view of this paradox, perhaps one
should abandon approximation as a criterion for selecting the factors to
be retained for prediction and simply use those factors giving the highest
multiple correlation, as is attempted in the predictor-selection methods.
Certainly the basic assumption of the rationale for approximating the inter-
correlation matrix may be questioned: that the reliable variance is concen-
trated in the larger princpal-axes factors, the smaller factors being composed
mainly of error. For example, in a study by Davis (1945) involving nine
principal-axes factors, a strict correspondence between variance contribu-
tion and reliability was not found; e.g., the split-half reliability for the eighth
factor was larger than for the fourth factor.

The present study proceeds along both theoretical and empirical lines.
First an attempt is made to work out some of the consequences of regression
theory for reduced-rank models. Since, as noted above, there is reason to
question the appropriateness of regression theory for psychological predic-
tion problems, an empirical comparison of five reduced-rank procedures is
also carried out. The methods used were predictor elimination, predictor
selection, the method of approximating the intercorrelation matrix, the
method of approximating the inverse, and the method using the principal-axes
factors giving the highest multiple correlation. As will be seen, both the
theoretical and the empirical evidence favors the method of approximating
~he intercorrelation matrix.



CHAPTER 2

IMPLICATIONS OF REGRESSION THEORY FOR
REDUCED RANK MODELS

The General Linear Hypothesis

Regression theory was first worked out at the beginning of the 19th
century by Gauss and Legendre and has since, of course, been presented by
innumerable authors from various .points of view. Among recent sources, a
rigorous presentation with geometrical interpretations has been given by
Scheff~ (1959). A simpler presentation entirely in terms of matrix algebra
is given by Kempthorne (1952). Anderson (1958) provides a generalization
to multiple criteria. A presentation in terms of deviation scores may be found
in Cramdr (1946). Some results from regression theory which are relevant 
the rank-reduction problem are summarized below. The derivations, which
are for the most part omitted, may be found in the sources mentioned above.
Let

y be a column vector of N observations on the criterion;
x be an N × M matrix of rank M < N, each row of which represents

an observation on each of M predictors;

e be an Nth-order column vector of uncorrelated errors, each dis-
tributed normally with mean zero and variance a2.,

fl be an M X 1 vector of population regression coefficients;
C be a covariance matrix of the variable given in the subscript.

The general linear hypothesis is that

(1) y = xf~ -t- e.

.The assumptions regarding e, apart from normality, may be stated as

(2) E(e) = 

(3) C, = E(ee’) = a2I.

From these equations it follows that the criterion has the expectation

(4) E(y) = x~,

and the covariance matrix

(5) C~

6
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Let

be the M X 1 vector of least-squares estimates of the, population
regression coefficients;
be the N X 1 vector of estimates of the criterion based on #.

Then

(6) ~ = (x’x)-lx’y,

and

(7) 77 = x~.
The vector ~ has the property of minimizing the sum of squares of the errors
in estimating y from ?7. These errors will be orthogonal to the predictors and
also to the estimates themselves. The error sum of squares has the expectation

(s)
Thus

(9)

EE(y - ?7)’(y ?7)] = ( N - M2.

~ = (Y - ?7)’(Y - ?7)
N-M

provides an unbiased estimate of ~. What is generally termed She standard
error of estimate is given by d. The variable d2 is distributed independently
of 8.

The estimates of the regression coefficients have the expectation

(10) E(~) ~,

and the covariance matrix

(11) C~ = E[(~ -- fl)(~ -- fl)’] o=(x’x)-~.

The estimates of the criterion have the same expectation as the criterion
itself,

(12) E(?7) E(x~) = x E(~) = 

but are not independent, since from (7), (11), and (12),

(13) ¢~ = E[(x~ - x~)(x~ - x~)’] xC~z’ = ,~x(x’x)-~z’.
The canonical form of the general linear hypothesis may be obtained

as follows. Let x be expressed as

(14) x = ub’,

where u is an N X M orthonormal matrix of factor scores, and b is an M X M
matrix of factor loadings. Let V be an N by N -- M orthonormal matrix
such that the N X N matrix H in

(15) H = [u v]
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is an orthonormal matrix. The matrices u, b, and v are always obtainable,
and can be determined solely from the predictors without reference to the
criterion. Then the Nth-order vector of transformed criterion values

(16) z = -~ HPy =
Lv

has the expectation

(17)
E(z):IE(Zl)l~.Ib:l, ~E(z2)J

and the covariance matrix

(18) C, = ~2I.

Thus the best possible predictions for the N - M transformed observations
z2 will always be zero, regardless of the true regression coefficients or of the
particular values of the criterion. The least-squares estimates of the regression
weights are so chosen as to reproduce exactly the M transformed observations
zl from

(19) z, = u’y = b’3,

so that

(20) ~ = b’-lury.

Equation (20) may also be obtained by putting (14) in (6). Thus, errors 
occur only in estimating z2, and since the estimated value of z~ is zero, we have

(21) (y - ?~)’(y - ~) z~z~.

Metric and the Status o] the Mulgple Correlation

In regression theory, the multiple correlation coefficien~ an4 other func-
tions of the predictors such as means, standard deviations, and covariances
d0 not have the status of population parameters. TMs is because the predictors
are not ass~ed to be random variables but rather ~ed values. Thus, regres-
sion theow does not admit of statistical i~erences about such functions.
However, one can make s~atistical Merences about such characteristics of
furze samples as depend on the criterion, prodded that the relevant feat~es
of the predictor matrN ~ the fugue samples are assumed to be ~o~ in
advance. For example, one can ass~e that exactly the same pre~ctor matr~
~ be obta~ed ~ future samples or merely that the predictor intercorrela-
tions ~1 be the same. Us~g the latter ass~ption and sca~g the criterion
appropriately, one can define both a sample and a population multiple cor-
relation coefficient.
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Except where correlations are concerned, no assumptions about metric
are made in the present paper. However, it should be noted that if the equa-
tions of the preceding section were to be applied to data in the original units
of observation, a correction for origin would be required. This correction will
be accomplished if a predictor is added which is defined to be unity for all
cases. If this is done, equation (6) of the preceding section may be shown 
be identical to the usual formulas for raw-score regression weights, which
are typically expressed in terms of means and covariances or correlations and
standard deviations.

The question of metric also arises in connection with defining multiple
correlation. The assumption made here whenever correlation coefficients are
discussed is that all measures are normalized, i.e., expressed as deviations
from the sample mean in units of the sample standard deviation multiplied
by the square root of the number of cases in the sample. We may now define
the square of the multiple correlation in the sample as

(22) R2 = ~’x’x~ = y’x(x’x)-lx’y

and in the population as

(23) p2 = ~’x’x~.

If we let r be the M X M matrix of predictor intercorrelations, (23) may be..
written as

2(24) p = /~’r~,

since, on the basis of the assumption about the metric,

(25) r = x’x.

Thus p will be a population parameter if it is assumed that the predictor
intercorrelations will be the same in all samples.

An unbiased estimate for p may be obtained as follows. The expectation
of the criterion sum of squares is, from (1),

E ’(26) (y y) = E[(x[~ + e)’(x~ e)]= ~’x’ z~ + 2~’x ’E(e) + E(e’

From (23), the first term on the right is p2 and from (2) the second term 
zero. The third term is the trace of (3). Thus

(27) E(y’y) = p~ + ~.

Since the errors of estimate are orthogonal to the estimates, we have

(28) Y’Y = 9’~ ~- (Y - 9)’(Y - 

From (7) and (22), the first term on the right ~. Thusfrom (8) a nd (27),

(29) E(R~) = E(y’y) -- E[(y - ~t)’(y ~)]

= p~+N~~- (N- M)~ ~ = p~+M(~~.
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Given the assumed metric, the criterion sum of squares will always be unity,
so from (27),

2

(30) z2 _ 1 -- p
N

and (29) may be written 

M(1 -- p2).(31) E(R~) = P~ ~ 

From (31) it is clear that the extent to which ~ overestimates p~ will v ary
directly with the number of predictors and inversely with the sample size.
Solving equation (31) for p~ we obtain the following unbiased estimate for

NR~ - M
(32) C=N_M

Equation (32) will be recognized as the familiar "shrinkage" formula for
multiple R.

It is perhaps worth noting that Re, or "shrunken R" is not an estimate
of weight-validity or of the shrinkage to be expected in the correlation be-
tween the criterion and its estimate if weights computed on one sample are
applied in other samples. It does provide an estimate of the correlation that
would have been obtained between the criterion and its estimate if the popula-
tion regression weights had been used instead of their least-squares estimates.
Shrunken R may also be thought of as an estimate of the multiple R that could
be obtained in a very large sample having the same predictor intercorrelation
matrix as the observed sample.

The Accuracy o] Prediction in Future Samples

In prediction problems we wish to compute a set of weights from a given
sample which will give the most accurate predictions obtainable when applied
to other samples. Specifically, we will assume that the sum of squares of the
errors of prediction in each other sample is the quantity to be minimized.
If we let /~ be a set of weights obtained in some fashion from a previous
sample, this sum of squares may be written (Kempthorne, 1952) 

(33) (y -- x~’(y -- x~’) = (y -- x~)’(y 

+ e’x(x’x)-lx’e + 2~ - ~-)’x’e + (8 - ~-)’~’x~ ~)

The expected value is

(34) E[(y -- x~’(y -- x~-)] = ~ + (f l -- fl- )’x’x(~ -- fl’

Now the second term on the right has an expectation in the sample from
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which t~ was obtained. Assuming that the usual least-squares estimates are
employed, we have, using equation (11),

(35) E[~ -- ~)’x’x(f~ -- ~)] -- tr

= tr (xC~x’) = 2 t r [ x(x’x)-lx’].

Using (14), we may write the matrix whose trace we require 

(36) x(x’x)-lx ’ = ub’(bb’)-~bu’ = ub’b’-lb-lbu’ = uu’.

Putting (36) in (35), we may write

(37) E[(~ ~)’x’x(~ -- ~)]

Now if we assume that x’x, or equivalently the factor-loading-matrix b, is
the same in all samples, we would expect the sum of squares of errors of pre-
diction to be (N ~- M)~. More generally, if ~ is any estimate of f~ computed
from the original sample, we would expect the sum of squares of errors of
prediction in future samples, provided that the factor-loading matrix is the
same as in the original sample, to be

(38) ~k~ = N(~ ~- E[~ - fl")’x’x(fl - ~’-)].

Thus ¢~ will be taken as an inverse index of weight-efficiency: the smaller
it is, the more suitable ~ will be for a prediction problem. In particular,

(39) 6~ = (N + M)¢2.

Since the interpretation of (38) is basic to the following development, 
will examine its derivation with some care. Certainly 6~ is not a mathe-
matical expectation in the usual sense, but rather an expectation of an expecta-
tion. Since N, a2, 8, and (by assumption) x’x are fixed, the expectation in
(34) is a function of ~, and is thus fixed as soon as the original sample 
drawn. Since this quantity is a function of the criterion in the original sample,
its expectation in this sample is $~. The quantity that we are directly con-
cerned with minimizing is the one in (34). This quantity is itself not deter-
mined in advance of drawing the first sample, but its expectation is deter-
mined. Rather than minimize the quantity of direct interest, then, we attempt
to minimize its expectation.

An estimate of weight-validity may be obtained from (39). Assuming
the metric of the previous section, and using (9) and (22),

(40) ~2 y’y -- ~’~ _ 1 -- R~
= N--M,-N--M"

Thus, an unbiased estimate for ~b~ is, from (39)

N+M(I_R~).(41) ¢~ - N -- M
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For an arbitrary set of weights t~, the weight-validity is

y’x~
(42) W = %/~’z’x~"

The sum of squares of errors of prediction is

(43) S = (y - zfl")’(y - x~-) = 1 - 2y’z~ -k ~’z’z~.

If (42) is substituted in (43),

(44) s = 1 - +
Since ~ is the vector of least-squares weights from the original sample, under
the assumption that x’x is constant, the radical in the second term on the
.right of (44), and the third term on the right become, respectively, R and *

of the original sample. Solving (44) for W gives

(45) W-- 1-bR 2- S
2R

Now to obtain an estimate of W, we substitute for S in (45) the estimate 
its expectation given by (41). Simplifying, we obtain

NR~ - M
(46) ~t?V = R(N -- M)"

To see the relation of the estimated weight-validity to the estimated popula-
tion multiple correlation as defined in the preceding section, we put (32) 
(46), obtaining

(47) gz - RR2 ~c R c.

Since Rc is less than R (unless R is unity), the left-hand factor on the right
of (47) will be less than one, so ~" will be less than Re.

Perhaps a more important application of (38) is its use as a criterion
for evaluating reduced-rank models for computing regression weights. An
alternate approach is indirectly suggested by Leiman (1951, pp. 3-4). There,
the assumption is made that the least-squares weights for the lower-rank
system will give better predictions than least-squares weights for the full-
rank system to the extent that they provide closer approximations to the
population regression weights for the full-rank battery. The reason for
rejecting this position is as follows: It is well known that the optimal weights
for a subset of predictors may differ greatly from the weights of the same
predictors when the full battery is retained. A mathematical statement of
this fact is given in (104). Thus one cannot properly measure the suitability 
a reduced-rank set of weights in terms of how closely they approximate the
full-rank weights. It seems~ more likely that the least-squares weights for
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a subset of predictors or of factor scores may, because of the increased number
of degrees of freedom, be so much more stable than the weights for the full
set as to give more accurate, predictions despite the loss of information. In
any case, the criterion in (38) involves no assumptions other than those
usually made in applications of regression theory to prediction problems and
is, moreover, referred directly to the expected errors of prediction.

In evaluating reduced-rank solutions, a question arises as to the number
of factors to be included in. the general linear hypothesis. If the full-rank
hypothesis is retained, then the quantity Nz: in (38) is fixed, so that the only
way of improving on ~ will be to find a ~ for which the second term is less than
Mz~. If, however, a smaller set of, say, L predictors (either the original ones
or factor scores) is hypothesized, both terms change. The variance of the
errors, ~:, will of course increase in proportion to the systematic variance
in the criterion accounted for by the discarded predictors. If we denote this
larger variance by ~ and the least-squares weights for the reduced battery
by t~, then

(48) ~bZ = (N -{- L)a~,

as will be seen in the next section. Thus the/~ for any subset of L predictors
for which (N -t- L)a~ is less than (N + ~ wil l be an improvement over

Another possible application of (38) would be in obtaining a criterion
for how many predictors to retain in the standard predictor-selection pro-
cedures. If ~ve denote by R~ the multiple correlation obtained with a set of
L predictors, this criterion is obtained directly from (41) 

(49) ¢~ _ Y -~- L (1 -- R~).
N L

One would retain those L predictors for which ¢~ is the smallest. We use ¢~
rather than W since weight-validity is an indication not of the actual errors
of prediction but of the errors which would have been obtained if the predic-
tions could themselves have been weighted after the criterion had been
observed. In other words, a correlation coefficient between t~vo variables is
independent of differences in location and scale, whereas actual errors of
prediction are in part determined by such differences.

The General Reduced-Ran~ Model

The reduced-rank solution will first be developed in terms of a general
factor model. Predictor selection and prediction from principal-axes factors
will then be considered as special cases of this model. Let

(50) x’x = bb’

be any complete factoring of x’x. Then

(51) u = x(b’)-~
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will be the orthonormal matrix of factor scores. The matrices x, u, and b are
the same as those in (14). Now we partition u and b after the Lth column 
that, from (14),

(52) x = [ul u2] b; = ulb~ +u~b~.

We will assume that the columns of u and b have been permuted so that the L
factor scores retained for prediction are given by ul, or (if one prefers to
think of prediction from a rank-L approximation to x) by ulb~. We will now
show that the two assumptions are equivalent for prediction problems. Note
first, however, that in future samples the weights must be applied to the
predictors rather than to the factor scores or to the lower-rank approxima-
tion. The latter must be obtained as a row transformation of the prediction
matrix, since a prediction equation must be applicable to individual cases.

Let the inverse of b be conformably partitioned and denoted by B’ so that

t_B’~b~
(53)

Then

(54) u~ -~ xBI

is ~ unique solution for ul as a transformation on the rows of x. To see this,
we let 3" be any other such transformation, and let

(55) E = 3’ -- B1.

Then

(56) u~ = x3" = xB~ + xE = u~ -b xE

so that

(57) xE = O,

which, since x is basic, ~plies that E is zero. Now let ~, be ~ set of least-
squares weights for ux. Since u~ is basic, ~ is unique. Let ~ be a set of least-
squares weights for Ulb~. Since u,b~ is nonbasic, ~ is not unique. If

(58) u~b;~ - y = e~

and

(59) u~& -- y = e.,

the sums of squares of e~ and of e. will be minimized by ~ and ~., respectively.
The former sum of squares c~n be no less than the latter, for we could always
t~ke
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The two sums of squares will be equal if we let

(61) ~b = BI~.

Therefore, a set of least-squares weights for (58) will be given by ~b in (61)
and

(62) e~b = ~’~.

But since ~ is unique, b~b must be unique, and (60) holds for all least-squares
solutions ~b of (58). Thus, (58) and (59) are identical, and because 
uniqueness of B1 in (54), we have

(63) ~ = B,~

as ~ unique set of least-squares weights for x under the assumption of reduced
r~nk.

If it is assumed that the criterion depends solely on the subset of L
factors refaced for prediction, the general linear hypothesis takes the fo~

(64) y = xB,~ + e~,

where x, y, and e~ are defined in the first section of this chapter. All of the
results of that section may be obtained for the present hypothesis if we
replace x by xB, and ~ by ft. in (1) through (13). In like manner, (48) 
obtained from the derivation of (39). Thus, from (6) and (54) the 
squ~res esthete of ~ is given by

(65) ~ = (uIu~)-’u~y = u;y.

It h~s, from (10), the expectation

(66) E(~) = ft.

and, from (11), the cov~riunce matr~

= a~(u~u~) = ~I.(67) C~. ~ ’ -~ ~

An unbiased est~ute of the vector of weights to be applied directly to the
predictors is given by ~ as defined in (63), since

(68) E~) = E(B~) = B~E(~) 

The covariunce m~tr~ for these weights will be

(69) C~ = E[(B~ -- B~)(BI~ B~.)’] = B~C~B~ = a~B~B~.

The esthetes of the criterion will now be, from (7),

~ = xB~ = x~.

The expected sum of squares for the errors of estimate becomes, from (8),

(7~) ~[(y - ~)’(y - ~)] = (N -- 
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The matrix H for transforming the criterion observations to canonical
form may take exactly the same form as in (15) 

(72) H = (ul u2 v).

The matrix [u2 v] is now arbitrary to the extent that only v was arbitrary
before. It will be convenient, however, to define H as in (72). Partitioning
the transformed observations somewhat differently from the way it was done
in (16), we let

(73) z =

Lv’yJ

The elements of z~ and z3 will all have expected, values of zero, while the
expectation of zl will be

(74) E(zl) = E(u~y) = E(~) 

: may be expressed in terms of z2 and z3 asThe unbiased estimate for zL

~ z~z2 ÷ z~z3
(75) ~L = N - L

The implications of using a reduced-rank solution instead of the con-
ventional solution can perhaps be better understood if the full-rank hy-
pothesis of (1) is retained, rather than the rank-L hypothesis of (64). 
first observe that/~ is a biased estimate of f~, since

(76) E(~) E(B~u~y) = B~u~x~ = Blb~.

2Its covariance matrix, which will now be proportional to ~ instead of to az,
is given by

(77) C~ E[(B~u;y -- B~b;~)(B~u~y -- Bab~f~)’] = B ~E(u~ee’ua)B~

since premultiplying (1) by u~ gives

(78) u~ly = bI~ -t- u~e.

Continuing, with (3) in (77),

(79) C¢ = B~u;E(ee’)u~B~ = a2BIB~.

The first and second moments about f~ will be

(80)

(Sl)

E(~ -- fl) = B,bffl -- ~ -- --(I -- B~bI)¢ = --B2b~

E[~ -- ~)@ -- ¢)’]
= Cz -t- [E(~ -- ~)]~E~ -- ~3)]’ = ~?B,BI + B~b~’b~B’~.
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Equation (11) may be written 

(82) C~ = ~2(x’x)-i = ~BB’ = ~r~B,B~ + ~r~B2B~.

Thus, from the standpoint of relative efficiency (M.ood, 1950, p. 149) 
estimating ~, 3 and t~ may be compared in te~s of the diagonals of the
rightmost terms of (81) and (82). If the trace of the former N smaller, 
the average the reduced-rank est~ates will be more efficient than the full-
rank est~ates.

The expected value of z as given by (73) will now 

We recall from (19) that ~ is eompubd so Nag

k

But ~ is computed to reproduce only z~ :

(85) z~ = ufy = b~B~u[y = b[~.

We have

(86) b~ = b~B,u[y = O.

Thus, the reduced-rank solution, in effect, predicts a vMue of zero for z~
rather than a value of b~. If the elements of b~ are smaller than ], then
the prediction of zero would have the higher relative efficiency.

The statistic ~ will be an overest~ate of z~. To see this, first note that

(87) E(z;z~ + z~z~) tr[E(z~z~)] + tr [E(z~z~)]

= (M -- L)z~ + B’b~b~ + (N --

= (N - L)z~ + B’b~b~.

Then from (75),

(88) A ~ c~ f~’b2b~BE(~L) +N--L"

Next, we describe the effect of hypothesized rank on our inverse index
of weight-efficiency, Cg. We will denote this index and its estimate by ~ and
~¢~, where the full rank M is assumed, and by L ~b~ and ,.¢~, where the reduced-
rank, L, is assumed. Mathematical expectation under the hypothesis of full
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rank will be denoted by EM( ) and under the hypothesis of reduced-rank
by EL().

The reduced-rank ind6x L ¢~ was given by (48). To obtain the full-rank
index, we first evaluate the rightmost term in (38). Using (81),

(89) EM[([~ -- ~")’x’x(~ t~)] = t r [xE(~ -- f~)(t~ -- ~)’]x’]
2= ~ tr (xB~B~x’) tr~xB ~"~’~B’x’~

= ~ ~r (u~u~) tr (uzb~’b~u~)

= ~ tr (u;u~) + ~’b2u~u~b~

Substituting (89) in (38), we obtain

= ~’b b’~(90) ~¢~ (N+L)~ ~+. ~..

An unbiased est~ate of ~ ¢~ is, from (75) and (48),

(91) ~¢~ = (N + L)~ = z~z~ + z~z~ N -- L (z~z~ + z~za).

An unbiased estimate of .¢~ is, from (87),

(92) M¢~ ZJZ2 A- ’ + 2L~ Z3Z3 --
N -- M zaza.

The latter will also be an unbiased estimate of L ¢~, since

(93) EL __ =

It would not, however, be as stable an estimate as LCZ, since the rightmost
term of (91) is based on more observations than the rightmost term of (92).
If L¢~ were used to estimate M¢~, it would have a positive bias, since, from
(88) and (90),

(94) E.(L¢~) = (N + L) ~2 + ~ ~/ = .¢~ + . ~ ~..

In practice, it would often be convenient to express these estimates in
terms of the multiple correlation coefficient. If the metric of the third section
is assumed, the elements of z, and z2 will be the correlations between the
factor scores and the criterion, or factor validities. Since the factor scores
are uncorrelated, the squared multiple correlation between the first L factors
and the criterion will be

(95) R~ = z;z~ = 1 -- z~z~ -- z~z~.
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Hence (91) and (92) are equivalent 

L¢~ = 1 - R~ -~ 2L(1 - R~)N L ’(96)

and

(91) MCZ = 1 - R~ -~ 2L(1 - R~)N-M

Equation (96) is, of course, equivalent to (49). Although L¢~ and M¢~ 
in general differ only very slightly, the former is to be preferred in applica-
tions, since RL will be less inflated by overfit than will RM.

In theoretical comparisons of different factor solutions, M¢~ will be most
useful, since it is a function of the loadings of the discarded factors. The
optimal factor solution would be that which minimized the rightmost term
of equation (90).

Some Particular Reduced Ranl~ Procedures

Of the five particular rank-reduction procedures considered in the
present study, three involve prediction from principal-axes factors, and two
involve prediction from a subset of the original predictors. Summer field and
Lubin (1951) have shown that a subset of predictors is equivalent to a subset
of orthogonal triangular (or square-root) factor scores. The first factor 
simply the first predictor. The second factor is that portion of the second
predictor which cannot be predicted from the first. The third factor is that
portion of the third predictor which cannot be predicted from the first and
second. The remaining factors are similarly obtained. Each factor will thus
be independent of the earlier factors and of the predictors corresponding to
them, and will therefore have zero loadings on those predictors. Accordingly,
the factor-loading matrix will be a lower triangular matrix, i.e., its supra-
diagonal elements will all be zero.

The predictor-selection and predictor-elimination methods may be
thought of as procedures for placing the predictors in the approximate order
of their contribution to the multiple correlation with the criterion. Since the
triangular factors are determined by the ordering of the predictors, the first L
factors will tend to give the highest multiple correlation obtainable with a
subset of L predictors.

Prediction from the principal-axes factors giving the highest validity is
similar to these methods in that the subset of factors to be retained is entirely
determined by the characteristics of the sample from which regression
weights are to be computed. Under these circumstances, none of the indices
of validity or weight-validity is directly applicable, since all are based on the
assumption that, for given L, the subset of predictors to be retained is deter-
mined in advance of observing the criterion. A detailed analysis of the con-
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sequences of choosing factors on the basis of the observed y will not be
attempted. Clearly, however, the fewer the degrees of freedom available, the
larger will be the variance of the sample validities, and the smaller the
probability that the subset of L factors having the largest true validity will
give the largest sample validity. Moreover, the true validity for the subset
chosen would tend to fall short of the true validity for the optimal subset,
and the sample validity for the chosen subset would tend to overestimate its
true validity, in inverse proportion to the degrees of freedom. Still, it seems
that subsets of predictors selected in this way would usually have higher true
validities than would arbitrarily chosen predictors.

Although the foregoing discussion is not concrete enough to lead to
precise conclusions, it does suggest the desirability of having a method of
factoring that would provide an a priori expectation as to the contributions
to validity of the individual factors. The success of using approximation to
the intercorrelation matrix or to its inverse as a criterion for selecting pre,
dictors will in part be determined by the extent to which contribution to the
approximation is related to contribution to validity.

In describing the two particular factor methods in terms of the general
model of the preceding section, we will consider first the triangular factors.
For the general factor-loading matrix, b, we substitute a lower triangular
factor-loading matrix, t. But where b was partitioned only after the Lth
column, we will partition t also after the Lth row, so that

(98) t= [t~ t2] = I tll 01.Lt~2 t2~

We will partition the inverse of t similarly, and denote it by T’. It may be
readily verified that

It will also be convenient to partition the predictor matrix x after the Lth
column, and to partition the regression vectors ~ and ~ after the Lth element.

We first note, from (52), that

Thus

(101)

and

(102) x~ = u~t~ + u~t;,.
The first te~ on the right of (102) is that portion of x~ which can be predicted
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from xl, while the second term is that portion of x2 which is independent of
Thus the "reduced-rank approximation" of x on which predictions are based
is from (101) composed simply of the retained predictors augmented by the
portion of the discarded predictors that is determined by those retained.

From (63) and (65), the estimated regression weights will 

Their expected values, under the full-rank hypothesis, will be, from (76)

(104) E(#) = Tlt~ = (t~ 
~ ~, ~- ~ j 2~.~ (~1)

The value for E(#I) in (104) may be thought of as an expression for 
optimal weights for a subset of predictors in terms of the optimal weights
for the entire set. The original weights for the retained predictors are altered
as a function of the original weights for the discarded predictors. This illus-
trates the point made in the section on accuracy of predictions, to the effect
that weights for a subset of predictors cannot be properly evaluated in terms
of how closely they approximate the weights for the entire set. The covariance
matrix of the sample regression weights, obtained from (79), 

~ T~T, ~I(t~[1)t[~ (105) C~ = 2 ,= .
k 0

The expected values of the transformed criterion observations will be,
from (83),

t~

From (90), the inverse index of weight efficiency ~g,~ is given 

(107) ~,~ = (N -t- L)~r~ -I- ~’~’~ = (N ~- L)~’ 

To obtain the principal-axes solution, we first express the predictor
matrix x in terms of its basic structure (I-Iorst, 1961, oh. 17) 

z = PzXQ’.

Now, in place of the general factor-score matrix ~ we have the principal-axes
factor-score matrix P. The principal-axes factor-loading matrix, corresponding
to ~he general b is given by Q~, where Q is a square orthonormal and
diagonal matrix. Equation (50) now takes the form

(109) ~’~ =
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The eigenvalues and eigenvectors of x’x will be given by the elements of A2

and the columns of Q respectively. We may partition the factors on the right
of (108) to obtain

(110) = [P, P2]IA1Q~1

As before, both the factor-score and factor-loading matrices are considered
to be partitioned after the Lth column. For the inverse of the factor-loading
matrix, B’, we will now have

(111) [Q1~1 Q~ 5] = ¯

The sample regression vector is, from (63) and (65),

(112) ~ = QIA[~P;y.

Under the full-rank hypothesis, the lower-rank sample regression weights will
have the covariance matrix, from (79),

From (83), the canonical form of the criterion will have the expectation

LZ(z3)J
Equation (90) will now take the form

(115)

The specific reduced-rank prediction models may be obtained from the
foregoing development by assuming appropriate permutations either of the
predictors, in the case of triangular factors, or of the columns of P and Q,
and of the elements of A, in the case of principal-axes factors. We note from
(73) and (83) that each element of zl and z2 is determined by only one factor:
the observed value by the factor scores, the expected value by the factor
loadings. In predictor selection, each time a predictor is selected, a factor,
and hence an element of z~, is determined. At each step in the procedure,
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that predictor is selected which will make the next element of zl as large
(in absolute value) as possible. In predictor elimination, a factor and hence
an element of z2, is determined each time a predictor is eliminated. At each
step, that predictor is eliminated which will make the next element of z2 as
small (in absolute value) as possible.

In the method of predicting from the factors giving the best least-squares
approximation to the predictor intercorrelation matrix, the elements of A are
placed in order from largest to smallest, so that the largest are in 51 and the
smallest in A2. If the inverse is to be approximated, the elements of A are
placed in the opposite order, i.e., from smallest to largest. (When we speak
of ordering the elements of A, we assume, of course, that the columns of P
and Q are permuted correspondingly.) In the method of predicting from the
principal-axes factors giving the highest validity, the factors are permuted
so as to place the elements of zl and z2 in order of absolute value from largest
to smallest, with the largest values in zl, the smallest in z2.

The Problem o] Finding an Optimal Reduced-Ranl~ Solution

There are three major problems involved in obtaining an optimal reduced-
rank solution. The first concerns the method of rank reduction: whether
subsets of the original predictors, of the principal-axes factors, or of factors
obtained by some other method will give the most accurate prediction in
future samples. The second problem is, having obtained the factors, to
specify the subset of a given size that may be expected to provide the greatest
accuracy of prediction. The third problem is, having specified the subset
which would be used for any given rank, to determine the particular rank
that will tend to lead to the most accurate predictions.

The estimate of the inverse index of weight-efficiency given in (91) and
(96) provides a solution (or a potential solution) to the third problem. 
does not, however, enhance our ability to deal with the second problem, since,
as can be seen from (96), it merely indicates the traditional approach; namely,
to attempt to select that subset of predictors of given size having the highest
multiple correlation with the criterion. The drawbacks of such an approach
when degrees of freedom are limited were discussed in the preceding section.
Since a reduced-rank solution is indicated only when degrees of freedom
are limited, a selection method that is independent of the criterion might
well be preferable. Some evidence favoring this view is provided in the
empirical portion of the present study. In the present section we assume that
view to be correct and accordingly consider only methods of selection which
are independent of the criterion.

If the present analysis is correct, an optimal solution will be one which
minimizes M~kZ as given in (90). In the absence of observations on the criterion,
nothing can be said about/3 or a~, so our only course is to seek a value for
b: which will minimize/3’b2b’~ for general/3. The quantity to be minimized
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may also be expressed as the sum of squares of the expected values of the
z2, as given in (83) 

(116) fl’b2b’~fl = [E(z2)]’[E(z~)].

Minimizing this quantity will be equivalent to making the elements of E(z2)
as small (in absolute value) as possible. We let the ith element 

(117) ~=IE(zl)1 ~E(z~)
be denoted by ~. If we knew these valuesl the second of the problems stated
above would be solved by discarding those factors for which 2, was smallest.
Denoting the column of factor loadings for the ith factor by b.~, we have,
from (83),

(118) 2, = b’.,fl.

Let D be a diagonal matrix whose ith element is given by

(119) D, = "V~’.,b.,.

Let

(120) W = bn-~ .

Denoting the ith column of W by W. ~, we have

(121) W’~W ~ b~’~b~
¯ . - b~.,b.~- 1.

The expected values of z~ and z~ can now be expressed in terms of D and W as

(122)

or

(123)

Since we have assumed that nothing is known about fl, and since (121) holds
for all i, we can have no a priori expectation as to the magnitude of W~,~.
Thus our only basis for predicting the rank order of the ~, in the absence of
criterion observations will be the magnitudes of the D~. A tentative solution
for the problem of which factors to retain for prediction, then, will be to dis-
card those factors having the smallest values of D~. From (119), we see that 
is the sum of squares of the loadings for the ith factor, or the variance ac-
counted for by that factor. Thus, for a rank-L solution, we wish to retain those
L factors giving the best least-squares approximation to the predictor matrix.

It is well known that the principal-axes factors will give a better least-
squares approximation to the predictor matrix than will factors obtained
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by any other method. Thus, as a tentative answer to the first of the above
problems we obtain the principal-axes solution.

Now, given the restriction that the factors be selected independently of
the criterion, we can state that the best prediction possible with a reduced-
rank solution will be obtained from the principal-axes factors giving the
best least-squares approximation to the correlation matrix. We note that, for a
principal-axes solution, D and W become the A and Q of the preceding section.
Thus we can also state that the method of approximating the inverse will give
the worst possible predictions, since with that method one discards the factors
corresponding to the largest elements of A.

We have shown that, with appropriate assumptions, the principal-axes
factors making the largest contribution to the variance of the predictors (or
simply, the largest principal-axes factors) are optimal with respect to our
index of expected accuracy of prediction. It may be shown that the factors
are also optimal with respect to the variance of the sample regression weights.
The sum of these variances will be smaller than for any other method of rank
reduction. From (69) (or (79)), this stun will be proportional to the trace 
B1B~. We let

(124) g’ = Bu’ = Blu~ +

so that

(125) g’ -- B2u’~ = Blu;.

It is well known that

(126) tr (ulB~B~u;) = tr (B~BI)

will be a minimum when B2 is composed of the largest principal-axes factors of

(127) g’g = BB’= (x’x) -~ = QA-~Q’.

Equivalently, the above trace will be a maximum when bi is composed of the
largest principal-axes factors of x’x.

The major conclusion of this section is that, in the absence of criterion
observations, the best index to use for selection of predictors or factors will
be the amount of variance accounted for in the predictor data matrix. In the
case where a subset of the original predictors is to be used, one would eliminate
those predictors for which the trace of t2~t’~ in (107) is a minimum. Where
a factor solution is feasible, the largest principal-axes factors would be re-
tained. The important question of how many degrees of freedom must be
available before the criterion observations can be used to advantage in the
selection process has been left open. Thus a sound basis for deciding whether
to use the methods above or to use methods which attempt to maximize the
sample multiple correlation with the criterion is still Iacking.



CHAPTER 3

AN EMPIRICAL COMPARISON OF FIVE
REDUCED RANK PROCEDURES

The Data

A typical application of regression methods is to the problem of predicting
academic success as measured by college grades. The data for the present
comparisons were taken from a recent study of academic prediction by
Shanker (1961). Twenty-nine predictor variables and five separate criterion
variables are used. Fifteen of the predictors are those composing the Uni-
versity of Washington Entrance Battery. These have been in use for predicting
college grades since 1953, and include age, sex, test scores, and high-school
grades. The remaining predictors are taken from the Edwards Personal
Preference Schedule (EPPS). The 15 variables of the EPPS are ipsative; i.e.,
any one can be computed exactly from the remaining 14. Accordingly, only
14 are used here, since the 15th would be completely redundant for purposes
of prediction. The EPPS variables are described by Edwards (1954). Descrip-
tions of the Entrance Battery variables are given by Shanker (1961). Since
the specific nature of the predictors is not of immediate interest in the present
study, we simply list them here.

Edwards Personal Preference Schedule Variables

1. Achievement 8. Succorance
2. Deference 9. Dominance
3. Order 10. Abasement
4. Exhibition 11. Nurturance
5. Autonomy 12. Change
6. Affiliation 13. Endurance
7. Intraception 14. Heterosexuality

High-School Grade-Point Averages

15. English 18. Social Science
16. Mathematics 19. Natural Science
17. Foreign Language 20. Electives

Test Scores

21. Vocabulary 25. Mathematics
22. Mechanical Knowledge 26. Social Science
23. English Usage 27. Quantitative Reasoning
24. English Spelling
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Other Variables

28. Age
29. Sex (coded 0 for male, 1 for female)

The criterion variables consist of grade-point averages in various college
course areas. The five criteria chosen for the present study were those having
500 or more cases available, as listed below.

1. All-University, 973 cases 4. Chemistry, 526 cases
2. Mathematics, 541 cases 5. Psychology, 507 cases
3. English Composition, 804 cases

The cases used were 973 students who entered the University of
Washington as freshmen between 1953 and 1958. Only those students were
included for whom measurements on all predictors and at least one criterion
variable were available. Scores on the criterion variables and on the Entrance
Battery (predictors 15-29) were obtained from the files of the University 
Washington Division of Counseling and Testing Services. The EPPS data
(predictors 1-14) were obtained partly from Edwards, partly from Wright
(1957), and largely from the Division of Counseling and Testing Services files.

Method

The five reduced-rank prediction methods chosen for comparison were
the following.

1. The predictor-elimination method (Horst and MacEwan, 1960)
2. Predictor selection by the accretion method (Horst, 1955)
3. The me~hod of largest principal-axes factors (Horst, 1941)
4. The method of smallest principal-axes factors (Guttman, 1958)
5. The method using the principal-axes factors giving the highest

multiple correlation.

As noted in the introduction, we can be virtually certain that, for suffi-
ciently small samples, one or more of these methods will give more accurate
predictions than will the standard full-rank method. And as shown in the
last section of Chapter 2, there is reason to believe that method 3 will be
superior to the others for samples below some critical size. Similarly, method
4 would be expected to give the poorest predictions. We would expect also
that the statistics L~ as given by (91) and ~ as given by (46) would 
some indication of the accuracy of prediction in future samples obtainable
from a particular set of weights.

The method used for the empirical comparisons consisted essentially of
replications of the following procedure. All cases with measurements available
on a particular criterion were taken as the statistical population. From this
population a random sample was drawn. Regression weights were computed
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for each reduced-rank method for each-rank from 1 to 29. Thus 29 sets of
weights for each meth6d were computed. The sets of weights for rank 29
were, of course, the same (aside from rounding error) for all methods. From
the cases remaining in the population after the original sample was removed,
a new random sample was drawn. Each set of weights computed in the
original sample was then applied to the new sample, and measures of accuracy
of prediction were computed. For all computations, predictor and criterion
variables were normalized as described in the second section of Chapter 2.
In effect, then, means and sums of squares were equated for all variables
on all samples. Differences in these values, therefore, do not show up in the
total squared errors of prediction.

For each of the five criterion variables, this design, using all five reduced-
rank methods, was replicated for six different original-sample sizes: 255, 210,
165, 120, 75, and 30 cases. The new samples consisted of 252 cases for all
replications. Weight-validities were used as measures of accuracy of prediction.

An additional set of replications was carried out for criterion 1 (All-
University) only, and omitting method 4. Here the estimates of weight-
validity and of total squared errors of prediction were also computed from
the original samples. A wider range of original-sample sizes was used: the six
sizes above and also sizes of 435, 390, 345, and 300 cases. A second new
sample was randomly drawn for each replication from the cases remaining
in the population after the original sample and the first new sample were
removed. Both new samples again consisted of 252 cases for all replications.
As measures of accuracy of prediction when the original sample weights were
applied to each of the two new samples, total squared errors of prediction
as well as weight-validities were computed.

All phases of the above procedures were carried out on the IBM 709
computer, using programs written especially for this study. The method of
drawing the samples was as follows. The cases in a particular criterion popula-
tion of, say, NT students were assigned sequential numbers from 1 to NT.
A sequence of random numbers was generated using a procedure described
in the WDPC Users Manual (Western Data Processing Center, 1961, sec.
9.2.4). The original sample of size No consisted of the cases corresponding to
the first No distinct numbers modulo NT from the sequence of random
numbers. The remaining NT -- No cases were renumbered sequentially from
1 to NT - No. The new sample of size N1 consisted of the first N1 distinct
numbers modulo NT -- No from a second sequence of random numbers. In a
similar way, all other samples were obtained, using a new sequence of random
numbers for each sample.

After obtaining the original sample, the matrix of predictor intercorre-
lations and the vector of the correlations between the predictors and the
criterion were computed. Retaining the notation of the preceding chapter
and recalling that the variables in x and y were normalized, the predictor
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intercorrelation matrix was computed by (25) and the vector of predictor-
criterion correlations by

(128) ro = x’y.

Next the predictor elimination and predictor selection procedures were carried
out and the corresponding regression weights computed, using the procedures
described by Horst and MacEwan (1960) and by Horst (1955), respectively.
The matrix r was then factored as in (109). The regression weights for the
three principal-axes methods were computed as follows. We let z~ denote, the
Lth element of zl, Q.~ denote the Lth column of Q1 and/~L the Lth element
of 41.

First the vector of factor validities zl was computed from

(129) z~ = A:IQ~ro.

Equation (129) is equivalent to (73), since, from (108), (110), and 

(130) A~Q~ro -= 5~Q~x’y = A~Q~(Q~A~P~ + Q~P~)y = P~y.

The regression vector for r~nk L was computed by
L

(131) ~ = q,~:~z, = ~ Q.,h7~z,,

which, it m~y be noted, is eq~valent to (112). Thus the regression vector
for r~nk L W 1 was obtained from the ~ector for rank L by

(132)

The weights for methods 3, 4, and 5 were all computed in the same way, the
only difference being in the order of summation.

The new s~mple was drawn and the various correlations computed as
for the ofig~l sample. The weight-validity and total squured errors of
prediction obta~ed with a particular vector of weights were computed
respectively by

(133) W r~

and

( 34) ¢ = - + IrZ .
Equations (133) and (134) are, of course, equivalent to (42) and (43). 
that r and r~ in (133) and (134) are computed on the new sample while
was computed on the original sample.

Results and Discussion

The weight-validities obtained with methods 1, 2, 3, and 5 on ~II five
¢riteri~ are given ~ Table 1. The s~ pages of Table 1 correspond to the



TABLE 1
Weight-Validities for Four Methods and Five Criteria

(No = 255)

Criteria: All-Univ Math Engl Comp Chem Psych

Methods: 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5

1 455 455 551 551 305 390 414 414 462 547 640 640 404 404 441 441 406 406 416 416
2 484 484 568 576 375 382 416 407 615 676 616 643 372 459 446 496 477 475 468 468
3 536 536 569 591 415 415 416 400 607 645 580 618 418 426 418 473 489 481 469 487
4 529 529 571 595 421 421 416 401 646 646 608 665 448 451 411 460 489 504 482 488
5 521 521 577 555 435 411 421 418 645 653 659 640 418 422 393 450 492 511 487 488
6 522 522 575 530 422 412 421 414 661 637 666 643 409 412 399 451 509 507 485 488
7 498 498 575 529 404 396 414 426 663 634 669 651 389 389 403 437 510 497 485 486
8 494 494 577 531 392 383 417 426 661 627 644 623 389 393 391 426 501 489 482 484
9 494 494 572 529 393 393 405 419 661 622 644 608 385 413 390 431 492 486 481 480

10 488 491 567 530 374 374 416 417 648 624 648 609 392 406 380 417 477 469 486 463

11 496 488 566 524 371 371 416 407 635 629 630 608 399 412 377 406 481 475 500 473
12 490 496 564 532 368 368 412 399 634 626 635 608 397 410 375 410 475 468 500 468
13 490 492 553 527 375 375 414 395 636 627 635 633 411 419 377 411 478 481 498 470
14 486 487 553 524 372 372 406 395 637 626 638 635 406 418 376 411 485 485 499 473
15 489 498 544 508 371 371 400 389 635 637 640 637 405 412 385 415 486 481 499 471

16 485 498 541 511 369 369 406 380 625 637 642 640 414 409 367 412 477 481 505 468
17 482 500 575 515 372 372 404 385 628 638 643 641 413 408 372 410 474 483 508 470
18 483 499 577 514 376 376 404 385 629 635 644 638 408 415 365 406 470 478 490 468
19 483 502 551 511 379 379 403 385 628 631 641 639 412 415 363 408 471 474 484 466
20 479 499 551 505 384 384 402 386 631 632 642 639 410 410 417 410 470 470 483 473

21 490 496 545 501 383 383 408 384 636 632 638 640 407 408 413 415 476 476 482 474
22 493 497 541 499 381 381 405 381 638 632 638 642 403 404 413 414 478 478 481 472
23 494 494 522 502 382 382 395 384 636 633 639 639 407 408 413 413 478 478 482 470
24 497 495 524 500 383 383 399 385 635 634 635 639 411 408 412 407 477 477 483 471
25 498 498 521 500 384 384 393 384 636 634 636 636 408 412 414 409 477 477 485 474

26 498 498 506 502 384 384 393 382 636 636 638 637 409 409 410 412 476 476 485 473
27 499 499 507 501 385 385 392 383 637 639 636 637 410 411 409 411 477 477 482 473
28 501 501 507 502 384 384 384 384 637 637 636 637 410 410 411 410 477 477 481 474
29 500 383 637 410 477

Ro 659 539 705 623 626
R~ 667 515 770 557 580

Decimal point preceding each entry has been omitted.



TABLE 1 (Cont.)
Weight-V~lidities for Four Methods and Five Criteri~

(No = 210)

Criteria:
Methods

All-Univ
1 2 3 5

Math Engl Comp Chem

1 2 3 5 1 2 3 5 1 2 3

Psych
1 2 3

1 407 407 478 478 361 300 464 464 499 499 543 543 432 432 463
2 462 460 491 479 439 382 465 477 540 540 543 546 454 471 466
3 459 490 491 484 440 440 469 451 596 596 547 596 488 481 473
4 439 474 501 491 433 433 448 440 627 627 596 594 528 508 473
5 479 473 504 490 424 424 429 431 614 614 601 568 523 530 478

6 451 466 497 504 411 411 418 440 620 620 602 573 527 525 483
7 445 463 500 492 374 374 415 435 628 628 602 589 518 533 485
8 456 489 488 505 375 375 394 446 623 635 607 607 513 525 484
9 456 491 487 513 362 362 383 416 622 630 619 618 516 522 485

10 461 470 488 503 365 361 380 395 616 628 620 607 526 527 485

11 448 484 491 504 377 363 382 395 618 625 607 614 519 524 487
12 465 4~ 491 498 384 375 393 383 623 618 623 613 527 526 486
13 472 472 491 497 382 382 412 382 628 621 633 616 533 526 486
14 473 473 485 494 374 379 401 372 625 625 630 616 533 53~ 487
15 478 478 481 489 366 370 396 363 618 618 629 613 533 530 466

16 486 486 481 484 357 361 392 353 622 622 628 609 532 530 486
17 485 485 486 485 358 355 395 348 620 620 627 613 528 535 486
18 481 481 486 481 358 352 395 340 628 628 627 616 526 530 520
19 479 484 499 481 355 354 395 343 628 628 621 617 525 532 521
29 478 482 502 482 354 351 393 347 628 628 622 613 525 528 513

21 476 484 497 484 358 350 377 346 625 625 622 612 522 531 513
22 477 482 494 483 355 348 357 342 618 618 602 621 519 530 511
23 479 479 480 484 349 348 357 340 620 620 617 621 516 527 520
24 479 479 481 484 346 352 359 341 620 620 614 619 518 524 517
25 479 479 480 483 344 349 368 343 620 620 613 619 517 521 518

26 480 480 480 483 339 345 369 342 619 619 616 619 516 519 517
27 4~ 479 4S9 48~ ~9 ~39 ~69 342 620 620 621 619 517 518 519

28 481 480 480 483 342 342 358 342 619 619 620 618 517 517 526
29 480 340 619 516

Ro 718 502 768 577

R, 574 562 722 616

463
450
482
484
457

477
486
494
503
506

500
5O2
505
511
515

518
517
516
518
521

518
517
517
517
517

516
517
517

353 353 409 409
445 445 480 480
443 443 483 477
461 461 488 463
475 475 492 469

466 466 489 448
461 461 487 425
452 452 491 436

438 491 432460
460 428 499 437

446 436 503 434
439 439 511 428
437 437 488 439
439 433 490 437
445 438 490 442

448 441 492 442
445 445 488 437
446 446 488 434
449 449 486
447 450 488 444

44:4 448 485 446
445 445 478 445
445 445 481 444
442 442 473 447
441 446 473 446

443 447 461 446
446 446 448 446
446 446 449 447
446

672
568



TABLE 1 (Cont.)
Weight-Validities for Four Methods and Five Criteria

(No = 165)

Criteria: All-Univ M~th Engl Comp Chem Psych
Methods: 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5

1 507 507 542 542 266 322 393 393 513 513 539 539 413 413 440 440 463 374 398
2 509 509 577 527 346 341 393 351 546 554 531 537 433 440 441 368 533 362 501
3 545 545 578 556 356 364 393 331 595 601 538 564 477 450 432 366 496 456 500
4 553 553 588 553 337 348 386 296 587 596 540 590 430 476 426 382 510 501 508
5 542 542 583 557 318 329 389 302 588 597 573 613 416 430 425 410 473 508 513
6 551 551 583 571 352 337 397 293 578 605 596 599 410 433 426 397 467 513 509
7 539 556 597 563 353 329 396 295 560 597 594 594 400 422 425 381 456 498 503
8 548 564 610 559 345 353 397 301 589 582 599 598 407 427 420 382 471 483 519
9 558 556 622 533 323 347 363 276 583 602 595 595 412 419 425 390 446 485 518

10 565 565 621 552 297 339 356 270 576 607 594 601 398 418 424 379 443 470 516

11 576 576 619 544 297 326 365 280 554 596 598 610 398 417 423 380 467 484 511
12 563 563 601 536 291 314 364 284 559 580 591 610 401 403 424 387 468 468 529
13 558 558 599 542 287 314 366 272 564 586 590 611 403 404 420 394 468 465 545
14 556 556 602 542 292 301 355 284 560 582 612 613 404 394 413 393 467 465 537
15 556 556 616 551 294 298 344 293 559 577 603 613 405 400 420 385 462 465 518

16 562 562 600 560 287 294 343 285 561 581 594 604 412 401 423 378 452 460 514
17 568 568 598 563 282 300 343 282 569 576 600 598 412 404 425 374 452 441 501
18 564 562 587 561 284 306 344 281 576 575 602 591 405 405 406 379 445 438 503
19 564 556 575 559 266 297 357 287 574 581 602 592 405 405 406 383 443 429 500
20 564 555 573 557 273 287 351 286 574 582 598 591 402 400 444 378 421 431 502

21 558 559 576 555 281 285 359 283 577 581 598 585 402 398 449 379 420 425 490
22 562 556 576 556 285 289 367 277 577 581 598 589 399 399 428 379 415 416 478
23 557 557 577 556 280 286 347 277 578 582 597 586 397 397 439 380 409 417 477
24 559 559 579 555 278 278 315 278 577 583 597 585 391 391 450 380 407 409 468
25 559 559 580 557 278 278 315 278 579 582 597 585 387 387 454 380 410 408 467
26 557 557 579 556 280 280 302 278 582 583 592 583 386 386 402 382 407 405 448
27 557 557 577 558 277 277 302 279 583 583 591 583 387 387 394 380 409 407 446
28 556 556 558 558 278 278 297 280 585 585 584 583 387 387 392 382 408 408 445
29 556 277 582 388 402
Ro 711 670 716 617 641
R1 683 508 700 595 631

501 ~
430 ~
395 ~
388

401 ~
417 ~
412 g
422 ~
422 ~
418 m
412 e~
412 ~

~
419

~425 ~
415 ~404

403 ~
401 ~
399 ~
398 ~
400 ~

403 ~
401
4O0



TABLE 1 (Cont.)
Weight-Validities for Four Methods ~ad Five Criteria

(No = 120)

Criteria: All-Univ Math Engl Comp Chem Psych

Methods: 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5

1 367 367 557 557 275 275 383 383 467 550 526 526 369 369 425 425 370 370 440 440
2 448 448 564 567 335 365 387 392 576 593 528 522 409 329 423 444 456 454 492 492
3 514 514 555 532 293 340 385 362 576 601 525 568 469 372 428 446 418 420 491 491
4 519 521 565 484 343 332 385 321 589 588 570 583 431 374 411 407 430 430 478 479
5 496 493 575 466 320 343 355 275 621 600 548 564 403 398 413 394 436 442 479 479

6 459 515 576 485 325 317 354 288 611 611 558 558 394 433 422 406 437 446 485 440
7 442 511 564 487 315 321 350 289 594 612 565 564 391 413 428 406 451 440 493 422
8 467 516 563 494 313 313 351 259 591 604 565 577 397 402 429 404 448 446 476 418
9 457 516 568 510 307 308 351 265 591 590 572 556 408 402 421 381 424 461 479 408

10 442 513 566 520 306 292 364 270 592 589 586 558 420 408 417 379 397 412 488 410

11 459 527 555 511 291 271 371 269 589 586 587 567 435 418 370 380 388 399 468 396
12 458 528 571 503 271 271 382 283 579 583 580 563 434 435 372 390 370 391 450 383
13 469 522 573 508 277 269 378 256 573 584 582 571 432 436 375 401 364 380 449 364
14 477 509 572 503 273 275 378 265 577 573 581 573 428 437 387 406 367 373 450 329
15 471 518 573 494 271 272 348 277 575 575 581 562 430 434 386 399 364 369 451 334

16 476 513 574 487 265 270 356 272 570 577 595 553 430 429 387 391 359 370 433 325
17 483 506 582 493 261 265 350 266 570 575 589 556 437 427 394 399 371 378 434 330
18 494 505 534 494 261 261 351 262 566 578 579 557 425 423 430 400 376 376 449 345
19 495 499 522 490 266 261 342 265 567 574 575 560 424 425 438 404 375 375 448 355
20 488 494 527 480 265 265 349 257 569 578 575 566 420 426 439 399 374 374 443 356

21 476 484 517 482 263 265 341 253 572 580 579 561 419 426 446 401 369 369 437 352
22 478 472 496 473 262 266 347 253 563 575 580 564 411 424 446 409 369 367 414 350
23 472 470 496 473 262 266 359 257 567 575 581 566 412 430 442 414 367 367 406 344
24 470 474 496 473 264 267 367 254 569 570 571 568 414 431 442 415 365 364 404 346
25 470 473 486 472 264 264 328 258 570 570 574 570 415 424 445 414 363 364 380 348

26 471 476 478 472 260 260 326 258 566 571 575 571 416 417 447 421 356 363 380 350
27 469 471 477 470 258 258 297 258 567 567 582 570 418 417 439 414 355 362 376 350
28 470 472 473 470 259 259 257 259 567 567 586 569 418 418 421 414 354 356 377 349
29 470 259 567 418 355

R0 764 670 788 629 692
R, 688 546 697 558 589



TABLE 1 (Cont.)
Weight-Validities for Four Methods and Five Criteria

(No = 75)

Criteria: All-Univ Math Engl Comp Chem Psych
Methods: 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5

1 ~99 399 503 503 363 363 403 403 458 506 542 542 476 476 492 492 443 443 381
2 360 360 492 515 300 375 381 299 581 545 542 580 387 387 470 391 409 527 367
3 338 410 493 501 315 304 361 293 588 529 528 567 304 304 479 372 441 469 532
4 314 388 492 511 249 298 381 282 596 542 546 543 248 324 480 226 425 441 511
5 320 419 507 510 299 291 336 244 582 591 575 551 229 269 486 202 414 450 465

6 294 396 500 446 300 261 314 249 588 593 561 579 238 253 499 216 385 445 452
7 325 382 503 421 295 248 302 249 582 582 554 535 259 247 493 215 400 443 452
8 317 365 497 373 268 273 281 221 565 582 553 537 251 252 513 180 359 390 445
9 349 354 492 372 263 270 279 211 561 575 553 529 259 227 514 211 353 371 446

10 347 363 492 377 272 264 284 213 557 575 541 528 229 222 436 206 356 363 429

11 370 359 486 367 267 257 257 202 545 568 537 500 252 237 429 164 341 360 418
12 354 341 495 374 258 250 280 220 527 569 530 483 247 248 450 179 312 383 449
13 352 335 493 371 254 243 280 231 519 568 567 482 241 258 426 156 291 376 454
14 324 340 489 366 255 239 278 218 492 561 576 480 208 261 430 169 320 337 435
15 326 316 479 358 246 240 213 207 500 564 572 471 219 250 300 168 320 333 419

16 325 332 468 353 231 239 224 222 507 563 557 463 212 245 305 178 316 340 434
17 333 333 444 355 230 219 226 215 482 543 554 459 219 253 307 ]90 328 326 433
18 335 335 445 353 224 225 233 201 470 541 558 469 225 240 316 212 335 330 418
19 344 344 441 348 222 213 239 196 462 520 558 475 215 223 265 194 337 328 411
20 336 336 427 338 223 212 248 198 458 496 556 466 211 211 283 201 339 342 423

21 325 325 378 338 222 209 242 203 471 483 567 465 215 202 272 190 328 332 418
22 325 325 371 343 222 211 245 199 475 476 571 464 215 201 292 203 332 335 403
23 320 320 371 336 221 211 221 204 477 474 535 468 207 205 252 199 323 333 396
24 322 322 360 336 216 212 201 206 467 480 532 467 204 205 233 200 320 326 370
25 320 320 362 330 212 211 197 208 471 469 522 472 205 206 219 201 319 321 371

26 322 322 358 329 210 212 197 206 471 471 511 476 206 204 219 205 319 320 353
27 324 324 331 326 210 205 200 205 470 470 514 478 203 205 225 204 319 320 351
28 325 325 324 325 208 208 204 205 470 471 470 476 203 203 204 206 319 319 354
29 325 208 475 204 319

Ro 655 755 748 760 790
R1 572 528 716 620 609

~8~
538
523
533
485

468
455

420
414

386
384
386
369
370
332
315
317
~10
a01

325
320

g17

a17
a18
g19



TABLE 1 (Cont.)
Weight-Validities for Four Methods and Five Criteria

(No = 30)

Criteria: All-Univ Math Engl Comp Chem Psych
Methods: 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5

1 461 428 481 481 347 347 397 397 440 501 577 577 365 292 431 431 298 298 464
2 366 400 478 361 361 316 424 319 543 451 534 534 375 267 432 303 285 285 406
3 416 333 531 432 398 272 423 156 519 486 502 502 354 288 440 010 347 347 430
4 372 390 513 022 340 267 443 174 556 527 504 466 347 349 437 022 343 301 419
5 393 381 472 022 270 275 433 212 518 483 563 509 331 364 431 018 390 291 444
6 380 398 467 022 168 247 370 --006 520 514 563 520 329 426 421 014 408 281 451
7 354 395 472 022 179 251 364 006 477 514 575 --004 317 365 426 096 357 312 426
8 356 365 467 022 149 265 367 006 482 470 574 --004 308 350 430 086 313 289 422
9 332 353 467 015 130 283 347 076 484 471 590 --004 317 332 421 095 274 248 430 147

10 309 377 449 018 112 273 346 089 489 450 597 --004 298 316 434 --018 209 232 405 142
11 328 365 454 018 106 271 317 092 462 460 598 --003 293 304 434 --018 186 259 389 137
12 324 338 451 018 101 278 318 084 397 468 598 --002 284 271 430 --019 174 248 386 145
13 342 324 414 018 098 256 318 088 389 453 554 --004 289 245 408 --019 174 259 352 138
14 325 317 410 018 064 234 295 --002 374 418 553 --004 285 208 397 --018 181 259 343 130
15 328 322 391 017 056 229 278 000 347 395 530 --005 282 177 397 --018 182 269 342 124
16 301 338 379 019 016 231 288 --006 304 360 521 --004 220 160 361 --016 162 256 349 126
17 289 354 345 019 031 194 287 --008 228 363 497 --003 129 137 334 --015 136 226 341 --029
18 280 370 310 019 021 167 287 --009 195 334 488 --003 055 131 334 --017 083 181 311 --024
19 223 387 249 021 --011 148 177 --006 147 284 483 --003 011 138 295 --015 068 190 333 --024
20 169 336 247 021 --024 086 202 --007 141 267 477 --002 --015 135 298 --016 011 172 266 --025
21 137 315 349 021 --034 088 177 --009 137 261 476 --002 --018 125 301 --014 010 170 235 --024
22 091 312 379 021 --033 086 219 --009 140 257 474 --002 --017 063 301 --013 005 158 237 --025
23 076 334 390 021 --033 079 210 --009 113 181 454 --002 --021 056 268 --015 --002 156 257 --026
24 062 321 373 021 --028 076 149 --011 078 173 423 --001 --029 048 211 --014 --036 155 224 --029
25 057 170 318 021 --022 069 236 --012 050 157 403 --001 --028 049 215 --014 --025 155 166 --028
26 031 075 311 021 --013 044 204 --011 036 142 333 --002 --027 064 212 --014 --013 144 166 --027
27 019 074 302 021 --011 031 180 --011 002 135 218 --002 --014 110 025 --014 --013 139 134 --023
28 021 076 073 021 --011 018 042 --012 000 055 214 --002 --023 029 104 --013 --014 048 143 --024
29 021 --021 --002 --013 --024

Ro 999 999 999 999 999
R1 663 584 693 565 615

O8O
406
385
403
303

142
152
143
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six original-sample sizes used, ranging from 255 down to 30 cases. This size
is denoted by No. In each instance, the new sample contained 252 cases.
An original sample and a new sample were independently drawn for each
size and each criterion, for a total of 30 original samples and 30 new samples.
Since for rank 29, all methods are equivalent (aside from rounding error),
the corresponding weight-validity is listed only under method 1. The full-
rank (rank 29) multiple correlations for each sample are also listed under
method 1, the subscripts 0 and 1 denoting the original and new samples,
respectively.

Although the weight-validities using method 4 were computed on the
basis of the data given above, they are not presented. For all ranks, criteria,
and sample sizes, these weight-validities were substantially lower than those
for any other method or for the full-rank weights. They were frequently
negative, rarely greater than .10, and virtually always less than half as large
as the weight-validities obtained by any of the other methods. Our expecta-
tion that the method of smallest principal-axes factors would give less accurate
predictions than the other methods is thus unequivocally confirmed.

To assist in comparing the other four reduced-rank methods, Table 2
was prepared from Table 1. For each original-sample size and each criterion,
two comparisons are made. In each of the first five columns, the number of
ranks for which each method was superior to the other three methods is given.
In making the counts, ties were divided equally among the methods sharing
the high value for a particular rank. In each of the second five columns of
Table 2, the number of ranks for which a particular method was superior to
the full-rank weights is given. When for a particular rank a method had the
same weight-validity as the full-rank weights, the count was increased by one
half.

Of the four methods, the method of largest principal-axes factors most
often gave the highest weight-validities in 26 of the 30 samples. This trend
was most marked when the weights were computed on smaller samples,
particularly samples of size 30. The only exceptions occurred for samples of
210 and 255 cases. The superiority of method 3 was most pronounced for
Psychology and Mathematics and less clear-cut for English Composition and
Chemistry. Method 3 was also more often superior to the full-rank weights
than were the other methods. Thus it appears that our expectation as to the
superiority of method 3 is also confirmed, but with the qualification that,
for larger samples and for certain criterion variables, one or more of the other
methods may be preferable.

Another possible basis of comparison would be the number of samples
for which a particular method gave the highest weight-validity for any rank.
Of the 30 samples, method 3 gave the highest validity in 12.5, method 5 in
8.5, method 1 in 5, and method 2 in 4 samples. The comparisons of Table 2
would appear to be more meaningful than this comparison, however, since



G
E

O
R

G
E

 
R

. 
B

U
R

K
E

T
3

7



TABLE 3
Total Squared Errors of Prediction and Weight-Validities for Four Methods and a Single Criterion

Methods

First New Sample
Weight-Validities Total Errors

1 2 3 5 1 2 3

Second New Sample
Weight-Validities Total Errors

1 2 3 5 1 2 3

1 461 504 582 582
2 509 556 596 570
3 579 572 596 583
4 592 595 599 589
5 597 612 603 593

6 610 612 608 600
7 616 617 619 599
8 616 609 620 605
9 616 608 620 604

l0 622 608 620 600

11 616 616 613 596
12 607 607 613 594
13 607 607 613 588
14 605 601 614 593
15 606 601 613 588

16 601 601 617 590
17 606 606 617 595
18 608 608 624 595
19 609 609 622 602
20 612 612 629 607

21 611 611 614 611
22 612 612 619 611
23 611 611 617 610
24 6II 611 621 610
25 613 613 615 612

26 613 613 615 612
27 613 613 610 612
28 612 612 608 612
29 613

No = 435

788 746 663 663
742 691 647 676
666 673 647 661
650 646 643 653
644 625 638 649

628 626 633 640
620 619 619 642
621 630 617 634
621 631 617 635
613 631 618 640

621 621 625 646
634 634 625 648
634 634 625 655
636 642 624 650
635 642 625 657

642 642 620 654
635 635 619 648
633 633 611 648
632 632 613 640
628 628 604 633

628 628 623 628
627 627 617 629
628 628 620 629
628 628 616 630
626 626 623 628

626 626 624 627
626 626 630 627
627 627 633 627
626

Ro = 626

385 385 488 488
407 422 487 459
462 452 487 456
467 462 491 469
480 478 499 477

493 485 503 487
493 494 513 480
490 476 513 493
484 471 515 491
486 469 516 485

471 471 514 477
472 472 514 478
470 470 514 477
470 465 511 485
469 466 507 481

464 464 518 475
464 464 514 474
468 468 525 471
467 467 526 468
470 470 521 471

468 468 491 474
472 472 500 472
472 472 496 472
473 473 492 470
472 472 488 471

472 472 486 472
472 472 478 472
472 472 472 472
472

R1 = 684

860 865 763 763
852 831 764 795
802 804 765 801
797 800 760 789
789 785 753 782

773 781 749 774
773 770 738 785
781 795 738 770
790 801 737 775
786 807 736 783

807 807 738 790
806 806 738 789
808 808 738 790
807 814 741 783
810 813 747 789

816 816 734 798
816 816 739 801
812 812 729 806
813 813 728 812
809 809 734 808

812 812 776 805
807 807 767 806
806 806 774 806
805 805 780 808
807 807 787 808

807 807 789 807
806 806 797 808
806 806 805 808
8O6

R~ = 582

Decimal point preceding each entry has been omitted.



1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29

349 450 481 481
410 481 507 469
467 497 506 497
480 508 518 511
491 498 519 510

482 519 530 523
486 517 519 522
509 503 518 521
504 526 518 526
500 521 516 522

493 512 514 500
498 507 517 511
495 501 518 503
495 503 518 506
490 500 522 505

485 501 516 499
484 504 528 497
475 499 522 497
481 495 525 491
485 493 502 494

488 485 495 496
492 488 497 496
492 489 496 493
497 489 497 495
495 493 496 494

495 497 495 494
495 495 492 494
495 495 491 495
495

No = 390

893 799 770 770
843 771 743 782
789 756 744 753
776 744 732 739
767 756 731 742

781 732 720 728
779 735 731 729
752 753 733 732
756 728 733 726
764 735 737 730

771 747 740 756
765 755 736 745
770 761 736 754
768 758 736 752
774 762 731 754

779 761 738 761
780 757 724 765
791 762 730 764
786 767 728 772
780 769 755 769

776 779 763 767
771 776 761 767
771 775 762 771
764 775 761 768
767 770 766 769

767 764 767 769
767 767 771 768
767 767 772 768
767

Ro = 619

340 412 502 502
411 462 516 511
451 486 514 524
473 504 535 542
506 508 535 521

495 514 548 538
485 502 533 537
491 491 535 528
495 496 516 537
492 492 514 534

493 500 508 528
497 496 510 541
499 497 510 529
511 497 509 526
511 499 518 521

512 512 523 527
507 522 536 524
504 522 542 519
507 524 540 518
508 519 535 517

508 515 533 515
510 514 532 514
510 511 530 515
515 512 525 516
514 514 515 517

515 516 516 516
515 515 517 516
515 515 516 516
515

R~ = 646

901 835 749 749
842 791 734 740
807 768 736 726
786 750 714 707
749 745 714 732

762 739 700 714
777 754 716 714
770 766 715 725
765 765 737 717
771 769 740 720

770 760 747 727 C~
766 766 746 713 ~
764 765 746 728 ~
750 766 746 731 ~’~

749 764 738 738 ~

748 750 732 731 ~
755 737 717 735 ~.
758 737 713 740
755 734 715 741 ~
753 740 722 743 ~
754 745 723 745
752 746 725 746
752 749 727 745
744 748 733 744
746 747 745 742

746 743 743 744
745 745 743 744
745 745 743 744
745

R~ = 638



TABLE 3 (Cont.)
Total Squared Errors of Prediction and Weight-Validities for Four Methods and a Single Criterion

Methods

First New Sample
Weight-Validities Total Errors

1 2 3 5 1 2 3

383 408 511 511 859 843 747 747

Second New Sample
Weight-Validities Total Errors

1 2 3 5 1 2 3 5 ~

377 406 531 531 866 845 723 723 ~
2
3
4
5

6
7
8
9

10

12

14

16
17
18
19
20

21
2~

26
27
28
~9

402 446 524 507
477 440 518 530
489 489 516 526
487 487 523 511

521 52i 527 509
511 511 530 504
514 514 534 505
514 528 535 518
505 529 537 524

518 528 536 520
531 538 534 514
534 538 531 517
534 542 530 530
529 536 549 525

530 532 546 524
536 531 543 527
538 524 541 530
533 527 541 535
533 527 553 536

535 530 547 533
533 533 550 532
535 535 552 530
534 534 548 531
534 534 535 534

535 535 535 534
534 534 535 533
533 533 532 532
533

No = 345

872 820 732 759
791 839 741 731
780 780 753 740
788 788 742 759

745 745 735 760
759 759 731 770
754 754 726 770
754 737 726 756
769 737 724 746

754 738 727 754
737 726 735 759
733 727 738 756
734 721 739 740
741 729 716 746

739 737 722 747
732 739 726 742
731 747 728 738
738 744 728 733
737 745 712 733

736 739 719 738
737 737 716 739
735 735 712 740
735 735 717 740
735 735 732 736

733 733 732 736
735 735 732 737
736 736 737 737
736

Ro = 676

426 450 535 523
480 466 530 532
496 496 524 514
491 491 530 505

515 515 536 508
512 512 536 504
516 522 535 505
513 520 535 510
508 512 532 515

509 504 531 504
506 503 513 505
500 507 506 502
505 513 505 510
506 512 516 509

511 512 507 502
519 508 510 508
514 502 513 507
509 504 512 506
506 500 519 507

506 507 521 501
503 503 518 495
503 503 519 497
502 502 518 501
503 503 509 502

504 504 509 502
502 502 503 502
502 502 497 501
5O2

R~ = 649

837 813 718 736
780 799 724 727
764 764 735 754
773 773 727 767

746 746 720 763
750 750 721 768
747 741 722 768
752 745 722 761
762 757 727 753

764 766 730 768
771 770 756 767
780 766 768 772
774 759 768 761
773 759 759 764

766 761 771 776
756 771 766 768
763 780 762 770
770 777 763 773
774 783 752 773

775 774 750 783
779 779 756 792
781 781 755 788
783 783 757 784
781 781 769 782

780 780 769 782
782 782 778 782
782 782 788 783
782

R~ -- 630



1
2
3
4
5

6
7
8
9

10

11
12
13
~4
15

~.6
17
18
19
2O

22
23
24
25
26
27
28
29

412 490 561 561
454 493 556 556
471 485 557 561
502 538 558 557
538 550 564 578

519 534 560 550
526 525 562 550
522 520 560 552
527 524 560 542
519 520 547 543

515 525 551 535
511 531 548 531
507 519 547 529
512 518 55I 533
515 519 544 532

514 508 546 525
499 521 547 519
512 528 568 518
515 535 560 518
513 536 557 522

515 537 554 528
522 535 553 528
528 530 553 528
525 530 548 530
528 527 547 527

530 524 525 526
528 525 529 527
528 528 529 527
527

No = 300

831 762 691 691
794 757 692 692
781 766 691 685
750 710 689 690
711 698 682 667
733 716 686 698
726 726 685 697
732 732 686 695
726 728 686 707
734 733 701 706

740 727 697 715
746 720 700 718
747 734 701 721
742 734 696 717
738 732 704 718

738 743 702 725
755 730 701 732
741 723 677 733
737 715 686 732
740 715 690 728

737 713 694 722
729 716 694 723
722 721 694 722
726 721 701 721
722 724 702 724

721 727 726 725
723 726 721 724
723 723 722 724
723

Ro = 608

477 466 542 542
478 460 545 545
505 474 548 539
531 524 546 548
554 578 540 556

550 577 539 544
577 569 540 555
567 572 554 559
557 568 554 573
547 559 565 574

542 548 566 568
547 556 569 564
541 556 566 560
551 554 563 552
540 548 571 555

546 544 574 556
540 547 580 553
544 549 585 557
542 554 578 554
537 556 575 552
536 546 571 553
537 546 573 548
541 545 570 546
546 543 572 549
547 545 572 547

548 544 559 547
549 550 551 548
550 548 546 548
550

R~ = 664

776 783 710 710
771 789 704 704
745 776 701 710
718 726 702 701
693 668 708 692

698 668 710 704
667 677 709 693
679 672 694 688
690 677 694 673
701 688 682 671

707 700 681 677
701 691 677 682
708 692 681 687
697 694 683 696
709 701 675 692

702 706 671 691
709 701 665 695
705 700 659 690
7O6 694 666 693
713 691 670 695
714 703 674 695
712 702 672 700
708 704 675 702
702 706 673 698
701 704 673 701

700 705 688 702
700 698 697 700
698 700 703 700
698

R~ = 664



TABLE 3 (Cont.)
Total Squared Errors of Prediction a~ad Wave-Validities for Four Methods and a Single Criterion

Methods

First New Sample
Weight-Validities Total Errors

1 2 3 5 1 2 3 5

Second New Sample
Weight-Validities Total Errors

1 2 3 5 1 2 3

1
2
3
4
5

6
7
8
9

10

11
12

16
17
18
19
20

24

26

28
29

457 457 561 561
503 526 592 592
575 561 590 587
565 586 590 600
574 574 597 580

574 579 596 580
568 574 612 572
569 570 611 571
561 581 612 584
561 579 612 584

565 580 614 592
566 580 608 582
569 574 607 575
574 569 616 584
580 570 612 581

577 571 608 579
580 571 608 578
582 573 620 574
578 575 602 573
580 579 600 571

582 575 599 575
578 578 600 576
579 578 589 575
578 580 591 577
577 577 58I 574

575 578 573 573
575 577 572 573
576 575 569 573
576

No = 255

794 794 687 687
749 723 650 650
670 686 652 655.
684 657 652 640
673 672 644 665

673 667 645 665
682 673 627 676
680 679 627 677
692 666 626 661
692 670 626 662

686 669 624 652
685 668 631 665
682 675 633 674
675 683 622 663
667 681 625 667

672 681 630 669
667 680 631 672
665 677 616 676
671 674 638 676
668 669 640 679

666 674 642 674
671 670 640 673
670 670 654 674
671 667 652 672
672 672 667 675

674 670 676 677
674 672 678 677
673 674 682 677
673

R0 = 646

383 383 473 473
422 422 443 443
432 420 443 445
442 439 443 450
454 446 446 442

463 456 439 433
462 463 446 437
463 463 446 442
456 459 446 449
456 464 447 450

456 464 449 448
449 463 441 452
450 463 436 458
449 459 435 462
456 458 438 465

452 462 441 467
447 457 435 465
447 456 442 459
447 456 434 453
445 454 435 453
448 449 435 451
448 452 443 451
448 453 449 452
449 447 449 454
448 447 452 454

448 448 457 453
448 448 457 453
448 448 456 454
448

R~ = 717

871 871 780 780
838 838 820 820
838 845 820 822
831 833 819 819
819 827 817 830
812 817 825 841
814 811 817 840
811 813 818 831
822 814 821 822
823 812 821 825
824 814 818 826
832 814 827 823
831 815 832 816
833 820 834 812
825 820 832 810

831 815 830 809
836 820 836 812
836 822 828 817
836 823 841 825
837 825 840 825

833 831 839 827
833 828 833 828
832 827 828 826
831 834 829 824
832 s34 s2s s25
833 833 821 825
833 832 822 825
832 833 823 824
832

R~ = 563



1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29

377 377 498 498
371 371 506 519
456 456 507 513
457 457 508 497
469 469 498 496

458 458 525 492
445 445 519 501
459 459 522 505
470 470 521 489
476 476 522 495

479 487 521 488
489 483 526 485
490 491 520 493
488 490 519 493
494 491 509 483

486 486 514 488
489 493 500 488
488 491 499 492
492 492 499 497
491 490 499 499

487 488 504 495
490 494 507 497
494 496 506 496
492 496 500 496
490 494 488 495

492 492 490 495
493 493 486 493
493 493 486 494
493

No = 210

869 869 753 753
889 889 745 732
805 805 744 744
805 805 743 772
793 793 754 772
806 806 727 778
832 832 740 772
819 819 736 763
809 809 737 783
800 800 735 777

796 784 737 791
785 792 732 800
785 783 740 785
790 788 743 786
781 786 762 801

794 796 756 794
793 789 774 796
794 792 773 790
789 792 774 784
790 794 773 781
796 796 766 786
792 788 762 782
788 785 764 785
790 785 775 786
793 787 795 788

790 790 794 787
789 789 798 789
789 789 797 788
789

Ro = 670

445 445 571 571
489 489 566 575
573 573 563 571
536 536 563 568
525 525 565 548

511 511 572 549
488 488 570 552
488 488 576 562
489 489 575 554
497 497 573 551

499 502 571 552
498 507 569 534
510 517 552 528
510 512 554 519
515 514 560 516

519 519 561 517
522 520 554 516
522 522 539 516
522 523 538 526
519 523 540 524

521 526 532 520
527 528 542 518
529 526 542 517
526 529 542 516
524 526 539 515

524 524 523 517
524 524 519 519
524 524 520 519
524

R~ = 605

803 803 676 676
763 763 680 670
672 672 684 674
720 720 683 680
740 740 681 706

757 757 673 705
792 792 677 705
790 790 670 692
793 793 671 704
781 781 673 712

781 773 677 715
782 769 679 742
767 757 701 746
770 765 699 759
761 763 695 764

757 758 695 764
754 757 705 766
753 757 725 768
753 755 727 755
758 755 725 758

758 750 732 763
751 748 720 766
750 751 722 767
753 750 724 770
756 754 730 771

756 756 754 769
756 756 759 767
757 757 758 767
757

R: = 652



TABLE 3 (Cont.)
Total Squared Errors of Prediction and Weight-Validities for Four iV[ethods and a Single Criterion

Methods

First New Sample
Weight-Validities Total Errors

1 2 3 5 1 2 3 5

350 457 587 587 889 791 658 658

Second New Sample
Weight-Validities Total Errors

1 2 3 5 1 2 3 5 ~

295 408 540 540 940 839 709 709 ~
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
2O

21
22
23
24
25

26
27
28
29

471 520 588 585
512 507 581 569
509 529 591 569
504 526 579 570

520 520 578 561
520 512 582 563
537 528 584 556
540 530 573 566
535 533 574 559

546 529 563 558
541 538 557 561
538 537 559 561
540 533 555 557
545 539 555 559

550 541 554 551
555 544 550 556
559 549 550 559
559 552 552 559
560 551 558 559

557 551 550 557
555 554 543 554
556 556 543 555
556 556 544 556
554 556 539 555

554 554 539 555
554 555 538 554
554 555 551 554
555

No = 165

798 730 657 658
753 756 665 677
761 732 652 678
777 742 665 679

756 756 666 695
757 768 661 696
733 745 660 707
731 744 676 698
739 740 675 710

725 746 696 709
733 734 707 706
737 738 704 706
736 744 710 712
729 737 712 710

723 734 713 724
716 731 719 717
712 724 719 714
712 722 717 715
712 723 708 716
719 724 721 720
722 72I 733 724
720 718 733 724
721 721 732 722
724 721 740 723

724 724 740 723
724 723 741 724
724 723 727 724
723

Ro = 666

445 499 541 521
486 475 543 521
495 499 537 512
492 495 539 502
502 502 534 507
505 511 547 505
508 513 537 501
510 514 538 469
503 516 541 464
507 514 527 473
513 518 522 485
518 511 523 492
514 508 522 493
514 508 529 487
521 514 529 485
506 504 528 488
508 508 529 490
508 499 534 490
510 503 538 495

505 504 536 495
503 505 532 495
503 506 532 497
503 503 527 499
501 503 528 500

501 501 528 501
501 502 529 500
501 502 499 500
502

R~ = 679

833 753 708 731
705 734789 797

781 772 712 747
789 781 710 760
776 776 716 757
772 763 702 763
768 762 716 769
762 760 717 811
773 753 714 819
765 755 736 806
757 748 743 792
750 758 741 783
755 764 744 782
755 763 735 793
747 757 735 797
766 769 736 791
763 764 735 792
766 776 729 792
765 770 722 785

771 770 725 786
775 769 731 786
775 769 731 784
774 775 741 782
778 774 740 780

777 778 740 779
777 776 738 779
777 776 778 780
777

R, = 646



1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29

380 380 546 546
418 418 536 531
474 474 536 526
492 492 534 521
529 529 534 504

517 517 541 516
517 514 542 526
512 498 521 514

.496 473 512 492
462 467 516 495

457 465 509 480
439 473 509 483
432 452 509 470
423 433 520 457
427 433 522 446

424 430 506 448
430 427 496 441
436 426 479 439
434 426 479 440
433 431 484 440

438 425 485 440
444 427 475 440
447 428 478 442
449 426 482 440
444 428 466 440

445 433 462 441
443 432 448 442
443 442 441 442
443

No = 120

865 865 703 703
843 843 718 720
806 806 718 729
792 792 720 741
749 749 721 767

773 773 713 759
769 777 712 748
781 804 743 766
807 840 754 8O7
858 854 750 808

865 852 759 839
894 843 759 831
910 895 759 852
928 929 752 881
926 925 749 898

935 932 775 898
931 940 789 909
920 942 816 915
916 944 816 916
925 934 817 917

920 945 816 916
910 944 835 918
905 941 838 915
902 943 833 917
912 935 863 918

910 926 870 917
913 931 904 914
914 916 917 915
914

Ro = 737

451 451 514 514
481 481 543 519
467 467 545 548
490 490 545 540
504 504 545 514

482 482 535 527
471 483 533 521
483 468 501 499
467 456 505 494
451 463 504 470

435 455 490 453
420 451 490 448
431 437 490 441
435 422 503 445
429 415 502 449

435 425 480 447
437 430 487 454
443 428 479 451
448 426 473 449
449 429 474 447

442 429 473 442
446 432 480 442
443 430 454 441
443 433 450 441
444 437 432 441

441 441 428 440
441 444 434 440
441 443 440 441
441

RI = 638

797 797 738 738
774 774 706 731
811 811 704 700
788 788 704 712
776 776 704 747

809 809 717 734
825 807 720 745
820 830 759 778
845 848 752 804
875 850 753 846

895 866 770 866
927 870 770 869
917 905 770 880
919 939 758 889
931 943 760 886

935 932 790 894
936 934 783 887
918 940 795 897
901 947 802 901
901 939 810 907

915 942 812 915
906 938 809 914
909 940 852 915
908 935 862 915
910 922 895 916

915 915 905 918
916 912 921 916
916 912 917 916
916

R2 = 642



TABLE 3 (Cont.)
Total Squared Errors of Prediction and Weight-Validities for Four Methods and a Single Criterion

Methods

First New Sample
Weight-Validities Total Errors

1 2 3 5 1 2 3 5

Second New Sample
Weight-Validities Total Errors

1 2 3 5 1 2 3

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29

253 335 513 513
389 376 497 425
475 341 485 434
436 428 482 426
419 445 484 425

392 422 491 435
395 409 456 434
390 407 450 412
392 383 451 405
356 392 458 399

363 380 441 393
357 394 432 377
374 391 426 372
398 366 388 375
411 378 388 370

400 393 389 376
391 391 400 477
393 393 400 382
398 392 404 384
395 392 410 389

395 388 411 384
396 390 390 380
387 386 390 381
390 387 381 385
387 393 376 388

386 397 381 388
388 391 384 388
389 389 385 389
389

No = 75

971 903 737 737
914 917 753 868
820 1037 768 884
935 936 783 921

1004 938 782 1002

1085 995 774 1005
1099 1036 822 1034
1140 1050 830 1093
1126 1116 830 1107
1193 1140 820 1150

1181 1199 847 1156
1203 1210 863 1199
1195 1217 900 1220
1145 1281 1034 1221
1117 1234 1034 1246

1129 1201 1036 1257
1170 1170 1027 1259
1186 1186 1027 1249
1169 1192 1023 1242
1174 1184 1013 1228

1178 1204 1011 1242
1182 1214 1084 1252
1201 1224 1104 1250
1204 1224 1111 1244
1235 1208 1123 1249

1249 1216 1228 1247
1251 1235 1230 1248
1248 1248 1226 1249
1251

R0 = 854

350 480 592 592
474 522 591 532
549 504 566 559
540 555 586 565
522 565 588 534

489 541 591 545
521 526 570 537
537 542 568 525
551 532 568 521
516 531 569 518

518 545 557 518
518 537 566 486
516 539 560 503
528 523 532 504
530 524 533 511

524 534 520 501
527 527 537 492
528 528 536 492
527 521 540 495
520 518 543 498

515 507 543 493
511 510 540 492
499 505 544 491
504 506 516 493
493 508 512 493

490 504 504 494
490 494 504 493
491 491 505 493
491

R1 = 608

885 770 655 655
800 738 656 723
727 808 680 706
794 755 660 709
846 757 657 821

925 809 654 816
865 840 684 849
870 809 687 877
841 835 686 883
924 868 686 906

918 873 703 902
913 913 695 987
931 899 716 949
905 929 792 954
902 920 791 955

903 893 816 981
901 901 799 1004
914 914 801 1005
917 932 797 1003
935 939 791 997

945 968 790 1014
958 972 813 1016
978 987 809 1016
978 983 872 1016

1014 980 883 1021

1031 994 984 1020
1031 1013 989 1023
1029 1029 988 1022
1030

R~ = 684



1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29

--137 344 429 429
083 241 429 503
235 204 503 267
201 187 492 224
208 208 467 173

176 200 426 150
179 222 412 148
143 232 424 191
076 210 432 187
065 164 347 197

074 159 336 209
044 179 337 289
032 186 317 296
026 205 321 273
029 184 279 267

050 191 270 258
047 205 264 242
047 174 257 223
044 204 305 225
039 232 222 218

027 249 196 217
012 252 198 210

-030 244 138 199
-037 240 164 -085
--046 242 143 -085

-050 237 134 -085
-067 225 209 -085
--072 227 196 -085
-085

No ~ 30

* Value greater than ~en.

1009 1001 817 817
* 1269 817 754

1330 1316 754 1483
1350 1302 766 1597
1314 1295 791 1951

1432 1336 836 2008
1594 1307 850 2061
1772 1334 846 2004
2291 1427 852 1986
2308 1630 984 2748

2379 1626 1015 2766
3088 1602 1012 3817
3642 1616 1036 3869
3573 1611 1045 4735
3773 1935 1117 4798

3622 1999 1126 4795
3672 2009 1152 6552
3908 2365 1181 8157
4863 2608 1169 8160
6698 3134 1547 8106

* 5221 1648 8195
* 6507 1708 8322
* 7984 2427 8718
* 8435 3041 *
* 9995 4042 *

* * 4934 *
* * 6529 *
* * 9073 *
.

Ro = 999

--139 436 411 411
114 376 411 544
355 365 545 302
322 325 537 260
345 354 529 254

322 373 479 220
323 398 473 237
298 407 477 294
231 373 509 293
184 333 413 281

205 350 442 301
197 379 440 213
196 391 427 222
192 392 427 259
179 363 403 255

190 330 400 250
183 306 419 159
175 263 387 105
142 275 447 107
108 258 411 105

074 205 391 097
058 189 376 091

--007 175 279 086
--015 173 274 --077
--048 159 287 --077

--065 171 215 --076
--069 161 164 --076
--069 138 092 --076
--077

R1 = 619

1009 874 838 838
* 1029 837 709

1113 1043 709 1440
1146 1071 718 1549
1096 1039 725 1821

1201 1020 779 1920
1312 989 786 1856
1503 1004 790 1833
1960 1114 758 1823
2137 1256 909 2120

2168 1257 865 2137
2767 1207 867 3708
3194 1207 878 3739
3149 1222 887 4338

1451 938 43883332

3153 1523 943 4323
3257 1588 933 6374
3487 1865 980 7761
4445 2015 957 7803

2568 1169 78236227

* 4682 1237 7856
* 5703 1326 7902
* 7060 2056 8218
* 7470 2310 *
* 8797 3290 *

* 9289 3873 *
* 8726 5785 *
* * 8519 *
,

R2 ~ 672
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the outcome of the latter would presumably be much more subject to random
variability of weight-validities from rank to rank.

In Table 3 are presented data from ten additional original samples from
the criterion-1 (All-University) population, with sizes ranging from 435 down
to 30 cases. Here all sets of weights from each original sample were cross-
validated on two new samples, where again each new sample consisted of
252 cases. Total squared errors of prediction are presented as well as weight-
validities for each of the 20 new samples. Method 4 was omitted from this
phase of the computations. At the bottom of each page of Table 3 are given,
in addition to the original sample size No, the full-rank multiple correlations
for the three samples represented by that page; these are denoted by R0, R~
and R2 for the original sample, first new sample, and second new sample,
respectively.

Since the criterion variable (as well as the predictors) was normalized
before the computations were carried out, the total squared errors of pre-
diction are comparable from sample to sample as well as from method to
method and rank to rank. Expressed in normal deviates, the criterion mean
is zero and the sum of squares is one. Thus if a prediction of zero were made
for each case, without ever going to the trouble of computing regression
weights, the total squared errors of prediction would be one. Since, for
example, the total squared errors of prediction using the full-rank weights
from an original sample of size 75 are greater than one in both new samples,
it appears that this particular regression equation is worse than useless. Yet
for this same sample the rank-1 errors for method 3 of .737 and .655 are
actually lower than either of the full-rank errors obtained for the sample
of 390 cases, which were .767 and .745. In general, it may be seen that the
lower-rank errors obtained with method 3 using small original samples com-
pare favorably, or at least not unfavorably, with the full-rank errors obtained
using large original samples. A similar trend may be noted, though not so
clearly, with regard to weight-validities.

Table 4 was prepared from Table 3 in a manner analogous to the prepara-
tion of Table 2 from Table 1. Here, of course, only one criterion variable
is involved, and the comparisons are made with respect to total squared
errors of prediction as well as to weight-validities. For the larger original-
sample sizes, the outcomes of the comparisons are not appreciably affected by
the index of accuracy used. For the smaller sizes, however, the total squared
errors of prediction tend to favor method 3 over the other methods and the
lower ranks over the higher to a greater extent than do the weight-validities.
In the present series of samples, just as in the preceding series, method 3
appears to be definitely superior to the other methods. And even for the
largest original-sample sizes, method 3 appears preferable to the full-rank
system.

It appears that method 3 could be used to considerable advantage in
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TABLE 4
Comparison Between Four Reduced-Rank Methods With Respect to Weight-Validities

and Total Squared Errors of Prediction for a Single Criterion

Number of ranks for which Number of ranks for which
index is superior index is superior

Sample to other methods to full-rank method
Size Methods Index W1 ~1 W2 ~h2 W~ ~ W~ ~

~’i~-:’~ 1
435 2

3
5
1

390 2
3
5
1

345 2
3
5
1

300 2
3
5
1

255 ~ 2

1
210 2

3
5
1

165 2
3
5
1

120 2
3
5
1

75 2
3
5
1

30 2
3
5

2.33 2.33 .25 0.
3.33 3.83 .25 0.

21.5 21. 26.75 27.5
.83 .83 .75 .5

1.33 1. 0. 0.
2.33 2. .33 .5

19. 20.5 14.33 15.5
5.33 4.5 13.33 12.

.83 .5 2.5 1.5
3.83 3.5 3.5 4.

20.83 21.5 20.5 22.
2.5 2.5 1.5 .5
1. 1. 2. 2.
0. 0. 3. 3.

24. 24. 18. 18.
3. 3. 5. 5.
1. 1. 2.5 2.
2. 2. 10.5 8.
23. 23. 4. 6.5
2. 2. 11. 11.5

.33 .33 2. 1.5

.33 1.33 2. 1.5
21. 22. 21.5 22.5
6.33 4.33 2.5 2.5
4.33 4.5 0. 0.
3.83 5.5 1. 1.

11.5 14.5 26.5 26.5
8.33 3.5 .5 .5
1. 1. 1.5 0.
0. 0. 2.5 2.

26.5 26.5 22.5 24.5
.5 .5 1.5 1.5

5.33 0. 0. 0.
"3.33 1. 1.5 0.

18.5 26.5 26. 27.5
.83 .5 .5 .5

0. 0. 0. 0.
9. 0. 2. 0.
17.5 26.5 25. 26.5
1.5 1.5 1. 1.5

6.5 6.5 10.5 11
3.5 5. 8.5 10

18. 20. 27.5 28
0. 0. 17.5 19.5
8. 7.5 2. 2.
18.5 18.5 6.5 8.
24. 24.5 20.5 22.5
19. 17. 24. 25.
12. 10. 20.5 24.
10. 9.5 20. 22.
18. 21. 27. 27.
5. 4. 20.5 21.5
6.5 5. 6. 6.

12.5 12. 11.5 11.5
27. 27. 20. 20.
20.5 20.5 16. 16.5
11.5 13.5 16.5 14.
13. 14.5 19.5 20.5
24. 24. 8. 21.
14.5 14.5 21.5 27.
3. 5.5 8. 13.5
5.5 9.5 9.5 14.5

24. 24. 25. 26.
18.5 21.5 14.5 14
7. 8.5 18.5 20.5
4. 6.5 19.5 24.
15. 21. 27. 27.
22.5 22. 6.5 8.
15. 19.5 19.5 20.
11. 13. 14.5 16.
27. 27. 24. 26.
16. 17.5 23.5 25.5
18. 27.5 26. 23.5
17.5 27. 28. 26.5
20.5 27. 28. 28.
12. 25. 28. 26.5
27. 28. 27. 28.
28. 28. 28. 28.
28. 28. 28. 28.
25.5 25. 24. 26.
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either of two situations. The first would be where, for a given original-sample
size, one wanted the greatest accuracy of prediction obtainable. The other
would be where, for a given accuracy of prediction, one wanted to use the
smallest possible original sample. In order actually to compute the coefficients
for a reduced-rank prediction equation, however, one has, of course, to select
the particular rank to be used. To provide some indication as to how satis-
factory the statistics W and ¢ would be for this purpose, they are computed
for the original samples of Table 3 using (46) and (96), respectively. 
were computed only for method 3, since the other methods are dependent
on the criterion observations for order of selection, contrary to the assump-
tions used in deriving the above statistics. These estimated values for weight-
validities and total squared errors of prediction are given in Table 5. To
facilitate comparisons, the obtained values from Table 3 are reproduced in
the adiacent columns. At the bottom of each page are given the original-
sample size and the full-rank multiple correlations for the two cross-valida-
tion samples. The multiple correlation and the estimated population correla-
tion, from (32), in the original sample are given for each rank. The column
headed a is an estimate of the standard error of ¢, and may be derived as
follows. We let a be a column vector composed of the elements of z2 and z~
in (91). Then we may write

(135) ¢_ N~-LN - L apa’

where the elements a~ of a are independently distributed with mean zero and
variance ~. The variance of a’a will be

(136) Var (a’a) = E[(a’a)~] -- [E(aPa)]~.

Under the reduced-rank hypothesis, a’a will be simply the error sum of
squares in the original sample, so that from (71), the second term on the
right of (136) will 

(137) [E(a’a)] ~ = [(N - L)a~]~ = (N -- L)~a4.

Expanding the first term on the right of (136), we obtain

(138) E[(a’a) ~] = (N -- L)E(a~) -4- (N -- L)(N -- L -- 1)E(a~a~), i ~ j.

Since the a~ are independent, we have

(139) E(a~a~) = E(a~)E(a~) i ~ j.

If the elements of the criterion vector, y, are assumed to be normally dis-
tributed, the elements of a, being linear combinations of the criterion observa-
tions, will also be normally distributed. Thus we have (Cram~r, 1946, p. 212) 

(140) E(a~) = ~.
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TABLE 5
Estimated and Obtained Measures of Accuracy of Prediction Using

Method of Largest Principal-Axes Factors

1 539 538 048 536 582 488 712 663 763
2 549 546 048 543 596 487 705 647 764
3 549 545 048 540 596 487 708 647 765
4 550 544 048 538 599 491 711 643 760
5 558 551 048 543 603 499 705 638 753

6 559 550 048 542 608 503 707 633 749
7 568 558 048 548 619 513 700 619 738
8 568 556 048 545 620 513 703 617 738
9 568 555 048 543 620 515 706 617 737

10 568 554 049 540 620 516 709 618 736

11 571 555 049 540 613 514 709 625 738
12 571 554 049 537 613 514 712 625 738
13 571 552 049 534 613 514 716 625 738
14 571 551 049 532 614 511 718 624 741
15 578 557 049 536 613 507 714 625 747

16 583 561 049 539 617 518 711 620 734
17 584 561 049 538 617 514 713 619 739
18 590 566 049 543 624 525 708 611 729
19 593 568 049 543 622 526 707 613 728
20 594 567 049 542 629 521 709 604 734

21 609 582 048 556 614 491 693 623 776
22 611 583 048 557 619 500 693 617 767
23 615 586 048 558 617 496 691 620 774
24 617 587 048 558 621 492 692 616 780
25 619 588 048 558 615 488 692 623 787

26 619 587 048 556 615 486 695 624 789
27 622 589 048 557 610 478 694 630 797
28 625 590 048 558 608 472 693 633 805
29 626 591 049 557 613 472 694 626 806

No = 435 R~ = 684 R~ = 582

Decimal point preceding each entry has been omitted.
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TABLE 5 (Cont.)
Estimated and Obtained Measures of Accuracy of Prediction Using

Method of Largest Principal-Axes Factors

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29

545 544 051 542 481 502 706 770 749
554 550 050 547 507 516 701 743 734
554 549 050 544 506 514 704 744 736
562 555 050 549 518 535 699 732 714
562 554 050 546 519 535 702 731 714

568 559 050 550 530 548 698 720 700
571 560 050 550 519 533 698 731 716
578 565 050 553 518 535 694 733 715
585 571 050 558 518 516 689 733 737
586 571 050 556 516 514 692 737 740

587 571 050 555 514 508 693 740 747.
587 569 051 552 517 510 697 736 746
588 568 051 549 518 510 700 736 746
588 567 051 546 518 509 703 736 746
591 569 051 547 522 518 703 731 738

592 568 051 545 516 523 705 738 732
595 570 051 546 528 536 704 724 717
605 579 051 554 522 542 695 730 713
607 579 051 553 525 540 697 728 715
610 582 051 554 502 535 696 755 722

611 581 052 552 495 533 699 763 723
611 579 052 550 497 532 702 761 725
614 582 052 551 496 530 701 762 727
615 581 052 549 497 525 703 761 733
619 583 052 550 496 515 702 766 745

619 582 052 548 495 516 705 767 743
619 581 052 545 492 517 709 771 743
619 579 053 542 491 516 712 772 743
619 578 053 539 495 515 715 767 745

No = 390 R1 ~ 646 R~ = 638



TABLE ;5 ~.Con~.)
EstLmated a~d Ob~i,ne& Measures,ofeA:deU~aa~ ’of ~P.r~dictiea:,Usin~.

Method of,.Larges~ ~rihcipal~kxes I~adto~s

~"~ 1 ~"( 598 596 :~-~. 049 ~5~ 595 511 ~’:;~: 531 ~, :~’ 646. 747 : 723
:~,, ~ 2 :.~!~ 601 598 ;,: i" 049 ,’,~.,~ 595~ 524 ,,i "535 ’,, ~, 646 732 L 718
’U~ 3 ~ ~;~ 605 600 ~-~ 049 :._ 7 ~ff 518 ,~,’/, 530 : ~ ~ 645" 741 .-: 724
Y5~ 4~’ 622 616 ,;i "~ 048 .,55 6t0: 516 [;~:" 524 7~: ;: 628 753 : 735
?, ~’ 5 ~d:: 625 618 ~,’.~ 048 ~ ~;~: 611~ 523 ~;7’,: 530 ~ * ", 0275 742 (, 727

~}’~" 6 ~.-~,, 62Z 618 ~:;:~ 048 ;~:~ 61:0. 527 ,~",536 :,, 5 629: 735 ~ 720
~: 7 ~?; 6~ 618 ?~ :: 048 !:;~( 60g, 530 ~,,*,~ 536 - :7~ 63~: 731 7 721
~ ~ 8 ;:,,~ 6~ 618 :-5~, 049 ’;~, 6~, 534 ~:’,:/535 ~ ,5 632~ 726 ~: 722
.... Jr, 9 ::~;:, 630 617 * (;~ 049 ~}i)~, 604: 535 ,: :;~ 535 (,~ 636~ 726 ’ 722
~:5 10 :: 63T 619 ~’049 ’,:~’, 6~, 537 ’,:~532 ~’-i 6~5~ 724 ~;~ 727

’~2~’11 ~’~’ 63g- 619(;i;e, 049 .’~, ~3 536 :~;,~531 ’,:_~ 637:: 727 ~ 730

",;~
12 ~:~ :, ~ : 6~i 624 ;55 049 ;¢~ 7:.;~;~(, "; 6~:, 534 ,5.~513 ~’~,: 631= 735£~ 75~~ 13 6~3 625 049 ;-.5 6~ 531 , ~,)506 ’~ ~, 633: 738 76~

~: 141;:);) 6~" 623 ;;~,049 ~,,~ 60~:. 530~;;,~505,t~:/. 636 739-’[ 76~,
5"~ 15 ~.,; 652: 631 ~7(.049 :~:~.~: 612. 549 !:,~;516 5~. 628~ 716 ~ 759

, :,~*16 :’~ ; 654~ 633 ~ !5~049 ~:[ 612: 546 ~:;507 [’,~;- 62% 722 :;; 771
~;~) 17 ::;- 658 635 ~;¢c,049 ’;’i~ 613~ 543 ~;::~510 ~.:~’ 6~ 726 ~.~ 766
,~ 18:75 659: 635 J,S,~049 d~ 61~15 541 ~*~.513 ~,5 6~ 728 :~: 762
~’~t 19 ~’~;; 659: 633 ~V;5049 ()~;5 ~ 541 ~,’~512 ~.~;~ ~2! 728 [:~ 763
:":,~20 ~:’;~;; 661: 634 ?,7~049 75i; ~9~ 553 ~,:519 ~:;;C, ~. 712 ’,;~: 752

~,,;k21. :~;~ 66~- 636 ~C049 ~ ~:: 547 ~:.~’,521 [:;~(; ~2~ 719 ’,~ 750
i.’~’~22 .,~:: ~6[ 637 ~7c~050 ~,~; 6105 550 ~:;i;5518 ’,;~ ~5 716 ~ 756
b?~ 23 *~):~ ~7 636 ~)~050 ¢:~. 6~; 552 ;:;~519 ~-5 635:; 712 ~::’ 755
~’~) 24 *~)~ 6~ 637 !:7g050 ~t~-e. 69T~ 548 ~5:~518 ’,~:~i: 63~ 717 :~L 757
2~-:25 2’;- ~3: 641 ~:/e.0~ ~tt~ 61~=, 535 [.~,:~5~ ~:~5 6325 732 ~’.’: 769

d~b 26 :)[,:~ 67~7 639 ~050 5~ii 607/~ 535 ::i)(~509 ~(. 63~ 732 ,)L 769
’~ 27 ~¢:~ 67~: 639 "~5050 (~:5 ~, 535 5~,,503 ~5 63~’) 732 7~ 778
::C! 28 ~ : 675" 639 ~}:~’~,051 ~’5, 6~ 532 ~i~497 ~;i:.[ 6~ 737 ~: 788
~i) 29 ~V:7 6767 638 ~7~e.051 7~e, 6~2~. 533 ~~502 :~.5 6~:; 736 ~ 782

t0~ ~- ~ No = 345 ~,~ = ?,~ R, = 649 ~: = ~’/~ R~ = 630
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TABLE 5 (Cont.)
Estimated and Obtained Measures of Accuracy of Prediction Using

Method of Largest Principal-Axes Fuctors

R0 Re ~ ]/~ W1 W2 ¢ ~1 ~2

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29

493 490 062 487 561 542 762 691 710
524 519 060 515 556 545 735 692 704
524 517 060 511 557 548 740 691 701
525 516 061 506 558 546 744 689 702
552 541 059 531 564 540 719 682 708

553 540 059 528 560 539 722 686 710
553 538 060 523 562 540 727 685 709
559 542 060 525 560 554 725 686 694
559 540 060 521 560 554 730 686 694
563 542 060 521 547 565 730 701 682

564 540 061 518 551 566 734 697 681
566 540 061 515 548 569 737 700 677
568 540 061 513 547 566 739 701 681
568 538 062 510 551 563 743 696 683
577 545 062 516 544 571 738 704 675

579 546 062 515 546 574 739 702 671
583 548 062 515 547 580 739 701 665
590 554 062 520 568 585 735 677 659
593 554 062 519 560 578 736 686 666
593 553 062 515 557 575 741 690 670

595 553 063 513 554 571 743 694 674
595 550 063 509 553 573 748 694 672
596 549 064 506 553 570 752 694 675
598 549 064 504 548 572 755 701 673
598 546 065 500 547 572 760 702 673

604 552 064 504 525 559 755 726 688
606 552 065 503 529 551 758 721 697
607 550 065 499 529 546 762 722 703
608 549 066 496 527 550 766 723 698

No = 300 RI = 664 R~ ~ 664
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TABLE 5 (Cont.)
Estimated and Obtained Measures of Accuracy of Prediction Using

Method of Largest Principal-Axes Factors

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29

559 557 061 555 561 473 692 687 780
593 588 058 584 592 443 659 650 820
593 587 059 580 590 443 663 652 820
593 585 059 576 590 443 669 652 819
595 584 060 573 597 446 672 644 817

596 583 060 570 596 439 676 645 825
599 583 061 568 612 446 678 627 817
599 581 061 564 611 446 683 627 818
601 581 062 562 612 446 686 626 821
601 579 062 557 612 447 691 626 821

601 577 063 553 614 449 696 624 818
602 576 063 550 608 441 700 631 827
604 575 064 547 607 436 704 633 832
605 574 064 545 616 435 707 622 834
607 573 065 542 612 438 711 625 832

608 572 065 539 608 441 714 630 830
612 575 065 540 608 435 714 631 836
618 579 065 542 620 442 711 616 828
623 582 065 544 602 434 710 638 841
623 580 066 540 600 435 716 640 840

626 581 066 539 599 435 717 642 839
639 593 065 551 600 443 704 640 833
640 593 065 549 589 449 707 654 828
641 591 066 545 591 449 712 652 829
644 592 066 545 581 452 713 667 828

645 592 067 543 573 457 716 676 821
645 590 067 538 572 457 722 678 822
646 587 068 534 569 456 727 682 823
646 586 069 531 576 448 732 673 832

No = 225 R1 = 717 R~ = 563
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o~

~g8 90~0

8[8 11~0

088 16080
Og8

0~.8 200~

888 220~,0
828 23~53
~8
8~8

8~, =

530~;~ 071,:o.5 Og,4.

506?.;.o 566~A~~
g:2.~ 745~ 680

52S~t-i 07~0,~ ~.9 507,,~., 563:.~5 ~,1 74~. 684
525~ 07~3q5 9~ 508j~.,~ 563,:A~. ~ 743~ 683
5315.!,~ 0727e5 ~ 498:~,o 565t .~, ~3fi 7545 681

566d~L, 069005 ~59 525~a,~ 572;:45 ~9 727c 673
5S~)L~ 067~]~ ~,q,4 519,;,,, 570:.~5 ~83 740~ 677
5860~~ 067I£0 ~,~,~ 522~;,,~ 576~ ~ 736~ 670
583i~M 068~[a ~ 521~:~,.~ 575~.~a ~8 737,~ 671
581~14 0692Lo ~ 522~:;,o 573,.~ ~9~ 73~); 673

5800~~ 070~.~:0 ~ 521~:;~,, 5717~. ~,~ 737i, 677
57~j 070~00 ~2 52~.:;~,~ 569,-5 ~2 7322; 679

579dZr. 07~3,0 ~ 51~.;,,~ 554.~ ~9 7436; 6~9
59~g~ 0702t~ ~8 509,-~,~ 560::55 6~,~ 762~. 695

593i~t. 07180~ ~ 514;,~,~ 561~75 ~9~ 756~,. 695 .
5965~t 071g’,}O ~5~ 500,=;~,~ 554,=~5 ~ 774~ 705
603~2t~ 0709% ~ 499(.~,, 539,~-5 ~] 773~;: 725
601~g,. 071~6~ ~ 499¢;,, 538,2~5 ~ 774;}~ 727
5985~:. 0720;2} ~ 499:,;,,, 540,,,ga ~ 7735~ 725

600a~;~~ 072e~ ~ 504:,-~,~ 532~4~. ~9~ 766[~ 732
599~4 07300;) ~ 507;5:~,~ 542::~ ~ 7622~ 720597~t 074~187’

~ 5065;~o 542;:~5 ~ 764~ 722
599~bt. 074[05 ~ 5003~~ 542,qa ~ 775~.; 724
600(:5~_ 074185 ~ 488::~;~(, 539~;;,5 ~ 7955~ 730

60275~ 074~75 ~ 4907;~o 523,225 ~9 794~2 754
60075¢ 075~275 ~ 486~;,~ 519~,% ~ 7987~ 759
59705~ 076@C ~ 486~ ,a 5207~5 ~9 797g~2 758
6~,~ 076~75 0~ 4933~),, 524.,35 ~ 789~ 757

210 717 = ?h R~ = 605 ,?:~. = ~9! ~ = 653
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Estimated aiad ObCaine&~Me’a~)ares’~o~
Method of,’Lai, ge~t’Principal,AXeS :Faeto~

54~

639

649

659
659

540~ t,’. 078,~6 536 587r~(~ 54(~4(. 7tl~ 658r 709
536:..,’. 079;1~;(. 5~28 58&:~’!i 541:78 7~1 657- 708
537..~:. 080:~:?, 5~5 581~’() 543;’,;~. ~5 665~ 705
548:.*,. 079 qT, 533 591=~(’ 537;;;i(, 7,16 652~ 712
564:., ". 078.-~:~, ~ 579:::0 539:5¢. 7~ 665~ 710

569.:~,. 078~i: 5~ 57~;1~(: 53~,~. 701 666, 716
569::::;. 079~-5 ~:5 58~(~, 54~a)~ ~05 661~ 702
581’~’’. 078~~5 5~5 58~;"0 53~;)t, ~5 660~ 716
588~:~": 078’:~(. ~ 573~(~b 538~(~5 ~0 676: 717
585~’~; 079i~5 5~ 574~"~ 541~(~5 ~9~ 675;~ 714

605 "~ 077,:~ff, ’~ 563’ ~:t~ 52~)0~, ~ff 696L:: 736
609’.~ 07~(~;~ 5~4 557".¢: 522:0¢. 675 707:~ 7~3
606~" 078;~L "568 559’~0 523’"~, 683 704":,
603:’~,. 0791:’4 "~2 5557[:~ 522,0~) (691 710 ~ 7~
601t,;. 080~(. ~ 555’~0 529~5 :697 712:.~ 735

598’;’~ 08DO?, ~ 55~e~ 529{00 frO5 713,~: 735
594,;~ 08~,f~.~ ~5~5 550~(~() 52~00 ~i3 7197~ 736
591":~ 08~5~- 5~ 550;~t 529’[~ ~1 71~ 735
58~:~* 085.~’~ ~ 552~(~[ 53~.(Ib ~29 717)r 729
585, ;, 086~’~-~ :~7 558i(~ 53~T~ ~737 708~2 722

583::~ 087,;~t- 522 55~:0~: 536; ;,* ;~4 721;~ 725
586’~* 087;-~! 5~ 543~ ~! 532~ I~; ~74"4 733?? 731
582* ,=~ 08~7b 51~ 543:(~ ~ 53~.~0 :7~ 733:;~ 731
580 ’:., 090~2};4 514 54¢;b ~ 527~5 ,7~ 73~ ? 741
578~’;~091;}i~ ~ 53~.r 528:~:,; ,767 7401~ 740

573~ ~, 093.:i~ ~99 539,~, 528)~ ~7 740)L 740
569’;.~ 09~ ~92 538~5; 52~b ~ 74Ii~ 738
573 q ~ 094~ l ~9~ 551~0~ 499;~’.b 7~ 727~? 778
570’, ~ 096r{¢ ~. ~7 555~ ~ 502R:Q ~4 723]~ 777

No = 165 ........ R~ =-6;9- .......... R~-= 64&~--
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TABLE 5 (Cont.)
Estimated and Obtained Measures of Accuracy of Prediction Using

Method of Largest Principal-Axes Factors

R0 Re ~ W Wl W2 ¢ ~, ¢~

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29

554 549 091 543 546 514 705 703 738
582 572 088 563 536 543 684 718 706
582 568 090 553 536 545 695 718 704
582 563 092 543 534 545 706 720 704
582 557 094 533 534 545 718 721 704

597 568 093 540 541 535 711 713 717
598 563 095 531 542 533 723 712 720
607 569 096 533 521 501 72i 743 759
637 598 092 561 512 505 691 754 752
638 594 094 553 516 504 701 750 753

647 600 094 556 509 490 699 759 770
647 595 096 547 509 490 711 759 770
647 590 098 537 509 490 723 759 770
660 601 097 547 520 503 713 752 758
660 596 099 538 522 502 725 749 760

674 609 098 549 506 480 714 775 790
678 608 099 546 496 487 720 789 783
683 610 100 544 479 479 723 816 795
683 605 102 536 479 473 734 816 802
699 622 100 553 484 474 716 817 810

699 617 102 544 485 473 728 816 812
703 617 104 541 475 480 733 835 809
712 624 103 547 478 454 728 838 852
713 622 105 541 482 450 736 833 862
725 633 104 553 466 432 724 863 895

726 630 106 546 462 428 734 870 905
735 638 105 554 448 434 726 904 921
737 635 107 548 441 440 735 917 917
737 630 110 539 443 441 748 914 916

No = 120 R1 = 638 R2 = 642
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TABLE 5 (Cont.)
Estimated and Obtained Measures of Accuracy of Prediction Using

Method of Largest Principal-Axes Factors

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
2O

21
22
23
24
25

26
27
28
29

520 510 122 501 513 592 749 737 655
536 517 123 499 497 591 752 753 656
563 537 122 512 485 566 740 768 680
604 573 117 544 482 586 707 783 660
606 567 121 531 484 588 724 782 657

615 569 122 527 491 591 730 774 654
634 584 122 537 456 570 721 822 684
635 576 126 522 450 568 740 830 687
635 567 130 506 451 568 760 830 686
637 561 134 494 458 569 777 820 686

655 575 134 505 441 557 767 847 703
661 574 136 499 432 566 777 863 695
689 604 132 529 426 560 745 900 716
763 698 108 638 388 532 609 1034 792
763 692 112 627 388 533 626 1034 791

767 691 115 622 389 520 634 1036 816
797 727 105 663 400 537 578 1027 799
797 722 109 653 400 536 594 1027 801
798 716 113 643 404 540 611 1023 797
799 712 117 634 410 543 624 1013 791

799 706 121 624 411 543 642 1011 790
807 712 121 629 390 540 637 1084 813
818 723 120 640 390 544 623 1104 809
826 731 120 646 381 516 615 1111 872
827 725 124 636 376 512 633 1123 883

850 758 113 676 381 504 573 1228 984
850 752 118 666 384 504 590 1230 989
850 746 123 655 385 505 609 1226 988
854 748 125 655 389 491 611 1251 1030

No = 75 R1 = 608 R2 = 684
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TABDE ~
Est~,te’dv~:ud2ObtalneduM4a.,turemof, lA~du~aey~0~P~e4ictio~,’l~Sing

Metho~d :of~Large.~t’~l~incipul~’~es ~a~to~

558 1YS~ ~9~ 573~5 176~15 555 429[£[ 411018 69:4g 817 i 838
~,~ 2~7 ~93 552H~5 191~t}~ ~’1~4 429~:~ 411~I~ 7~2 817~ 837
088 380~ 662 613~)~)5 18058t~ 567. 503~’~ 545785 687, 7548 709
(~08 488~ 681’ 617~5 187 ~. 5~ 492 7 [ [ 537 875 70~D 766 ~ 718
Y58 5~87 690 610a~, 199 t,~} 539 467 i f:[ 529 7~6 73@ 791 ~ 725

~-~8 6t~77 ~ 634J:{~ 199I{~- 557. 426~[ 479~0~, 7;~ 836d 779
~80 7~8 732 628978 211~5I~ 5~ 412~I 473~8~ 747~ 8507 786
~80 8088 ~ 626g05 22205~ 526 4240~ 477078 7~0 846~ 790
OgO 9’0E3 759 6293~}~ 232 [51 ~ 4320~[ 50970~ 786 852~t 758
3gO 100~8 803 683ff~5 21585t. ~1 347[.8[ 413[05 712’ 984(~[ 909

807 117t3 823 701755 215[-~t- 59~ 336t-~ 442575 6~ 1015.~[ 865
~,~0 12~;)8 82~ 682~i)5 237~3~’ 5~ 33758[ 440t-YS. 750 1012~f 8~y

~Y 1300~ 830 6710~5 2565~. 5~2 31728~ ~7~0~ ~89 1036i:[ 8~8
~ 14Y~OI 83~ 661~85 275333 523 32180[ ~73~ ~5 1045t.[ 8~7

I~ 15.~30I 8~3 65088~ 29783~ 501~ 279~I[ 403~ 866 11175[ 938

013 160~0[ 8~ 623995 332~38 ~59 2705I[ 400100 938 1126~[ 943
~QY 177¢0.[ ~8 5927~5 37200~ ~1~ 26450.~ 4197[~ 1018 11527[ 933
I08 187~0i 853 566385 41100~ 375 257~0i 3872~7 1088 11818[ 980
~07 193~0[ ~72 5890t~5 418~0~ 398 305~:~[ 4470i7 1067 1169(t[ 957
I97 20~i0[ ~ 6828~5 3640[~ 5t~ 2227[ [ 411~I7 892 1547021169

007 21II0): 91-1) 6608~5 409[i~ 47~ 196~9[ 391307 959 1648~ 1237
~I3 22880[ 9’l~D 6250~-5 4739~ ~ 198[~ 376~[~ 1052 1708P21326
~0~ 23~0[[ ~59 773~t5 3360~ 62~ 1380~[ 2793~7 ~I2 24278~2056
~Y3 24[Ii.[ ~¢ 805~[5 317133 ~.9 1640~[ 274I~7 ~ 3041~-£2310
8~3 253~[[ ~ 820~I5 32107~ ~2 143~I 28752Y 6~ 4042~,~3290

~8~ 263~[ 978 824t05 345188 ~ 1348I[ 2153~7 ~ 4934323873
~39 270~ 9~ 875~05 281~88 7~@ 2093[[ 164~57 ~ 65297!: 5785
889 280~I ~’~ 916505 219583 ~ 1968~[ 0920~Y ~0; 9073~ 8519
O¢OI2915~[ 99~ 975[~t- 081033 ~9 --085~.2~0773~.? 0~9; * (~ *

$80 = ~.~ No = 30 300 = ~% R~ = 619 ~7 = o~/~ R~ = 672

* Value greater than ten.
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In an effort to evaluate the success of ¢ as an indicator of the rank
corresponding to the lowest expected error of prediction, two comparisons
were made. First, it would seem reasonable to require that the total squared
errors of prediction for the selected rank be closer to the lowest value obtained
in a given sample than to the highest. This is the case, however, in only 9 of
the 16 samples. A second comparison, intended to control for variability in
the obtained errors of prediction, was made on the basis of the rank orders
(from lowest to highest) of these values in the individual samples. For each
member of each pair of samples corresponding to a particular original sample,
the rank corresponding to rank-order 1 was determined. The rank order in
the opposite member of the pair of the error of prediction corresponding to
the optimal rank in the first member was then obtained. The average of
these 16 rank orders was 7.4, suggesting a fair degree of stability in optimal
rank. In contrast to this value, the average rank order of the errors of pre-
diction corresponding to the selected ranks was 12.4. Since, if the ranks had
been selected at random, the expected rank order would be 15, it appears
that ¢ does not provide a satisfactory basis for selection. However, a better
basis does not appear to be available.

We consider now the results of Table 5 for the original-sample sizes of 75
and 30. For the higher ranks, both estimates appear to break down com-
pletely. For the lower ranks, taking into account the large standard errors,
the two estimates appear to do about as well as in the larger samples. Because
of these large standard errors, however, ¢ and W are not very helpful as
guides to the absolute magnitude of the corresponding expected values. If
taken as an aid to judgment rather than as an index to be applied blindly,
¢ in particular might be of value in arriving at an optimal rank. In the origin~l
sample of size 30, the lowest value of ¢ for ranks below 24 occurred for rank 3.
Very little judgment is required to select a rank-3 solution in preference to a
solution of rank 24 or more on a sample of 30 cases. As it turned out, the
optimal rank was in fact 3 in both cross-validation samples. In the original
sample of size 75, the alternative to a rank-4 solution would be one of rank 14
or more. For samples of 75 cases an optimal rank of 14 is certainly possible,
though unlikely. In any event, it appears that, providing unrealistically low
values for higher ranks are ignored, ¢ is potentially of some value in deciding
what rank to use for small samples as well as for large ones.

It will be recalled that in deriving ¢ and W, the assumption was made
that the factor loadings of the predictor matrix would be constant from sample
to sample. Thus the very limited success of these statistics may be due to
the failure to take sampling variation of the factor loadings into account.
This, of course, could not have been done within the context of regression
theory, since there only the criterion variable is considered random. The
regression model was selected for this study largely on the basis of its sim-
plicity, but also on the grounds that it is the model generally used in con-
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nection with prediction problems. However, it seems likely that an analysis
of prediction problems in terms of the multivariate normal model of correla-
tion theory or in terms of some other model where the predictor variables
are considered random would lead to more successful estimates of accuracy
of prediction than those obtained using regression theory.



8UMMARY AND

¯ he pr~gry concern of ~his study hgs been with ~he possibility of us~g
redueed-rgnk solutions for regression weights ~o inoregse ghe geour~ey of
~redie~ion obtainable in future samples. Using regression theory, a ~eneraI
faotor model for redueed-r~nk prediction was developed. I~ was shown ghgg,
~ errors in ghe criterion observations are not to be oapigali~ed upon, the
opgimgl b~sis for determining g lower-rgnk solution will be ~he amount of
varignee aeeounged for in the ~rediogor data magrix. ~hus the best glge~nggive
~o redueed-rgnk methods ghg~ seek go obtain the maximum multiple eorreIg=
gion with the origerion would be the method of largest principal-axes f~egors,
gs suggested by Horsg (1941). Gsgimages of the weighg-wlidigies gnd
squgred errors of prediogion go be 6xpeoged when ~ g~rgieulgr set of weights
is gpplied in future samples were also derived.

An empiriegl comparison of five particular redueed-rgnk methods was
carried oug, using 29 predictors and with pgrtigl replieggion on five eriterig,
Weights were computed on samples rgng~g from 30 go 435 egses. As expeeged,
ghe method of largest grinei~gl-gxes factors was markedly superior to the
other methods tested. This superiority was quite general, a~pe~ring in all
samples for some criteria, grid in some samples for ~II erigeri~. The gbove
~ding, together with the very poor showing of ~he method of smallest
prineipgl-gxes fgetors, supports the ~onelusion reggrding ~he imporggnee of
prediegor vgrianee aeeounged for by ghe ]ower-rgnk system. ~he fgeg ghgg
ghe Igrgesg prineipgl-gxes fgegors tended to give more geourage prediegions
thgn d:d ghe prineip~I-gxes fgegors hgving the highes~ multiple eorrelggion
with the criterion suggests the desk~bility of seleodng prediogo~ indepen=
dengly of the origerion obserwgions. The exceptions ~o this trend for the
l~rge~ orig~gl-sgmple sizes on some erigerig indicates the desirability of
developing some sort of stggisgiegl test for deciding when ~he predictor=
selection methods using the criterion observations mgy be advangggeously
gpplied.

Although gheir ~tgndgrd errors were rg~her large, espeeiglly in small
sgmples, ghe es~Mgges of weigh~-vglidigy and of total squared errors of pre=
diegion ~o be expected in future sgmples ~ppegred to be regsongbly serviceable
as reggrds absolute mggnitude. As go relggive magnitude from one rgnk
gnogher, however, i~ mgy be questioned whether g rgnk ohosen on the bgsis
of these esg~gtes would be preferable to ~ r~nk chosen ~ rgndom. As esgi=
mates of either absolute or relg~ive mggnigude, ig seems likely ghag the



Statistics. derived.,here, cohld
the predmtor var~abI~s ~ m their f~ctS~ load~gg w~re ~akeh .into account.

vv ~nou~ suc~ ~prove~ essences, ~ne ~rge ootea~m!:a~v~tages QI reduced-
ran ~ctho~s demonstrated here, ~anng~,~be-f~liz~rea~cd~ )Thus it vould
s~m~-we!i~orthw~le ~ :~de~take an, ~nulysis. ohpredictiOn)pr051~s us~g

a-s~%isti~i~.::modd.,w~oh;~un~like:reSre~ioh theb~:,’-~ea$s)%he’:pmdictors as
random variables.

Until more efficient methods are developed, it is suggested that ~ regres-
sion equation based on the subset of largest principal-axes factors for which
¢ is smallest will be the best ~vailable. For samples with less than, s~y, 50
degrees of freedom, this procedure must be supplemented by ~ subjective
process to the extent of ignoring low values of ¢ for r~nks of say, ten or more.

Although this procedure leaves considerable room for ~provement, the
relewnt evidence seems sufficiently favorable to warrant further empirical

research. At any r~te, the strong possibility has been r~ised that the con-
ventional full-rank weights can almost always be improved upon even in
samples of several hundred c~ses. Such weights, moreover, m~y give predic-
tions only slightly more accurate th~n those made from weights obtainable
with samples of as few as 30 cases.
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