Recommended citation:
Burket, G. R. (1964). A Study of Reduced Rank Models for Multiple Prediction (Psychometric Monograph No. 12). Richmond, VA: Psychometric Corporation. Retrieved from http://www.psychometrika.org/journal/online/MN12.pdf

A STUDY OF REDUCED RANK MODELS FOR MULTIPLE PREDICTION

This Study Was Supported in Part by
Office of Naval Research Contract Nonr-477(33) and Public Health Research Grant M-743(C7)
Principal Investigator: Paul Horst

Reproduction, translation, publication, use, and disposal in whole or in part by or for the United States Government is permitted.

The William Byrd Press, Inc.

 Richmond, Virginia
A STUDY OF REDUCED RANK MODELS FOR MULTIPLE PREDICTION

By
GEORGE R. BURKET
AMERICAN INSTITUTE FOR RESEARCH
AND
UNIVERSITY OF PITTSBURGH

Copyright, 1964, by the Psychometric Corporation. All Rights Reserved.

A STUDY OF REDUCED RANK MODELS FOR MULTIPLE PREDICTION

By
George R. Burket

AMERICAN INSTITUTE FOR RESEARCH
AND
UNIVERSITY OF PITTSBURGH

PREFACE

Prediction problems frequently arise in which the regression weights must be based on a relatively small number of criterion observations. In such cases, current techniques permit the utilization of only a very few predictors, even though many more may be available. Unless one or more of the predictors is closely related to the criterion, accurate predictions cannot be made. The possibility of increasing the accuracy of prediction under such circumstances through the use of reduced-rank methods is investigated in this study.

On the basis of normal regression theory, a general reduced-rank model is formulated in terms of prediction from factor scores. The problems of selecting a method of factoring, of selecting an optimal subset of prespecified size from among a given set of factors, and of selecting an optimal rank are considered. It is shown that in the absence of criterion observations, the optimally chosen reduced-rank solution will be the one that accounts for the greatest proportion of variance in the full-rank predictor matrix. Prediction either from subsets of the original predictors, which are equivalent to triangular factors, or from principal-axes factors is considered. It is concluded that, when degrees of freedom are sufficiently limited, the most accurate predictions obtainable will be those based on the largest principal-axes factors. As a tentative solution to the problem of optimal rank, estimates are derived which are intended to indicate the accuracy of prediction to be expected when regression weights computed on the basis of data in one sample are applied to data in other samples.

An empirical comparison of five reduced-rank methods is carried out, employing a variety of ranks, sample sizes, and criteria. The five methods include prediction from the principal-axes factors, selected in three different ways, and from the original predictors, selected in two different ways. The results indicate that weights computed by the method of largest principalaxes factors on samples with as few as 30 cases can give predictions as accurate as those from weights computed by conventional techniques on samples of several hundred cases.

The present monograph was submitted as a doctoral dissertation at the University of Washington in July 1962. The writer wishes to thank his sponsor, Professor Paul Horst, for the invaluable blend of criticism and encouragement that he provided. The work for the present monograph was largely supported by Office of Naval Research Contract Nonr. 477(33) and Public Health Research Grant M-743(C7) (principal investigator: Paul Horst). Acknowledgment is due Mrs. Judy Goodstein and Mrs. Helen Ranck for their work in typing and proofreading the manuscript.

George R. Burket

[^0]
TABLE OF CONTENTS

Page
Preface vii
Chapter

1. Introduction 1
Basic Requirements 1
The Statistical Model 1
Purpose of the Study 3
2. Implications of Regression Theory for Reduced-Rank Models 6
The General Linear Hypothesis 6
Metric and the Status of the Multiple Correlation 8
The Accuracy of Prediction in Future Samples 10
The General Reduced-Rank Model 13
Some Particular Reduced-Rank Procedures 19
The Problem of Finding an Optimal Reduced-Rank Solution 23
3. An Empirical Comparison of Five Reduced-Rank Procedures 26
The Data 26
Method 27
Results and Discussion 29
4. Summary and Conclusions 64
References 65

LIST OF TABLES

Page
Table 1. Weight-Validities for Four Methods and Five Criteria 30
Table 2. Comparisons Between Four Reduced-Rank Methods With Re- spect to Weight-Validities for Five Criteria 37
Table 3. Total Squared Errors of Prediction and Weight-Validities for Four Methods and a Single Criterion 38
Table 4. Comparison Between Four Reduced-Rank Methods With Re- spect to Weight-Validities and Total Squared Errors of Prediction for a Single Criterion 49
Table 5. Estimated and Obtained Measures of Accuracy of Prediction Using Method of Largest Principal-Axes Factors 51

INTRODUCTION

Basic Requirements

Accurate predictions of an individual's degree of success or failure in such socially significant activities as a college course, training for some vocation, or a particular job would be of incalculable utility, both to the individual concerned and to the community. Remarkably accurate predictions of this nature can be obtained with existing statistical techniques, provided that two basic requirements are satisfied. First, there must be measurements available on a number of variables related to performance in the activity of interest. It must be possible to obtain these measurements on any individual before he engages in the activity. Second, such measurements must be obtained for a large number of persons who subsequently engage in the activity.

The first requirement can almost always be met. Indeed, it is usually possible to find many variables having at least some relation to performance in the criterion activity. To obtain measurements on a large number of variables may be expensive, but accurate predictions of many activities are of sufficient value to warrant large expenditures. The second requirement is much less likely to be satisfied, since the number of persons who actually engage in a particular activity is often limited. This is particularly true for activities requiring an unusual degree of ability, where accurate predictions are apt to be most desired. Many socially significant activities are full-time occupations which individuals must pursue for years before their success or failure can be determined. If the number of persons engaging in such an activity is too small to permit application of existing techniques, no feasible expenditure will yield accurate predictions. We need new techniques.

The Statistical Model

A system for obtaining the best possible predictions for a given criterion would be the following. First, determine all variables, termed predictors, not statistically independent of the criterion. Then obtain measurements of predictors and criterion on a sufficiently large validation sample so that every possible configuration of predictor values is represented by a large number of cases. Compute the criterion mean for each of these configurations. To make a prediction for a particular case, determine the configuration of the predictors for that case. The prediction will be the criterion mean for cases in the validation sample having that configuration.

Such a system is unworkable because of practical limitations on sample size and number of predictors. Under certain circumstances, moreover, a much simpler system could give equally accurate predictions. If, for example, the criterion means were known to be functionally related to the predictors, it would only be necessary to determine this function. In practice, such a functional relation is virtually always assumed. It may also happen that a small subset of all variables statistically related to the criterion will give predictions as accurate as the entire set. Even where a very large number of independent predictors is readily available, the number that may actually be used is limited by the available sample size. This is because it is necessary to have many more cases than there are parameters in the assumed functional relation between predictors and criterion mean. Otherwise one could not obtain stable estimates of these parameters.

In least-squares or regression theory and also in correlation theory, the mean of the criterion is assumed to be a linear function of the predictors. In correlation theory, predictors and criterion are assumed to be random variables having a joint multivariate normal distribution. In regression theory, the criterion is assumed to be a normally distributed random variable, while the predictors are thought of as being fixed. Anderson (1958, p. 61) recommends using one model or the other depending on whether or not the predictors may be considered random. Mood (1950, p. 312) states that, in practice, most correlation problems can be more appropriately handled by regression methods. In many cases, the two models have led to equivalent procedures; under the null hypothesis, estimates of regression weights, test criteria, and probability theory are all the same. However, when the null hypothesis (viz., that predictors and criterion are independent) is not true, the probability theory differs.
In prediction problems in psychology, the predictor variables are generally random rather than fixed, and the null hypothesis is rarely true. Thus correlation theory would appear to be more appropriate. However, since correlation theory is considerably more complex and difficult to apply than regression theory, the latter is generally used, with the hope that the practical differences between conclusions drawn from the two models will be negligible. In the present study, prediction problems will for the most part be considered within the context of regression theory.

It may prove useful at this point to make the distinction between actual prediction problems and validation problems. In validation problems, the goal is to demonstrate a systematic relationship between a number of "independent variables" and a "dependent variable." To accomplish this, one formulates the null hypothesis of no relationship and hopes to reject it at some level of confidence. Thus, for validation problems, correlation theory and regression theory are equivalent. In prediction problems, on the other hand, the null hypothesis is assumed to be false. The goal is to obtain a
regression equation which, when applied to predictor measures in future samples, will give the most accurate estimate possible of the corresponding criterion values. Having obtained such a regression equation, one would also wish to have estimates or confidence intervals indicating the accuracy to be expected when the regression equation is applied to new samples. In validation problems, the multiple correlation is often used as a measure of relationship between the dependent and independent variables. It is sometimes termed a validity coefficient, or simply a validity. In prediction problems, the correlation between the prediction and the criterion in new samples may be used as a measure of accuracy of prediction. Such a coefficient may be termed a weight-validity to distinguish it from the multiple correlation coefficient between the prediction battery and the criterion in the original sample.

Purpose of the Study

The present study is concerned with prediction problems as opposed to validation problems. Regression theory in its current form is adequate for those applications in which the available number of cases far exceeds the available number of predictors, i.e., in which the number of degrees of freedom is large. In such cases, weight-validity will be very close to battery validity, and the least-squares estimates of the regression weights will provide optimal predictions. But when the number of predictors available is relatively large in relation to sample size, as is perhaps more often than not the case, problems arise that lack satisfactory theoretical answers. One such problem is that of estimating an index, such as weight-validity, that will provide some idea of the accuracy of prediction to be expected in new samples. A more important problem is that of determining the regression weights which will give the most accurate predictions possible in new samples.

These optimal weights will not in general be given by the conventional least-squares solution applied to all available predictors. For example, if the number of predictors is the same as the number of cases in the sample, the least-squares weights for an arbitrary subset of predictors will usually give better weight-validity (though lower validity) than the weights for the entire set. More generally, in such an extreme case, any lower-rank approximation to the matrix of predictor values would give better predictions than the complete matrix. As the situation becomes less and less extreme, there must come a point where some ranks and some methods of rank reduction and not others are preferable to the complete matrix. At a still less extreme point, the entire set of predictors will presumably give better predictions than any reduced-rank approximation. Still, when predictors are discarded, the loss of accuracy of prediction may be so slight as to be more than offset by the practical savings of not having to measure as many predictors.

Thus in any prediction problem where the number of degrees of freedom
is limited, the question of rank reduction arises: can the complete predictor matrix be improved upon, and if so, which method of reduction and which rank will give the greatest improvement? When its purpose is to give more accurate prediction by increasing degrees of freedom, the much-studied predictor selection problem is a special case of the rank-reduction problem. Predictor selection methods are more often used, however, in situations where an upper limit on the size of the prediction battery is given by considerations of cost. The emphasis is thus on obtaining an optimal set of predictors of a particular size rather than on obtaining optimal predictions regardless of battery size. Perhaps because of the prevalence of the former emphasis, particularly before the advent of electronic computers, the problem of predictor selection has received a great deal more attention than the general problem of rank reduction.

Most methods of predictor selection are alike in selecting first the variable having the highest single validity, and adding, step by step, the variable which, together with those previously selected, will give the greatest increase in the multiple correlation with the criterion. These so-called accretion methods differ with respect to computational procedure and method of deciding how many predictors to use. Perhaps the computationally simplest such method is the square-root (or triangular-factoring) method described by Summerfield and Lubin (1951). Horst has generalized and extended this method for absolute (1955) and differential (1954) prediction of multiple criteria. Horst and MacEwan (1960) have described a method which is essentially the reverse of the accretion method. Here one eliminates at each step the predictor contributing least to the multiple correlation. The accretion and elimination methods will not in general result in the same battery, nor will either of them necessarily give the battery of given size having the highest obtainable validity.

Horst (1941) has suggested two models for reduced-rank prediction. His rationale is based upon the factor analysis hypothesis that the predictor matrix is basic only because of the presence of error or specific factors. One of these models assumes the presence of specifics. Accordingly, the matrix of predictor intercorrelations is augmented by the vector of criterion correlations and communality estimates are placed in the diagonal prior to factoring. Least-squares weights are then computed for the common factors. This method was tested by Leiman (1951) using 12 predictors and computing weights on samples of 30 cases. A rank- 3 solution gave weight-validities which were significantly higher than those obtained with the full-rank solution. This method has the disadvantage of being difficult to treat theoretically, since the nature of communalities and of the factor scores (which are not unique) are not well understood. The other model suggested by Horst accomplishes rank reduction by attempting to remove error factors rather than specific factors. Here the best least-squares approximation to the predictor intercorrelation matrix is
used, the principal-axes solution. One advantage of this method is that it is theoretically straightforward. Another advantage is that rank reduction is accomplished independently of the criterion and thus does not capitalize on the errors in the criterion.

Virtually the exact opposite of this model has been implicitly suggested by Guttman (1958). Since the inverse of the predictor correlation matrix is directly involved in computing regression weights, one might well base predictions on the best lower-rank approximation to the inverse rather than on the approximation to the intercorrelation matrix. The best set of factors for approximating the inverse is, as Guttman points out, the worst for approximating the intercorrelation matrix. In view of this paradox, perhaps one should abandon approximation as a criterion for selecting the factors to be retained for prediction and simply use those factors giving the highest multiple correlation, as is attempted in the predictor-selection methods. Certainly the basic assumption of the rationale for approximating the intercorrelation matrix may be questioned: that the reliable variance is concentrated in the larger princpal-axes factors, the smaller factors being composed mainly of error. For example, in a study by Davis (1945) involving nine principal-axes factors, a strict correspondence between variance contribution and reliability was not found; e.g., the split-half reliability for the eighth factor was larger than for the fourth factor.

The present study proceeds along both theoretical and empirical lines. First an attempt is made to work out some of the consequences of regression theory for reduced-rank models. Since, as noted above, there is reason to question the appropriateness of regression theory for psychological prediction problems, an empirical comparison of five reduced-rank procedures is also carried out. The methods used were predictor elimination, predictor selection, the method of approximating the intercorrelation matrix, the method of approximating the inverse, and the method using the principal-axes factors giving the highest multiple correlation. As will be seen, both the theoretical and the empirical evidence favors the method of approximating the intercorrelation matrix.

CHAPTER 2

IMPLICATIONS OF REGRESSION THEORY FOR REDUCED RANK MODELS

The General Linear Hypothesis

Regression theory was first worked out at the beginning of the 19th century by Gauss and Legendre and has since, of course, been presented by innumerable authors from various points of view. Among recent sources, a rigorous presentation with geometrical interpretations has been given by Scheffé (1959). A simpler presentation entirely in terms of matrix algebra is given by Kempthorne (1952). Anderson (1958) provides a generalization to multiple criteria. A presentation in terms of deviation scores may be found in Cramér (1946). Some results from regression theory which are relevant to the rank-reduction problem are summarized below. The derivations, which are for the most part omitted, may be found in the sources mentioned above. Let
y be a column vector of N observations on the criterion;
x be an $N \times M$ matrix of rank $M<N$, each row of which represents an observation on each of M predictors;
e be an N th-order column vector of uncorrelated errors, each distributed normally with mean zero and variance σ^{2};
β be an $M \times 1$ vector of population regression coefficients;
C be a covariance matrix of the variable given in the subscript.
The general linear hypothesis is that

$$
\begin{equation*}
y=x \beta+e \tag{1}
\end{equation*}
$$

The assumptions regarding e, apart from normality, may be stated as

$$
\begin{gather*}
E(e)=0, \tag{2}\\
C_{e}=E\left(e e^{\prime}\right)=\sigma^{2} I . \tag{3}
\end{gather*}
$$

From these equations it follows that the criterion has the expectation

$$
\begin{equation*}
E(y)=x \beta \tag{4}
\end{equation*}
$$

and the covariance matrix

$$
\begin{equation*}
C_{\nu}=E\left[(y-x \beta)(y-x \beta)^{\prime}\right]=\sigma^{2} I . \tag{5}
\end{equation*}
$$

Let
$\hat{\beta}$ be the $M \times 1$ vector of least-squares estimates of the population regression coefficients;
\tilde{y} be the $N \times 1$ vector of estimates of the criterion based on $\hat{\beta}$.
Then

$$
\begin{equation*}
\hat{\beta}=\left(x^{\prime} x\right)^{-1} x^{\prime} y \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{y}=x \hat{\beta} \tag{7}
\end{equation*}
$$

The vector $\hat{\beta}$ has the property of minimizing the sum of squares of the errors in estimating y from \tilde{y}. These errors will be orthogonal to the predictors and also to the estimates themselves. The error sum of squares has the expectation

$$
\begin{equation*}
E\left[(y-\tilde{y})^{\prime}(y-\tilde{y})\right]=(N-M) \sigma^{2} \tag{8}
\end{equation*}
$$

Thus
(9)

$$
\dot{\sigma}^{2}=\frac{(y-\tilde{y})^{\prime}(y-\tilde{y})}{N}
$$

provides an unbiased estimate of σ^{2}. What is generally termed the standard error of estimate is given by $\hat{\sigma}$. The variable $\hat{\sigma}^{2}$ is distributed independently of $\hat{\beta}$.

The estimates of the regression coefficients have the expectation

$$
\begin{equation*}
E(\hat{\beta})=\beta \tag{10}
\end{equation*}
$$

and the covariance matrix

$$
\begin{equation*}
C_{\hat{\beta}}=E\left[(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right]=\sigma^{2}\left(x^{\prime} x\right)^{-1} \tag{11}
\end{equation*}
$$

The estimates of the criterion have the same expectation as the criterion itself,

$$
\begin{equation*}
E(\tilde{y})=E(x \hat{\beta})=x E(\hat{\beta})=x \beta \tag{12}
\end{equation*}
$$

but are not independent, since from (7), (11), and (12),

$$
\begin{equation*}
C_{\tilde{y}}=E\left[(x \hat{\beta}-x \beta)(x \hat{\beta}-x \beta)^{\prime}\right]=x C_{\beta} x^{\prime}=\sigma^{2} x\left(x^{\prime} x\right)^{-1} x^{\prime} . \tag{13}
\end{equation*}
$$

The canonical form of the general linear hypothesis may be obtained as follows. Let x be expressed as

$$
\begin{equation*}
x=u b^{\prime} \tag{14}
\end{equation*}
$$

where u is an $N \times M$ orthonormal matrix of factor scores, and b is an $M \times M$ matrix of factor loadings. Let V be an N by $N-M$ orthonormal matrix such that the $N \times N$ matrix H in

$$
H=\left[\begin{array}{ll}
u & v \tag{15}
\end{array}\right]
$$

is an orthonormal matrix. The matrices u, b, and v are always obtainable, and can be determined solely from the predictors without reference to the criterion. Then the N th-order vector of transformed criterion values

$$
z=\left[\begin{array}{l}
z_{1} \tag{16}\\
z_{2}
\end{array}\right]=H^{\prime} y=\left[\begin{array}{l}
u^{\prime} y \\
v^{\prime} y
\end{array}\right]
$$

has the expectation

$$
E(z)=\left[\begin{array}{l}
E\left(z_{1}\right) \tag{17}\\
E\left(z_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
b^{\prime} \beta \\
0
\end{array}\right]
$$

and the covariance matrix

$$
\begin{equation*}
C_{z}=\sigma^{2} I \tag{18}
\end{equation*}
$$

Thus the best possible predictions for the $N-M$ transformed observations z_{2} will always be zero, regardless of the true regression coefficients or of the particular values of the criterion. The least-squares estimates of the regression weights are so chosen as to reproduce exactly the M transformed observations z_{1} from

$$
\begin{equation*}
z_{1}=u^{\prime} y=b^{\prime} \hat{\beta} \tag{19}
\end{equation*}
$$

so that

$$
\begin{equation*}
\hat{\beta}=b^{-1} u^{\prime} y \tag{20}
\end{equation*}
$$

Equation (20) may also be obtained by putting (14) in (6). Thus, errors can occur only in estimating z_{2}, and since the estimated value of z_{2} is zero, we have

$$
\begin{equation*}
(y-\tilde{y})^{\prime}(y-\tilde{y})=z_{2}^{\prime} z_{2} \tag{21}
\end{equation*}
$$

Metric and the Status of the Multiple Correlation
In regression theory, the multiple correlation coefficient and other functions of the predictors such as means, standard deviations, and covariances do not have the status of population parameters. This is because the predictors are not assumed to be random variables but rather fixed values. Thus, regression theory does not admit of statistical inferences about such functions. However, one can make statistical inferences about such characteristics of future samples as depend on the criterion, provided that the relevant features of the predictor matrix in the future samples are assumed to be known in advance. For example, one can assume that exactly the same predictor matrix will be obtained in future samples or merely that the predictor intercorrelations will be the same. Using the latter assumption and scaling the criterion appropriately, one can define both a sample and a population multiple correlation coefficient.

Except where correlations are concerned, no assumptions about metric are made in the present paper. However, it should be noted that if the equations of the preceding section were to be applied to data in the original units of observation, a correction for origin would be required. This correction will be accomplished if a predictor is added which is defined to be unity for all cases. If this is done, equation (6) of the preceding section may be shown to be identical to the usual formulas for raw-score regression weights, which are typically expressed in terms of means and covariances or correlations and standard deviations.

The question of metric also arises in connection with defining multiple correlation. The assumption made here whenever correlation coefficients are discussed is that all measures are normalized, i.e., expressed as deviations from the sample mean in units of the sample standard deviation multiplied by the square root of the number of cases in the sample. We may now define the square of the multiple correlation in the sample as

$$
\begin{equation*}
R^{2}=\hat{\beta}^{\prime} x^{\prime} x \hat{\beta}=y^{\prime} x\left(x^{\prime} x\right)^{-1} x^{\prime} y \tag{22}
\end{equation*}
$$

and in the population as

$$
\begin{equation*}
\rho^{2}=\beta^{\prime} x^{\prime} x \beta \tag{23}
\end{equation*}
$$

If we let r be the $M \times M$ matrix of predictor intercorrelations, (23) may be: written as

$$
\begin{equation*}
\rho^{2}=\beta^{\prime} r \beta \tag{24}
\end{equation*}
$$

since, on the basis of the assumption about the metric,

$$
\begin{equation*}
r=x^{\prime} x \tag{25}
\end{equation*}
$$

Thus ρ will be a population parameter if it is assumed that the predictor intercorrelations will be the same in all samples.

An unbiased estimate for ρ may be obtained as follows. The expectation of the criterion sum of squares is, from (1),

$$
\begin{equation*}
E\left(y^{\prime} y\right)=E\left[(x \beta+e)^{\prime}(x \beta+e)\right]=\beta^{\prime} x^{\prime} x \beta+2 \beta^{\prime} x^{\prime} E(e)+E\left(e^{\prime} e\right) \tag{26}
\end{equation*}
$$

From (23), the first term on the right is ρ^{2} and from (2) the second term is zero. The third term is the trace of (3). Thus

$$
\begin{equation*}
E\left(y^{\prime} y\right)=\rho^{2}+N \sigma^{2} \tag{27}
\end{equation*}
$$

Since the errors of estimate are orthogonal to the estimates, we have

$$
\begin{equation*}
y^{\prime} y=\tilde{y}^{\prime} \tilde{y}+(y-\tilde{y})^{\prime}(y-\tilde{y}) \tag{28}
\end{equation*}
$$

From (7) and (22), the first term on the right is R^{2}. Thus from (8) and (27),

$$
\begin{align*}
& E\left(R^{2}\right)=E\left(y^{\prime} y\right)-E\left[(y-\tilde{y})^{\prime}(y-\tilde{y})\right] \tag{29}\\
&=\rho^{2}+N \sigma^{2}-(N-M) \sigma^{2}=\rho^{2}+M \sigma^{2}
\end{align*}
$$

Given the assumed metric, the criterion sum of squares will always be unity, so from (27),

$$
\begin{equation*}
\sigma^{2}=\frac{1-\rho^{2}}{N} \tag{30}
\end{equation*}
$$

and (29) may be written as

$$
\begin{equation*}
E\left(R^{2}\right)=\rho^{2}+\frac{M\left(1-\rho^{2}\right)}{N} . \tag{31}
\end{equation*}
$$

From (31) it is clear that the extent to which R^{2} overestimates ρ^{2} will vary directly with the number of predictors and inversely with the sample size. Solving equation (31) for ρ^{2} we obtain the following unbiased estimate for ρ^{2} :

$$
\begin{equation*}
R_{C}^{2}=\frac{N R^{2}-M}{N-M} . \tag{32}
\end{equation*}
$$

Equation (32) will be recognized as the familiar "shrinkage" formula for multiple R.

It is perhaps worth noting that R_{C}, or "shrunken R " is not an estimate of weight-validity or of the shrinkage to be expected in the correlation between the criterion and its estimate if weights computed on one sample are applied in other samples. It does provide an estimate of the correlation that would have been obtained between the criterion and its estimate if the population regression weights had been used instead of their least-squares estimates. Shrunken R may also be thought of as an estimate of the multiple R that could be obtained in a very large sample having the same predictor intercorrelation matrix as the observed sample.

The Accuracy of Prediction in Future Samples

In prediction problems we wish to compute a set of weights from a given sample which will give the most accurate predictions obtainable when applied to other samples. Specifically, we will assume that the sum of squares of the errors of prediction in each other sample is the quantity to be minimized. If we let $\bar{\beta}$ be a set of weights obtained in some fashion from a previous sample, this sum of squares may be written (Kempthorne, 1952) as

$$
\begin{align*}
(y-x \bar{\beta})^{\prime}(y-x \bar{\beta})= & (y-x \hat{\beta})^{\prime}(y-x \hat{\beta}) \tag{33}\\
& +e^{\prime} x\left(x^{\prime} x\right)^{-1} x^{\prime} e+2(\beta-\bar{\beta})^{\prime} x^{\prime} e+(\beta-\bar{\beta})^{\prime} x^{\prime} x(\beta-\bar{\beta}) .
\end{align*}
$$

The expected value is

$$
\begin{equation*}
E\left[(y-x \bar{\beta})^{\prime}(y-x \bar{\beta})\right]=N \sigma^{2}+(\beta-\bar{\beta})^{\prime} x^{\prime} x(\beta-\bar{\beta}) . \tag{34}
\end{equation*}
$$

Now the second term on the right has an expectation in the sample from
which $\bar{\beta}$ was obtained. Assuming that the usual least-squares estimates are employed, we have, using equation (11),

$$
\begin{align*}
& E\left[(\beta-\hat{\beta})^{\prime} x^{\prime} x(\beta-\hat{\beta})\right]=\operatorname{tr}\left[E\left[x(\beta-\hat{\beta})(\beta-\hat{\beta})^{\prime} x^{\prime}\right]\right] \tag{35}\\
&=\operatorname{tr}\left(x C_{\hat{\beta}} x^{\prime}\right)=\sigma^{2} \operatorname{tr}\left[x\left(x^{\prime} x\right)^{-1} x^{\prime}\right]
\end{align*}
$$

Using (14), we may write the matrix whose trace we require as

$$
\begin{equation*}
x\left(x^{\prime} x\right)^{-1} x^{\prime}=u b^{\prime}\left(b b^{\prime}\right)^{-1} b u^{\prime}=u b^{\prime} b^{\prime-1} b^{-1} b u^{\prime}=u u^{\prime} \tag{36}
\end{equation*}
$$

Putting (36) in (35), we may write

$$
\begin{equation*}
E\left[(\beta-\hat{\beta})^{\prime} x^{\prime} x(\beta-\hat{\beta})\right]=\sigma^{2} \operatorname{tr}\left(u u^{\prime}\right)=\sigma^{2} \operatorname{tr}\left(u^{\prime} u\right)=\sigma^{2} \operatorname{tr}(I)=M \sigma^{2} \tag{37}
\end{equation*}
$$

Now if we assume that $x^{\prime} x$, or equivalently the factor-loading-matrix b, is the same in all samples, we would expect the sum of squares of errors of prediction to be $(N+M) \sigma^{2}$. More generally, if $\bar{\beta}$ is any estimate of β computed from the original sample, we would expect the sum of squares of errors of prediction in future samples, provided that the factor-loading matrix is the same as in the original sample, to be

$$
\begin{equation*}
\psi_{\bar{\beta}}=N \sigma^{2}+E\left[(\beta-\bar{\beta})^{\prime} x^{\prime} x(\beta-\bar{\beta})\right] \tag{38}
\end{equation*}
$$

Thus $\psi_{\bar{\beta}}$ will be taken as an inverse index of weight-efficiency: the smaller it is, the more suitable $\bar{\beta}$ will be for a prediction problem. In particular,

$$
\begin{equation*}
\psi_{\hat{\rho}}=(N+M) \sigma^{2} \tag{39}
\end{equation*}
$$

Since the interpretation of (38) is basic to the following development, we will examine its derivation with some care. Certainly $\psi_{\bar{\beta}}$ is not a mathematical expectation in the usual sense, but rather an expectation of an expectation. Since N, σ^{2}, β, and (by assumption) $x^{\prime} x$ are fixed, the expectation in (34) is a function of $\vec{\beta}$, and is thus fixed as soon as the original sample is drawn. Since this quantity is a function of the criterion in the original sample, its expectation in this sample is $\psi_{\bar{\beta}}$. The quantity that we are directly concerned with minimizing is the one in (34). This quantity is itself not determined in advance of drawing the first sample, but its expectation is determined. Rather than minimize the quantity of direct interest, then, we attempt to minimize its expectation.

An estimate of weight-validity may be obtained from (39). Assuming the metric of the previous section, and using (9) and (22),

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{y^{\prime} y-\tilde{y}^{\prime} \tilde{y}}{N-M_{!}} \equiv \frac{1-R^{2}}{N=M} \tag{40}
\end{equation*}
$$

Thus, an unbiased estimate for ψ_{β} is, from (39)

$$
\begin{equation*}
\hat{\psi}_{\hat{\beta}}=\frac{N+M}{\underline{N-M}}\left(1-R^{2}\right) \tag{41}
\end{equation*}
$$

For an arbitrary set of weights $\bar{\beta}$, the weight-validity is

$$
\begin{equation*}
W=\frac{y^{\prime} x \bar{\beta}}{\sqrt{\overline{\bar{\beta}}^{\prime} x^{\prime} x \overline{\bar{\beta}}}} . \tag{42}
\end{equation*}
$$

The sum of squares of errors of prediction is

$$
\begin{equation*}
S=(y-x \bar{\beta})^{\prime}(y-x \bar{\beta})=1-2 y^{\prime} x \bar{\beta}+\bar{\beta}^{\prime} x^{\prime} x \bar{\beta} . \tag{43}
\end{equation*}
$$

If (42) is substituted in (43),

$$
\begin{equation*}
S=1-2 W \sqrt{\bar{\beta}^{\prime} x^{\prime} x \bar{\beta}}+\bar{\beta}^{\prime} x^{\prime} x \bar{\beta} . \tag{44}
\end{equation*}
$$

Since $\bar{\beta}$ is the vector of least-squares weights from the original sample, under the assumption that $x^{\prime} x$ is constant, the radical in the second term on the right of (44), and the third term on the right become, respectively, R and R^{2} of the original sample. Solving (44) for W gives

$$
\begin{equation*}
W=\frac{1+R^{2}-S}{2 R} . \tag{45}
\end{equation*}
$$

Now to obtain an estimate of W, we substitute for S in (45) the estimate of its expectation given by (41). Simplifying, we obtain

$$
\begin{equation*}
\hat{W}=\frac{N R^{2}-M}{R(N-M)} \tag{46}
\end{equation*}
$$

To see the relation of the estimated weight-validity to the estimated population multiple correlation as defined in the preceding section, we put (32) in (46), obtaining

$$
\begin{equation*}
\hat{W}=\frac{R_{C}^{2}}{R}=\frac{R_{C}}{R} R_{C} . \tag{47}
\end{equation*}
$$

Since R_{c} is less than R (unless R is unity), the left-hand factor on the right of (47) will be less than one, so \hat{W} will be less than R_{c}.

Perhaps a more important application of (38) is its use as a criterion for evaluating reduced-rank models for computing regression weights. An alternate approach is indirectly suggested by Leiman (1951, pp. 3-4). There, the assumption is made that the least-squares weights for the lower-rank system will give better predictions than least-squares weights for the fullrank system to the extent that they provide closer approximations to the population regression weights for the full-rank battery. The reason for rejecting this position is as follows: It is well known that the optimal weights for a subset of predictors may differ greatly from the weights of the same predictors when the full battery is retained. A mathematical statement of this fact is given in (104). Thus one cannot properly measure the suitability of a reduced-rank set of weights in terms of how closely they approximate the full-rank weights. It seems, more likely that the least-squares weights for
a subset of predictors or of factor scores may, because of the increased number of degrees of freedom, be so much more stable than the weights for the full set as to give more accurate predictions despite the loss of information. In any case, the criterion in (38) involves no assumptions other than those usually made in applications of regression theory to prediction problems and is, moreover, referred directly to the expected errors of prediction.

In evaluating reduced-rank solutions, a question arises as to the number of factors to be included in the general linear hypothesis. If the full-rank hypothesis is retained, then the quantity $N \sigma^{2}$ in (38) is fixed, so that the only way of improving on $\hat{\beta}$ will be to find $a \bar{\beta}$ for which the second term is less than $M \sigma^{2}$. If, however, a smaller set of, say, L predictors (either the original ones or factor scores) is hypothesized, both terms change. The variance of the errors, σ^{2}, will of course increase in proportion to the systematic variance in the criterion accounted for by the discarded predictors. If we denote this larger variance by σ_{L}^{2} and the least-squares weights for the reduced battery by $\bar{\beta}$, then

$$
\begin{equation*}
\psi_{\bar{\beta}}=(N+L) \sigma_{L}^{2} \tag{48}
\end{equation*}
$$

as will be seen in the next section. Thus the $\bar{\beta}$ for any subset of L predictors for which $(N+L) \sigma_{L}^{2}$ is less than $(N+M) \sigma^{2}$ will be an improvement over $\hat{\beta}$.

Another possible application of (38) would be in obtaining a criterion for how many predictors to retain in the standard predictor-selection procedures. If we denote by R_{L} the multiple correlation obtained with a set of L predictors, this criterion is obtained directly from (41):

$$
\begin{equation*}
\hat{\psi}_{\bar{\beta}}=\frac{N+L}{N-L}\left(1-R_{L}^{2}\right) \tag{49}
\end{equation*}
$$

One would retain those L predictors for which $\hat{\psi}_{\bar{\beta}}$ is the smallest. We use $\hat{\psi}_{\bar{\beta}}$ rather than \hat{W} since weight-validity is an indication not of the actual errors of prediction but of the errors which would have been obtained if the predictions could themselves have been weighted after the criterion had been observed. In other words, a correlation coefficient between two variables is independent of differences in location and scale, whereas actual errors of prediction are in part determined by such differences.

The General Reduced-Rank Model

The reduced-rank solution will first be developed in terms of a general factor model. Predictor selection and prediction from principal-axes factors will then be considered as special cases of this model. Let

$$
\begin{equation*}
x^{\prime} x=b b^{\prime} \tag{50}
\end{equation*}
$$

be any complete factoring of $x^{\prime} x$. Then

$$
\begin{equation*}
u=x\left(b^{\prime}\right)^{-1} \tag{51}
\end{equation*}
$$

will be the orthonormal matrix of factor scores. The matrices x, u, and b are the same as those in (14). Now we partition u and b after the L th column so that, from (14),

$$
x=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{l}
b_{1}^{\prime} \tag{52}\\
b_{2}^{\prime}
\end{array}\right]=u_{1} b_{1}^{\prime}+u_{2} b_{2}^{\prime}
$$

We will assume that the columns of u and b have been permuted so that the L factor scores retained for prediction are given by u_{1}, or (if one prefers to think of prediction from a rank- L approximation to x) by $u_{1} b_{1}^{\prime}$. We will now show that the two assumptions are equivalent for prediction problems. Note first, however, that in future samples the weights must be applied to the predictors rather than to the factor scores or to the lower-rank approximation. The latter must be obtained as a row transformation of the prediction matrix, since a prediction equation must be applicable to individual cases.

Let the inverse of b be conformably partitioned and denoted by B^{\prime} so that

$$
B^{\prime} b=\left[\begin{array}{l}
B_{1}^{\prime} \tag{53}\\
B_{2}^{\prime}
\end{array}\right]\left[b_{1} b_{2}\right]=\left[\begin{array}{ll}
B_{1}^{\prime} b_{1} & B_{1}^{\prime} b_{2} \\
B_{2}^{\prime} b_{1} & B_{2}^{\prime} b_{2}
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
$$

Then

$$
\begin{equation*}
u_{1}=x B_{1} \tag{54}
\end{equation*}
$$

is a unique solution for u_{1} as a transformation on the rows of x. To see this, we let γ be any other such transformation, and let

$$
\begin{equation*}
E=\gamma-B_{1} \tag{55}
\end{equation*}
$$

Then

$$
\begin{equation*}
u_{1}=x \gamma=x B_{1}+x E=u_{1}+x E \tag{56}
\end{equation*}
$$

so that

$$
\begin{equation*}
x E=0 \tag{57}
\end{equation*}
$$

which, since x is basic, implies that E is zero. Now let $\hat{\beta}_{u}$ be a set of leastsquares weights for u_{1}. Since u_{1} is basic, $\hat{\beta}_{u}$ is unique. Let $\hat{\beta}_{b}$ be a set of leastsquares weights for $u_{1} b_{1}^{\prime}$. Since $u_{1} b_{1}^{\prime}$ is nonbasic, $\hat{\beta}_{b}$ is not unique. If

$$
\begin{equation*}
u_{1} b_{1}^{\prime} \hat{\beta}_{b}-y=\epsilon_{b} \tag{58}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{1} \hat{\beta}_{u}-y=\epsilon_{u} \tag{59}
\end{equation*}
$$

the sums of squares of ϵ_{b} and of ϵ_{u} will be minimized by $\hat{\beta}_{b}$ and $\hat{\beta}_{u}$, respectively. The former sum of squares can be no less than the latter, for we could always take

$$
\begin{equation*}
\hat{\beta}_{u}=b_{1}^{\prime} \hat{\beta}_{b} \tag{60}
\end{equation*}
$$

The two sums of squares will be equal if we let

$$
\begin{equation*}
\hat{\beta}_{b}=B_{1} \hat{\beta}_{u} . \tag{61}
\end{equation*}
$$

Therefore, a set of least-squares weights for (58) will be given by $\hat{\beta}_{b}$ in (61) and

$$
\begin{equation*}
\epsilon_{b}^{\prime} \epsilon_{b}=\epsilon_{u}^{\prime} \epsilon_{u} \tag{62}
\end{equation*}
$$

But since $\hat{\beta}_{u}$ is unique, $b_{1}^{\prime} \hat{\beta}_{b}$ must be unique, and (60) holds for all least-squares solutions $\hat{\beta}_{b}$ of (58). Thus, (58) and (59) are identical, and because of the uniqueness of B_{1} in (54), we have

$$
\begin{equation*}
\bar{\beta}=B_{1} \hat{\beta}_{u} \tag{63}
\end{equation*}
$$

as a unique set of least-squares weights for x under the assumption of reduced rank.

If it is assumed that the criterion depends solely on the subset of L factors retained for prediction, the general linear hypothesis takes the form

$$
\begin{equation*}
y=x B_{1} \beta_{u}+e_{L}, \tag{64}
\end{equation*}
$$

where x, y, and e_{L} are defined in the first section of this chapter. All of the results of that section may be obtained for the present hypothesis if we replace x by $x B$, and β by β_{u} in (1) through (13). In like manner, (48) may be obtained from the derivation of (39). Thus, from (6) and (54) the leastsquares estimate of β_{u} is given by

$$
\begin{equation*}
\hat{\beta}_{u}=\left(u_{1}^{\prime} u_{1}\right)^{-1} u_{1}^{\prime} y=u_{1}^{\prime} y . \tag{65}
\end{equation*}
$$

It has, from (10), the expectation

$$
\begin{equation*}
E\left(\hat{\beta}_{u}\right)=\beta_{u} \tag{66}
\end{equation*}
$$

and, from (11), the covariance matrix

$$
\begin{equation*}
C_{\beta_{u}}=\sigma_{L}^{2}\left(u_{1}^{\prime} u_{1}\right)^{-1}=\sigma_{L}^{2} I . \tag{67}
\end{equation*}
$$

An unbiased estimate of the vector of weights to be applied directly to the predictors is given by $\bar{\beta}$ as defined in (63), since

$$
\begin{equation*}
E(\bar{\beta})=E\left(B_{1} \hat{\beta}_{u}\right)=B_{1} E\left(\hat{\beta}_{u}\right)=B_{1} \beta_{u} . \tag{68}
\end{equation*}
$$

The covariance matrix for these weights will be

$$
\begin{equation*}
C_{\bar{\beta}}=E\left[\left(B_{1} \hat{\beta}_{u}-B_{1} \beta_{u}\right)\left(B_{1} \hat{\beta}_{u}-B_{1} \beta_{u}\right)^{\prime}\right]=B_{1} C_{\beta_{u}} B_{1}^{\prime}=\sigma_{L}^{2} B_{1} B_{1}^{\prime} . \tag{69}
\end{equation*}
$$

The estimates of the criterion will now be, from (7),

$$
\begin{equation*}
\tilde{y}_{L}=x B_{1} \hat{\beta}_{u}=x \bar{\beta} \tag{70}
\end{equation*}
$$

The expected sum of squares for the errors of estimate becomes, from (8),

$$
\begin{equation*}
E\left[\left(y-\tilde{y}_{L}\right)^{\prime}\left(y-\tilde{y}_{L}\right)\right]=(N-L) \sigma_{L}^{2} . \tag{71}
\end{equation*}
$$

The matrix H for transforming the criterion observations to canonical form may take exactly the same form as in (15):

$$
\begin{equation*}
H=\left(u_{1} u_{2} v\right) \tag{72}
\end{equation*}
$$

The matrix $\left[\begin{array}{ll}u_{2} & v\end{array}\right]$ is now arbitrary to the extent that only v was arbitrary before. It will be convenient, however, to define H as in (72). Partitioning the transformed observations somewhat differently from the way it was done in (16), we let

$$
z=\left[\begin{array}{l}
z_{1} \tag{73}\\
z_{2} \\
z_{3}
\end{array}\right]=H y=\left[\begin{array}{l}
u_{1}^{\prime} y \\
u_{2}^{\prime} y \\
v^{\prime} y
\end{array}\right] .
$$

The elements of z_{2} and z_{3} will all have expected. values of zero, while the expectation of z_{1} will be

$$
\begin{equation*}
E\left(z_{1}\right)=E\left(u_{1}^{\prime} y\right)=E\left(\hat{\beta}_{u}\right)=\beta_{u} . \tag{74}
\end{equation*}
$$

The unbiased estimate for σ_{L}^{2} may be expressed in terms of z_{2} and z_{3} as

$$
\begin{equation*}
\hat{\sigma}_{L}^{2}=\frac{z_{2}^{\prime} z_{2}+z_{3}^{\prime} z_{3}}{N-L} . \tag{75}
\end{equation*}
$$

The implications of using a reduced-rank solution instead of the conventional solution can perhaps be better understood if the full-rank hypothesis of (1) is retained, rather than the rank- L hypothesis of (64). We first observe that $\bar{\beta}$ is a biased estimate of β, since

$$
\begin{equation*}
E(\bar{\beta})=E\left(B_{1} u_{1}^{\prime} y\right)=B_{1} u_{1}^{\prime} x \beta=B_{1} b_{1}^{\prime} \beta . \tag{76}
\end{equation*}
$$

Its covariance matrix, which will now be proportional to σ^{2} instead of to σ_{L}^{2}, is given by

$$
\begin{equation*}
C_{\bar{\beta}}=E\left[\left(B_{1} u_{1}^{\prime} y-B_{1} b_{1}^{\prime} \beta\right)\left(B_{1} u_{1}^{\prime} y-B_{1} b_{1}^{\prime} \beta\right)^{\prime}\right]=B_{1} E\left(u_{1}^{\prime} e^{\prime} u_{1}\right) B_{1}^{\prime} \tag{77}
\end{equation*}
$$

since premultiplying (1) by u_{1}^{\prime} gives

$$
\begin{equation*}
u_{1}^{\prime} y=b_{1}^{\prime} \beta+u_{1}^{\prime} e . \tag{78}
\end{equation*}
$$

Continuing, with (3) in (77),

$$
\begin{equation*}
C_{\bar{\beta}}=B_{1} u_{1}^{\prime} E\left(e e^{\prime}\right) u_{1} B_{1}^{\prime}=\sigma^{2} B_{1} B_{1}^{\prime} . \tag{7}
\end{equation*}
$$

The first and second moments about β will be

$$
\begin{equation*}
E(\bar{\beta}-\beta)=B_{1} b_{1}^{\prime} \beta-\beta=-\left(I-B_{1} b_{1}^{\prime}\right) \beta=-B_{2} b_{2}^{\prime} \beta \tag{80}
\end{equation*}
$$

and

$$
\begin{align*}
& E\left[(\bar{\beta}-\beta)(\bar{\beta}-\beta)^{\prime}\right] \tag{81}\\
& \quad=C_{\bar{\beta}}+[E(\bar{\beta}-\beta)][E(\bar{\beta}-\beta)]^{\prime}=\sigma^{2} B_{1} B_{1}^{\prime}+B_{2} b_{2}^{\prime} \beta \beta^{\prime} b_{2} B_{2}^{\prime} .
\end{align*}
$$

Equation (11) may be written as

$$
\begin{equation*}
C_{\hat{\beta}}=\sigma^{2}\left(x^{\prime} x\right)^{-1}=\sigma^{2} B B^{\prime}=\sigma^{2} B_{1} B_{1}^{\prime}+\sigma^{2} B_{2} B_{2}^{\prime} \tag{82}
\end{equation*}
$$

Thus, from the standpoint of relative efficiency (Mood, 1950, p. 149) in estimating $\beta, \hat{\beta}$ and $\vec{\beta}$ may be compared in terms of the diagonals of the rightmost terms of (81) and (82). If the trace of the former is smaller, on the average the reduced-rank estimates will be more efficient than the fullrank estimates.

The expected value of z as given by (73) will now be

$$
E(z)=\left[\begin{array}{c}
u_{1}^{\prime} x \beta \tag{83}\\
u_{2}^{\prime} x \beta \\
v^{\prime} x \beta
\end{array}\right]=\left[\begin{array}{c}
b_{1}^{\prime} \beta \\
b_{2}^{\prime} \beta \\
0
\end{array}\right]
$$

We recall from (19) that $\hat{\beta}$ is computed so that

$$
\left[\begin{array}{l}
z_{1} \tag{84}\\
z_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1}^{\prime} \hat{\beta} \\
b_{2}^{\prime} \hat{\beta}
\end{array}\right]
$$

But $\bar{\beta}$ is computed to reproduce only z_{1} :

$$
\begin{equation*}
z_{1}=u_{1}^{\prime} y=b_{1}^{\prime} B_{1} u_{1}^{\prime} y=b_{1}^{\prime} \bar{\beta} \tag{85}
\end{equation*}
$$

We have

$$
\begin{equation*}
b_{2}^{\prime} \bar{\beta}=b_{2}^{\prime} B_{1} u_{1}^{\prime} y=0 \tag{86}
\end{equation*}
$$

Thus, the reduced-rank solution, in effect, predicts a value of zero for z_{2} rather than a value of $b_{2}^{\prime} \hat{\beta}$. If the elements of $b_{2}^{\prime} \beta$ are smaller than σ^{2}, then the prediction of zero would have the higher relative efficiency.

The statistic $\hat{\sigma}_{L}^{2}$ will be an overestimate of σ^{2}. To see this, first note that

$$
\begin{align*}
E\left(z_{2}^{\prime} z_{2}+z_{3}^{\prime} z_{3}\right) & =\operatorname{tr}\left[E\left(z_{2} z_{2}^{\prime}\right)\right]+\operatorname{tr}\left[E\left(z_{3} z_{3}^{\prime}\right)\right] \tag{87}\\
& =\operatorname{tr}\left(\sigma^{2} I+b_{2}^{\prime} \beta \beta^{\prime} b_{2}\right)+\operatorname{tr}\left(\sigma^{2} I\right) \\
& =(M-L) \sigma^{2}+\beta^{\prime} b_{2} b_{2}^{\prime} \beta+(N-M) \sigma^{2} \\
& =(N-L) \sigma^{2}+\beta^{\prime} b_{2} b_{2}^{\prime} \beta .
\end{align*}
$$

Then from (75),

$$
\begin{equation*}
E\left(\hat{\sigma}_{L}^{2}\right)=\sigma^{2}+\frac{\beta^{\prime} b_{2} b_{2}^{\prime} \beta}{N-L} \tag{88}
\end{equation*}
$$

Next, we describe the effect of hypothesized rank on our inverse index of weight-efficiency, $\psi_{\bar{\beta}}$. We will denote this index and its estimate by ${ }_{\mu} \psi_{\bar{\beta}}$ and ${ }_{\mu} \hat{\psi}_{\bar{\beta}}$, where the full rank M is assumed, and by ${ }_{L} \psi_{\bar{\beta}}$ and ${ }_{L} \hat{\psi}_{\bar{\beta}}$, where the reducedrank, L, is assumed. Mathematical expectation under the hypothesis of full
rank will be denoted by $E_{M}()$ and under the hypothesis of reduced-rank by $E_{L}()$.

The reduced-rank index ${ }_{L} \psi_{\bar{\beta}}$ was given by (48). To obtain the full-rank index, we first evaluate the rightmost term in (38). Using (81),

$$
\begin{align*}
E_{M}\left[(\beta-\bar{\beta})^{\prime} x^{\prime} x(\beta-\bar{\beta})\right] & \left.=\operatorname{tr}\left[x E(\bar{\beta}-\beta)(\bar{\beta}-\beta)^{\prime}\right] x^{\prime}\right] \tag{89}\\
& =\sigma^{2} \operatorname{tr}\left(x B_{1} B_{1}^{\prime} x^{\prime}\right)+\operatorname{tr}\left(x B_{2} b_{2}^{\prime} \beta \beta^{\prime} b_{2} B_{2}^{\prime} x^{\prime}\right) \\
& =\sigma^{2} \operatorname{tr}\left(u_{1} u_{1}^{\prime}\right)+\operatorname{tr}\left(u_{2} b_{2}^{\prime} \beta \beta^{\prime} b_{2} u_{2}^{\prime}\right) \\
& =\sigma^{2} \operatorname{tr}\left(u_{1}^{\prime} u_{1}\right)+\beta^{\prime} b_{2} u_{2}^{\prime} u_{2} b_{2}^{\prime} \beta \\
& =L \sigma^{2}+\beta^{\prime} b_{2} b_{2}^{\prime} \beta .
\end{align*}
$$

Substituting (89) in (38), we obtain

$$
\begin{equation*}
{ }_{M} \psi_{\bar{\beta}}=(N+L) \sigma^{2}+\beta^{\prime} b_{2} b_{2}^{\prime} \beta . \tag{90}
\end{equation*}
$$

An unbiased estimate of ${ }_{L} \psi_{\bar{\beta}}$ is, from (75) and (48),

$$
\begin{equation*}
{ }_{L} \hat{\psi}_{\bar{\beta}}=(N+L) \hat{\sigma}_{L}^{2}=z_{2}^{\prime} z_{2}+z_{3}^{\prime} z_{3}+\frac{2 L}{N-L}\left(z_{2}^{\prime} z_{2}+z_{3}^{\prime} z_{3}\right) . \tag{91}
\end{equation*}
$$

An unbiased estimate of ${ }_{M} \psi_{\bar{\beta}}$ is, from (87),

$$
\begin{equation*}
{ }_{M} \hat{\psi}_{\bar{\beta}}=z_{2}^{\prime} z_{2}+z_{3}^{\prime} z_{3}+\frac{2 L}{N-M} z_{3}^{\prime} z_{3} . \tag{92}
\end{equation*}
$$

The latter will also be an unbiased estimate of ${ }_{L} \psi_{\bar{B}}$, since

$$
\begin{equation*}
E_{L}\left(\frac{z_{3}^{\prime} z_{3}}{N-M}\right)=\sigma_{L}^{2} . \tag{93}
\end{equation*}
$$

It would not, however, be as stable an estimate as ${ }_{L} \hat{\psi}_{\bar{\beta}}$, since the rightmost term of (91) is based on more observations than the rightmost term of (92). If ${ }_{L} \hat{\psi}_{\bar{\beta}}$ were used to estimate ${ }_{M} \psi_{\bar{\beta}}$, it would have a positive bias, since, from (88) and (90),

$$
\begin{equation*}
E_{M}\left({ }_{L} \hat{\psi}_{\bar{\beta}}\right)=(N+L)\left(\sigma^{2}+\frac{\beta^{\prime} b_{2} b_{2}^{\prime} \beta}{N-L}\right)={ }_{M} \psi_{\bar{\beta}}+\frac{2 L}{N-L} \beta^{\prime} b_{2} b_{2}^{\prime} \beta . \tag{94}
\end{equation*}
$$

In practice, it would often be convenient to express these estimates in terms of the multiple correlation coefficient. If the metric of the third section is assumed, the elements of z_{1} and z_{2} will be the correlations between the factor scores and the criterion, or factor validities. Since the factor scores are uncorrelated, the squared multiple correlation between the first L factors and the criterion will be

$$
\begin{equation*}
R_{L}^{2}=z_{1}^{\prime} z_{1}=1-z_{2}^{\prime} z_{2}-z_{3}^{\prime} z_{3} \tag{95}
\end{equation*}
$$

Hence (91) and (92) are equivalent to

$$
\begin{equation*}
{ }_{L} \hat{\psi}_{\vec{\beta}}=1-R_{L}^{2}+\frac{2 L\left(1-R_{L}^{2}\right)}{N-L} \tag{96}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{M} \hat{\psi}_{\bar{\beta}}=1-R_{L}^{2}+\frac{2 L\left(1-R_{M}^{2}\right)}{N} \tag{97}
\end{equation*}
$$

Equation (96) is, of course, equivalent to (49). Although ${ }_{L} \hat{\psi}_{\bar{\beta}}$ and ${ }_{M} \hat{\psi}_{\bar{\beta}}$ will in general differ only very slightly, the former is to be preferred in applications, since R_{L} will be less inflated by overfit than will R_{M}.

In theoretical comparisons of different factor solutions, ${ }_{\mu} \psi_{\bar{\beta}}$ will be most useful, since it is a function of the loadings of the discarded factors. The optimal factor solution would be that which minimized the rightmost term of equation (90).

Some Particular Reduced Rank Procedures

Of the five particular rank-reduction procedures considered in the present study, three involve prediction from principal-axes factors, and two involve prediction from a subset of the original predictors. Summerfield and Lubin (1951) have shown that a subset of predictors is equivalent to a subset of orthogonal triangular (or square-root) factor scores. The first factor is simply the first predictor. The second factor is that portion of the second predictor which cannot be predicted from the first. The third factor is that portion of the third predictor which cannot be predicted from the first and second. The remaining factors are similarly obtained. Each factor will thus be independent of the earlier factors and of the predictors corresponding to them, and will therefore have zero loadings on those predictors. Accordingly, the factor-loading matrix will be a lower triangular matrix, i.e., its supradiagonal elements will all be zero.

The predictor-selection and predictor-elimination methods may be thought of as procedures for placing the predictors in the approximate order of their contribution to the multiple correlation with the criterion. Since the triangular factors are determined by the ordering of the predictors, the first L factors will tend to give the highest multiple correlation obtainable with a subset of L predictors.

Prediction from the principal-axes factors giving the highest validity is similar to these methods in that the subset of factors to be retained is entirely determined by the characteristics of the sample from which regression weights are to be computed. Under these circumstances, none of the indices of validity or weight-validity is directly applicable, since all are based on the assumption that, for given L, the subset of predictors to be retained is determined in advance of observing the criterion. A detailed analysis of the con-
sequences of choosing factors on the basis of the observed y will not be attempted. Clearly, however, the fewer the degrees of freedom available, the larger will be the variance of the sample validities, and the smaller the probability that the subset of L factors having the largest true validity will give the largest sample validity. Moreover, the true validity for the subset chosen would tend to fall short of the true validity for the optimal subset, and the sample validity for the chosen subset would tend to overestimate its true validity, in inverse proportion to the degrees of freedom. Still, it seems that subsets of predictors selected in this way would usually have higher true validities than would arbitrarily chosen predictors.

Although the foregoing discussion is not concrete enough to lead to precise conclusions, it does suggest the desirability of having a method of factoring that would provide an a priori expectation as to the contributions to validity of the individual factors. The success of using approximation to the intercorrelation matrix or to its inverse as a criterion for selecting predictors will in part be determined by the extent to which contribution to the approximation is related to contribution to validity.

In describing the two particular factor methods in terms of the general model of the preceding section, we will consider first the triangular factors. For the general factor-loading matrix, b, we substitute a lower triangular factor-loading matrix, t. But where b was partitioned only after the L th column, we will partition t also after the L th row, so that

$$
t=\left[\begin{array}{ll}
t_{1} & t_{2}
\end{array}\right]=\left[\begin{array}{cc}
t_{11} & 0 \tag{98}\\
t_{12} & t_{22}
\end{array}\right]
$$

We will partition the inverse of t similarly, and denote it by T^{\prime}. It may be readily verified that

$$
T^{\prime}=\left[\begin{array}{l}
T_{1}^{\prime} \tag{99}\\
T_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
t_{11}^{-1} & 0 \\
-t_{22}^{-1} t_{21} t_{11}^{-1} & t_{22}^{-1}
\end{array}\right]=t^{-1}
$$

It will also be convenient to partition the predictor matrix x after the L th column, and to partition the regression vectors β and $\bar{\beta}$ after the L th element.

We first note, from (52), that

$$
x=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]=u_{1} t_{1}^{\prime}+u_{2} t_{2}^{\prime}=\left[\begin{array}{ll}
u_{1} t_{11}^{\prime} & u_{1} t_{12}^{\prime}
\end{array}\right]+\left[\begin{array}{ll}
0 & u_{2} t_{22}^{\prime} \tag{100}
\end{array}\right]
$$

Thus

$$
u_{1} t_{1}^{\prime}=\left[\begin{array}{ll}
x_{1} & u_{1} t_{12}^{\prime} \tag{101}
\end{array}\right]
$$

and

$$
\begin{equation*}
x_{2}=u_{1} t_{12}^{\prime}+u_{2} t_{12}^{\prime} \tag{102}
\end{equation*}
$$

The first term on the right of (102) is that portion of x_{2} which can be predicted
from x_{1}, while the second term is that portion of x_{2} which is independent of x_{1}. Thus the "reduced-rank approximation" of x on which predictions are based is from (101) composed simply of the retained predictors augmented by the portion of the discarded predictors that is determined by those retained.

From (63) and (65), the estimated regression weights will be

$$
\bar{\beta}=T_{1} u_{1}^{\prime} y=\left[\begin{array}{c}
\left(t_{11}^{\prime}\right)^{-1} u_{1}^{\prime} y \tag{103}\\
0
\end{array}\right]=\left[\begin{array}{c}
\bar{\beta}_{1} \\
\bar{\beta}_{2}
\end{array}\right]
$$

Their expected values, under the full-rank hypothesis, will be, from (76)

$$
E(\bar{\beta})=T_{1} t_{1}^{\prime} \beta=\left[\begin{array}{c}
\left(t_{11}^{\prime}\right)^{-1} \tag{104}\\
0
\end{array}\right]\left[\begin{array}{ll}
t_{11}^{\prime} & \left.t_{21}^{\prime}\right]
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{c}
\beta_{1}+\left(t_{11}^{\prime}\right)^{-1} t_{21}^{\prime} \beta_{2} \\
0
\end{array}\right]=\left[\begin{array}{l}
E\left(\bar{\beta}_{1}\right) \\
E\left(\bar{\beta}_{2}\right)
\end{array}\right]
$$

The value for $E\left(\bar{\beta}_{1}\right)$ in (104) may be thought of as an expression for the optimal weights for a subset of predictors in terms of the optimal weights for the entire set. The original weights for the retained predictors are altered as a function of the original weights for the discarded predictors. This illustrates the point made in the section on accuracy of predictions, to the effect that weights for a subset of predictors cannot be properly evaluated in terms of how closely they approximate the weights for the entire set. The covariance matrix of the sample regression weights, obtained from (79), is

$$
C_{\bar{\beta}}=\sigma^{2} T_{1} T_{1}^{\prime}=\sigma^{2}\left[\begin{array}{cc}
\left(t_{11}^{\prime-1}\right) t_{11}^{-1} & 0 \tag{105}\\
0 & 0
\end{array}\right]
$$

The expected values of the transformed criterion observations will be, from (83),

$$
E(z)=\left[\begin{array}{c}
E\left(z_{1}\right) \tag{106}\\
E\left(z_{2}\right) \\
E\left(z_{3}\right)
\end{array}\right]=\left[\begin{array}{c}
t_{1}^{\prime} \beta \\
t_{2}^{\prime} \beta \\
0
\end{array}\right]=\left[\begin{array}{c}
t_{11}^{\prime} \beta_{1}+t_{22}^{\prime} \beta_{2} \\
t_{22}^{\prime} \beta_{2} \\
0
\end{array}\right]
$$

From (90), the inverse index of weight efficiency ${ }_{\mu} \psi_{\bar{\beta}}$ is given by

$$
\begin{equation*}
{ }_{M} \psi_{\bar{\beta}}=(N+L) \sigma^{2}+\beta^{\prime} t_{2} t_{2}^{\prime} \beta=(N+L) \sigma^{2}+\beta_{2}^{\prime} t_{22} t_{22}^{\prime} \beta_{2} \tag{107}
\end{equation*}
$$

To obtain the principal-axes solution, we first express the predictor matrix x in terms of its basic structure (Horst, 1961, ch. 17):

$$
\begin{equation*}
x=P \Delta Q^{\prime} \tag{108}
\end{equation*}
$$

Now, in place of the general factor-score matrix u we have the principal-axes factor-score matrix P. The principal-axes factor-loading matrix, corresponding to the general b is given by $Q \Delta$, where Q is a square orthonormal and Δ a diagonal matrix. Equation (50) now takes the form

$$
\begin{equation*}
x^{\prime} x=Q \Delta^{2} Q^{\prime} \tag{109}
\end{equation*}
$$

The eigenvalues and eigenvectors of $x^{\prime} x$ will be given by the elements of Δ^{2} and the columns of Q respectively. We may partition the factors on the right of (108) to obtain

$$
\begin{align*}
x & =\left[\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right]\left[\begin{array}{cc}
\Delta_{1} & 0 \\
0 & \Delta_{2}
\end{array}\right]\left[\begin{array}{l}
Q_{1}^{\prime} \\
Q_{2}^{\prime}
\end{array}\right] \\
& =\frac{\left[\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right]\left[\begin{array}{c}
\Delta_{1} Q_{1}^{\prime} \\
\Delta_{2} Q_{2}^{\prime}
\end{array}\right]}{} \tag{110}\\
& =P_{1} \Delta_{1} Q_{1}^{\prime}+P_{2} \Delta_{2} Q_{2}^{\prime} .
\end{align*}
$$

As before, both the factor-score and factor-loading matrices are considered to be partitioned after the L th column. For the inverse of the factor-loading matrix, B^{\prime}, we will now have

$$
\left[\begin{array}{ll}
Q_{1} \Delta_{1} & Q_{2} \Delta_{2}
\end{array}\right]^{-1}=\left[\begin{array}{l}
\Delta_{1}^{-1} Q_{1}^{\prime} \tag{111}\\
\Delta_{2}^{-1} Q_{2}^{\prime}
\end{array}\right]
$$

The sample regression vector is, from (63) and (65),

$$
\begin{equation*}
\bar{\beta}=Q_{1} \Delta_{1}^{-1} P_{1}^{\prime} y . \tag{112}
\end{equation*}
$$

Under the full-rank hypothesis, the lower-rank sample regression weights will have the covariance matrix, from (79),

$$
\begin{equation*}
C_{\bar{\beta}}=\sigma^{2} Q_{1} \Delta_{1}^{-2} Q_{1}^{\prime} . \tag{113}
\end{equation*}
$$

From (83), the canonical form of the criterion will have the expectation

$$
E(z)=\left[\begin{array}{c}
E\left(z_{1}\right) \tag{114}\\
E\left(z_{2}\right) \\
E\left(z_{3}\right)
\end{array}\right]=\left[\begin{array}{c}
\Delta_{1} Q_{1}^{\prime} \beta \\
\Delta_{2} Q_{2}^{\prime} \beta \\
0
\end{array}\right] .
$$

Equation (90) will now take the form

$$
\begin{equation*}
{ }_{\mu} \psi_{\bar{\beta}}=(N+L) \sigma^{2}+\beta^{\prime} Q_{2} \Delta_{2}^{2} Q_{2}^{\prime} \beta . \tag{115}
\end{equation*}
$$

The specific reduced-rank prediction models may be obtained from the foregoing development by assuming appropriate permutations either of the predictors, in the case of triangular factors, or of the columns of P and Q, and of the elements of Δ, in the case of principal-axes factors. We note from (73) and (83) that each element of z_{1} and z_{2} is determined by only one factor: the observed value by the factor scores, the expected value by the factor loadings. In predictor selection, each time a predictor is selected, a factor, and hence an element of z_{1}, is determined. At each step in the procedure,
that predictor is selected which will make the next element of z_{1} as large (in absolute value) as possible. In predictor elimination, a factor and hence an element of z_{2}, is determined each time a predictor is eliminated. At each step, that predictor is eliminated which will make the next element of z_{2} as small (in absolute value) as possible.

In the method of predicting from the factors giving the best least-squares approximation to the predictor intercorrelation matrix, the elements of Δ are placed in order from largest to smallest, so that the largest are in $\overline{\Delta_{1}}$ and the smallest in Δ_{2}. If the inverse is to be approximated, the elements of Δ are placed in the opposite order, i.e., from smallest to largest. (When we speak of ordering the elements of Δ, we assume, of course, that the columns of P and Q are permuted correspondingly.) In the method of predicting from the principal-axes factors giving the highest validity, the factors are permuted so as to place the elements of z_{1} and z_{2} in order of absolute value from largest to smallest, with the largest values in z_{1}, the smallest in z_{2}.

The Problem of Finding an Optimal Reduced-Rank Solution

There are three major problems involved in obtaining an optimal reducedrank solution. The first concerns the method of rank reduction: whether subsets of the original predictors, of the principal-axes factors, or of factors obtained by some other method will give the most accurate prediction in future samples. The second problem is, having obtained the factors, to specify the subset of a given size that may be expected to provide the greatest accuracy of prediction. The third problem is, having specified the subset which would be used for any given rank, to determine the particular rank that will tend to lead to the most accurate predictions.

The estimate of the inverse index of weight-efficiency given in (91) and (96) provides a solution (or a potential solution) to the third problem. It does not, however, enhance our ability to deal with the second problem, since, as can be seen from (96), it merely indicates the traditional approach; namely, to attempt to select that subset of predictors of given size having the highest multiple correlation with the criterion. The drawbacks of such an approach when degrees of freedom are limited were discussed in the preceding section. Since a reduced-rank solution is indicated only when degrees of freedom are limited, a selection method that is independent of the criterion might well be preferable. Some evidence favoring this view is provided in the empirical portion of the present study. In the present section we assume that view to be correct and accordingly consider only methods of selection which are independent of the criterion.

If the present analysis is correct, an optimal solution will be one which minimizes ${ }_{M} \psi_{\bar{\beta}}$ as given in (90). In the absence of observations on the criterion, nothing can be said about β or σ^{2}, so our only course is to seek a value for b_{2} which will minimize $\beta^{\prime} b_{2} b_{2}^{\prime} \beta$ for general β. The quantity to be minimized
may also be expressed as the sum of squares of the expected values of the z_{2}, as given in (83):

$$
\begin{equation*}
\underline{\beta^{\prime} b_{2} b_{2}^{\prime} \beta=\left[E\left(z_{2}\right)\right]^{\prime}\left[E\left(z_{2}\right)\right] . ~} \tag{116}
\end{equation*}
$$

Minimizing this quantity will be equivalent to making the elements of $E\left(z_{2}\right)$ as small (in absolute value) as possible. We let the i th element of

$$
\bar{z}=\left[\begin{array}{l}
E\left(z_{1}\right) \tag{117}\\
E\left(z_{2}\right)
\end{array}\right]
$$

be denoted by \bar{z}_{i}. If we knew these values, the second of the problems stated above would be solved by discarding those factors for which \bar{z}_{i} was smallest. Denoting the column of factor loadings for the i th factor by $b_{. i}$, we have, from (83),

$$
\begin{equation*}
\bar{z}_{i}=b_{i}^{\prime} \beta \tag{118}
\end{equation*}
$$

Let D be a diagonal matrix whose i th element is given by

$$
\begin{equation*}
D_{\boldsymbol{i}}=\sqrt{b_{i}^{\prime} b_{\cdot i}} . \tag{119}
\end{equation*}
$$

Let

$$
\begin{equation*}
W=b D^{-1} \tag{120}
\end{equation*}
$$

Denoting the i th column of W by $W_{. i}$, we have

$$
\begin{equation*}
W_{\cdot i}^{\prime} W_{. i}=\frac{b_{i,}^{\prime} b_{. i}}{b_{\cdot i}^{\prime} b_{. i}}=1 . \tag{121}
\end{equation*}
$$

The expected values of z_{1} and z_{2} can now be expressed in terms of D and W as

$$
\begin{equation*}
\bar{z}=b^{\prime} \beta=D W^{\prime} \beta, \tag{122}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{z}_{i}=D_{i} W_{\cdot i}^{\prime} \beta \tag{123}
\end{equation*}
$$

Since we have assumed that nothing is known about β, and since (121) holds for all i, we can have no a priori expectation as to the magnitude of $W_{\cdot ;}^{\prime} \beta$. Thus our only basis for predicting the rank order of the \bar{z}_{i} in the absence of criterion observations will be the magnitudes of the D_{i}. A tentative solution for the problem of which factors to retain for prediction, then, will be to discard those factors having the smallest values of D_{i}. From (119), we see that D_{i}^{2} is the sum of squares of the loadings for the i th factor, or the variance accounted for by that factor. Thus, for a rank- L solution, we wish to retain those L factors giving the best least-squares approximation to the predictor matrix.

It is well known that the principal-axes factors will give a better leastsquares approximation to the predictor matrix than will factors obtained
by any other method. Thus, as a tentative answer to the first of the above problems we obtain the principal-axes solution.

Now, given the restriction that the factors be selected independently of the criterion, we can state that the best prediction possible with a reducedrank solution will be obtained from the principal-axes factors giving the best least-squares approximation to the correlation matrix. We note that, for a principal-axes solution, D and W become the Δ and Q of the preceding section. Thus we can also state that the method of approximating the inverse will give the worst possible predictions, since with that method one discards the factors corresponding to the largest elements of Δ.

We have shown that, with appropriate assumptions, the principal-axes factors making the largest contribution to the variance of the predictors (or simply, the largest principal-axes factors) are optimal with respect to our index of expected accuracy of prediction. It may be shown that the factors are also optimal with respect to the variance of the sample regression weights. The sum of these variances will be smaller than for any other method of rank reduction. From (69) (or (79)), this sum will be proportional to the trace of $B_{1} B_{1}^{\prime}$. We let

$$
\begin{equation*}
g^{\prime}=B u^{\prime}=B_{1} u_{1}^{\prime}+B_{2} u_{2}^{\prime}, \tag{124}
\end{equation*}
$$

so that

$$
\begin{equation*}
g^{\prime}-\underline{B_{2} u_{2}^{\prime}}=B_{1} u_{1}^{\prime} . \tag{125}
\end{equation*}
$$

It is well known that

$$
\begin{equation*}
\operatorname{tr}\left(u_{1} B_{1}^{\prime} B_{1} u_{1}^{\prime}\right)=\operatorname{tr}\left(B_{1} B_{1}^{\prime}\right) \tag{126}
\end{equation*}
$$

will be a minimum when B_{2} is composed of the largest principal-axes factors of

$$
\begin{equation*}
g^{\prime} g=B B^{\prime}=\left(x^{\prime} x\right)^{-1}=Q \Delta^{-2} Q^{\prime} . \tag{127}
\end{equation*}
$$

Equivalently, the above trace will be a maximum when b_{1} is composed of the largest principal-axes factors of $x^{\prime} x$.

The major conclusion of this section is that, in the absence of criterion observations, the best index to use for selection of predictors or factors will be the amount of variance accounted for in the predictor data matrix. In the case where a subset of the original predictors is to be used, one would eliminate those predictors for which the trace of $t_{22} t_{22}$ in (107) is a minimum. Where a factor solution is feasible, the largest principal-axes factors would be retained. The important question of how many degrees of freedom must be available before the criterion observations can be used to advantage in the selection process has been left open. Thus a sound basis for deciding whether to use the methods above or to use methods which attempt to maximize the sample multiple correlation with the criterion is still lacking.

CHAPTER 3

AN EMPIRICAL COMPARISON OF FIVE REDUCED RANK PROCEDURES

The Data

A typical application of regression methods is to the problem of predicting academic success as measured by college grades. The data for the present comparisons were taken from a recent study of academic prediction by Shanker (1961). Twenty-nine predictor variables and five separate criterion variables are used. Fifteen of the predictors are those composing the University of Washington Entrance Battery. These have been in use for predicting college grades since 1953, and include age, sex, test scores, and high-school grades. The remaining predictors are taken from the Edwards Personal Preference Schedule (EPPS). The 15 variables of the EPPS are ipsative; i.e., any one can be computed exactly from the remaining 14 . Accordingly, only 14 are used here, since the 15 th would be completely redundant for purposes of prediction. The EPPS variables are described by Edwards (1954). Descriptions of the Entrance Battery variables are given by Shanker (1961). Since the specific nature of the predictors is not of immediate interest in the present study, we simply list them here.

Edwards Personal Preference Schedule Variables

1. Achievement
2. Succorance
3. Deference
4. Order
5. Exhibition
6. Autonomy
7. Affiliation
8. Intraception

High-School Grade-Point Averages

15. English
16. Mathematics
17. Foreign Language

Test Scores

21. Vocabulary
22. Mechanical Knowledge
23. English Usage
24. English Spelling
25. Dominance
26. Abasement
27. Nurturance
28. Change
29. Endurance
30. Heterosexuality
31. Social Science
32. Natural Science
33. Electives
34. Mathematics
35. Social Science
36. Quantitative Reasoning

Other Variables

28. Age
29. Sex (coded 0 for male, 1 for female)

The criterion variables consist of grade-point averages in various college course areas. The five criteria chosen for the present study were those having 500 or more cases available, as listed below.

1. All-University, 973 cases 4. Chemistry, 526 cases
2. Mathematics, 541 cases
3. Psychology, 507 cases
4. English Composition, 804 cases

The cases used were 973 students who entered the University of Washington as freshmen between 1953 and 1958. Only those students were included for whom measurements on all predictors and at least one criterion variable were available. Scores on the criterion variables and on the Entrance Battery (predictors 15-29) were obtained from the files of the University of Washington Division of Counseling and Testing Services. The EPPS data (predictors 1-14) were obtained partly from Edwards, partly from Wright (1957), and largely from the Division of Counseling and Testing Services files.

Method

The five reduced-rank prediction methods chosen for comparison were the following.

1. The predictor-elimination method (Horst and MacEwan, 1960)
2. Predictor selection by the accretion method (Horst, 1955)
3. The method of largest principal-axes factors (Horst, 1941)
4. The method of smallest principal-axes factors (Guttman, 1958)
5. The method using the principal-axes factors giving the highest multiple correlation.

As noted in the introduction, we can be virtually certain that, for sufficiently small samples, one or more of these methods will give more accurate predictions than will the standard full-rank method. And as shown in the last section of Chapter 2, there is reason to believe that method 3 will be superior to the others for samples below some critical size. Similarly, method 4 would be expected to give the poorest predictions. We would expect also that the statistics ${ }_{L} \hat{\psi}_{\bar{\beta}}$ as given by (91) and \hat{W} as given by (46) would give some indication of the accuracy of prediction in future samples obtainable from a particular set of weights.

The method used for the empirical comparisons consisted essentially of replications of the following procedure. All cases with measurements available on a particular criterion were taken as the statistical population. From this population a random sample was drawn. Regression weights were computed
for each reduced-rank method for each rank from 1 to 29 . Thus 29 sets of weights for each method were computed. The sets of weights for rank 29 were, of course, the same (aside from rounding error) for all methods. From the cases remaining in the population after the original sample was removed, a new random sample was drawn. Each set of weights computed in the original sample was then applied to the new sample, and measures of accuracy of prediction were computed. For all computations, predictor and criterion variables were normalized as described in the second section of Chapter 2. In effect, then, means and sums of squares were equated for all variables on all samples. Differences in these values, therefore, do not show up in the total squared errors of prediction.

For each of the five criterion variables, this design, using all five reducedrank methods, was replicated for six different original-sample sizes: 255, 210, $165,120,75$, and 30 cases. The new samples consisted of 252 cases for all replications. Weight-validities were used as measures of accuracy of prediction.

An additional set of replications was carried out for criterion 1 (AllUniversity) only, and omitting method 4. Here the estimates of weightvalidity and of total squared errors of prediction were also computed from the original samples. A wider range of original-sample sizes was used: the six sizes above and also sizes of $435,390,345$, and 300 cases. A second new sample was randomly drawn for each replication from the cases remaining in the population after the original sample and the first new sample were removed. Both new samples again consisted of 252 cases for all replications. As measures of accuracy of prediction when the original sample weights were applied to each of the two new samples, total squared errors of prediction as well as weight-validities were computed.

All phases of the above procedures were carried out on the IBM 709 computer, using programs written especially for this study. The method of drawing the samples was as follows. The cases in a particular criterion population of, say, NT students were assigned sequential numbers from 1 to $N T$. A sequence of random numbers was generated using a procedure described in the WDPC Users Manual (Western Data Processing Center, 1961, sec. 9.2.4). The original sample of size N_{0} consisted of the cases corresponding to the first N_{0} distinct numbers modulo $N T$ from the sequence of random numbers. The remaining $N T-N_{0}$ cases were renumbered sequentially from 1 to $N T-N_{0}$. The new sample of size N_{1} consisted of the first N_{1} distinct numbers modulo $N T-N_{0}$ from a second sequence of random numbers. In a similar way, all other samples were obtained, using a new sequence of random numbers for each sample.

After obtaining the original sample, the matrix of predictor intercorrelations and the vector of the correlations between the predictors and the criterion were computed. Retaining the notation of the preceding chapter and recalling that the variables in x and y were normalized, the predictor
intercorrelation matrix was computed by (25) and the vector of predictorcriterion correlations by

$$
\begin{equation*}
r_{c}=x^{\prime} y \tag{128}
\end{equation*}
$$

Next the predictor elimination and predictor selection procedures were carried out and the corresponding regression weights computed, using the procedures described by Horst and MacEwan (1960) and by Horst (1955), respectively. The matrix r was then factored as in (109). The regression weights for the three principal-axes methods were computed as follows. We let z_{L} denote the L th element of $z_{1}, Q_{. L}$ denote the L th column of Q_{1} and Δ_{L} the L th element of Δ_{1}.

First the vector of factor validities z_{1} was computed from

$$
\begin{equation*}
z_{1}=\Delta_{1}^{-1} Q_{1}^{\prime} r_{c} \tag{129}
\end{equation*}
$$

Equation (129) is equivalent to (73), since, from (108), (110), and (128),

$$
\begin{equation*}
\Delta_{1}^{-1} Q_{1}^{\prime} r_{c}=\Delta_{1}^{-1} Q_{1}^{\prime} x^{\prime} y=\Delta_{1}^{-1} Q_{1}^{\prime}\left(Q_{1} \Delta_{1} P_{1}^{\prime}+Q_{2} \Delta_{2} P_{2}^{\prime}\right) y=P_{1}^{\prime} y \tag{130}
\end{equation*}
$$

The regression vector for rank L was computed by

$$
\begin{equation*}
\bar{\beta}_{L}=Q_{1} \Delta_{1}^{-1} z_{1}=\sum_{i=1}^{L} Q_{. i} \Delta_{i}^{-1} z_{i} \tag{131}
\end{equation*}
$$

which, it may be noted, is equivalent to (112). Thus the regression vector for rank $L+1$ was obtained from the vector for rank L by

$$
\begin{equation*}
\bar{\beta}_{L+1}=\bar{\beta}_{L}+Q_{. L+1} \Delta_{L+1}^{-1} z_{L+1} \tag{132}
\end{equation*}
$$

The weights for methods 3,4 , and 5 were all computed in the same way, the only difference being in the order of summation.

The new sample was drawn and the various correlations computed as for the original sample. The weight-validity and total squared errors of prediction obtained with a particular vector of weights were computed respectively by

$$
\begin{equation*}
-\quad W=\frac{r_{c}^{\prime} \bar{\beta}_{L}}{\sqrt{\bar{\beta}_{L}^{\prime} r \bar{\beta}_{L}}} \tag{133}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi=1-2 r_{c}^{\prime} \bar{\beta}_{L}+\bar{\beta}_{L}^{\prime} r \bar{\beta}_{L} \tag{134}
\end{equation*}
$$

Equations (133) and (134) are, of course, equivalent to (42) and (43). Note that r and r_{c} in (133) and (134) are computed on the new sample while $\bar{\beta}_{L}$ was computed on the original sample.

Results and Discussion

The weight-validities obtained with methods $1,2,3$, and 5 on all five criteria are given in Table 1. The six pages of Table 1 correspond to the

TABLE 1
Weight-Validities for Four Methods and Five Criteria
($N_{0}=255$)

	Criteria: Methods:	All-Univ				Math				Engl Comp				Chem				Psych			
		1	2	3	5	1	2	3	5	1	2	3	5	1	2	3	5	1	2	3	5
	1	455	455	551	551	305	390	414	414	462	547	640	640	404	404	441	441	406	406	416	416
	2	484	484	568	576	375	382	416	407	615	676	616	643		459	446	496	477		468	. 468
	3	536	536	569	591	415	415	416	400	607	645	580	618	418	426	418	473	489	481	469	487
	4	529	529	571	595	421	421	416	401	646	646	608	665	448	451	411	460	489	504	482	488
	5	521	521	577	555	435	411	421	418	645	653	659	640	418	422	393	450	492	511	487	488
	6	522	522	575	530	422	412	421	414	661	637	666	643	409	412	399	451	509	507	485	488
	7	498	498	575	529	404	396	414	426	663	634	669	651	389	389	403	437	510	497	485	486
	8	494	494	577	531	392	383	417	426	661	627	644	623	389	393	391	426	501	489	482	484
	9	494	494	572	529	393	393	405	419	661	622	644	608	385	413	390	431	492	486	481	480
	10	488	491	567	530	374	374	416	417	648	624	648	609	392	406	380	417	477	469	486	463
	11	496	488	566	524	371	371	416	407	635	629	630	608	399	412	377	406	481	475	500	473
	12	490	496	564	532	368	368	412	399	634	626	635	608	397	410	375	410	475	468	500	468
	13	490	492	553	527	375	375	414	395	636	627	635	633	411	419	377	411	478	481	498	470
	14	486	487	553	524	372	372	406	395	637	626	638	635	406	418	376	411	485	485	499	473
	15	489	498	544	508	371	371	400	389	635	637	640	637	405	412	385	415	486	481	499	471
	16	485	498	541	511	369	369	406	380	625	637	642	640	414	409	367	412	477	481	505	468
	17	482	500	575	515	372	372	404	385	628	638	643	641	413	408	372	410	474	483	508	470
	18	483	499	577	514	376	376	404	385	629	635	644	638	408	415	365	406	470	478	490	468
	19	483	502	551	511	379	379	403	385	628	631	641	639	412	415	363	408	471	474	484	466
	20	479	499	551	505	384	384	402	386	631	632	642	639	410	410	417	410	470	470	483	473
	21	490	496	545	501	383	383	408	384	636	632	638	640	407	408	413	415	476	476	482	474
	22	493	497	541		381	381	405	381	638	632	638	642	403	404	413	414	478	478	481	472
	23	494	494		502	382		395	384	636	633	639	639	407	408	413	413	478	478	482	470
	24	497	495	524	500	383	383	399	385	635	634	635	639	411	408	412	407	477	477	483	471
	25	498	498	521	500	384	384	393	384	636	634	636	636	408	412	414	409	477	477	485	474
	26	498	498						382	636	636		637	409			412	476			473
	27	499	499	507	501	385	385	392	383	637	639	636	637	410	411	409	411	477	477	482	473
	28	501	501	507	502	384	384	384	384	637	637	636	637	410	410	411	410	477	477	481	474
	29	500				383				637				410				477			
	R_{0}	659				539				705				623				626			
	R_{1}	667				515				770				557				580			

㑭

Decimal point preceding each entry has been omitted.

TABLE 1 (Cont.)
Weight-Validities for Four Methods and Five Criteria
($N_{0}=210$)

	Criteria:	All-Univ				Math				Engl Comp				Chem				Psych			
	Methods	1	2	3	5	1	2	3	5	1	2	3	5	1	2	3	5	1	2	3	5
	1	407	407	478	478	361		464	464	499	499	543	543	432		463	463	353	353		409
	2	462	460	491	479	439	382	465	477	540	540	543	546	454	471	466	450	445		480	480
	3	459	490	491	484	440	440		451	596	596	547	596	488		473	482	443			477
	4	439	474	501	491	433			440	627	627	596	594	528	508	473	484	461			463
	5	479	473	504	490	424	424	429	431	614	614	601	568	523	530	478	457	475	475		469
	6	451	466	497	504	411	411	418	440	620	620	602	573	527	525	483	477	466	466	489	448
	7	445	463	500	492	374	374	415	435	628	628	602	589	518	533	485	486	461	461		425
	8	456	489	488	505	375	375	394	446	623	635	607	607	513	525	484	494	452			436
	9	456	491	487	513	362	362	383	416	622	630	619	618	516	522	485	503	460	438		432
	10	461	470	488	503	365	361	380	395	616	628	620	607	526	527	485	506	460	428		437
	11	448	484		504	377	363	382	395	618	625	607	614	519		487	500	446	436	503	434
	12	465	483	491	498	384	375	393	383	623	618	623	613	527	526	486	502	439	439		428
	13	472	472	491	497	382	382	412	382	628	621	633	616	533	526	486	505	437	437	488	439
	14	473	473	485	494	374	379	401	372	625	625	630	616	533	531	487	511	439	433		437
	15	478	478	481	489	366	370	396	363	618	618	629	613	533	530	466	515	445	438	490	442
	16	486	486			357		392	353	622	622	628	609	532	530	486	518	448		492	442
	17	485	485	486	485	358	355	395	348	620	620	627	613	528	535	486	517	445	445		437
	18	481	481			358		395	340	628	628	627	616	526	530	520	516	446	446	488	434
	19	479	484	499		355	354	395	343	628	628	621	617	525	532	521	518	449	449		440
	20	478	482	502	482	354	351	393	347	628	628	622	613	525	528	513	521	447	450	488	444
	21		484	497		358	350	377	346	625			612	522	531		518				446
	22	477	482	494		355	348	357	342	618	618	602	621	519	530	511	517	445			445
	23	479	479	480	484	349	348	357	340	620	620	617	621	516	527	520	517	445	445		444
	24	479	479	481		346	352	359	341	620	620	614	619	518	524	517	517	442			447
	25	479	479	480	483	344	349	368	343	620	620	613	619	517	521	518	517	441	446		446
	26	480	480	480		339	345	369	342	619	619	616	619	516	519	517	516	443			446
	27	480	479	480	483	339	339	369	342	620	620	621	619	517	518	519	517	446	446	448	446
	28	481	480	480	483	342	342	358	342	619	619	620	618	517	517	526	517	446	446	449	447
	29	480				340				619				516				446			
	R_{0}	718				502				768				577				672			
	R_{1}	574				562				722				616				568			

TABLE 1 (Cont.)
Weight-Validities for Four Methods and Five Criteria
($N_{0}=165$)

TABLE 1 (Cont.)
Weight-Validities for Four Methods and Five Criteria
($N_{0}=120$)

	Criteria:	All-Univ				Math				Engl Comp				Chem				Psych			
	Methods:	1	2	3	5	1	2	3	5	1	2	3	5	1	2	3	5	1	2	3	5
	1	367	367	557	557	275	275	383	383	467	550	526	526	369	369	425	425	370	370	440	440
	2	448	448	564	567	335	365	387	392	576	593	528	522	409		423	444	456		492	492
	3	514	514	555	532	293	340	385	362	576	601	525	568	469	372	428	446	418	420	491	491
	4	519	521	565	484	343	332	385	321	589	588	570	583	431		411	407	430	430	478	479
	5	496	493		466	320	343	355	275	621	600	548	564	403	398	413	394	436	442	479	479
	6	459	515	576	485	325	317	354	288	611	611	558	558	394	433	422	406	437	446	483	440
	7	442	511	564	487	315	321	350	289	594	612	565	564	391	413	428	406	451	440	493	422
	8	467	516	563	494	313	313	351	259	591	604	565	577	397	402	429	404	448	446	476	418
	9	457	516	568	510	307	308	351	265	591	590	572	556	408	402	421	381	424	461	479	408
	10	442	513	566	520	306	292	364	270	592	589	586	558	420	408	417	379	397	412	488	410
	11	459	527	555	511	291	271	371	269	589	586	587	567	435		370	380	388		468	396
	12	458	528	571	503	271	271	382	283	579	583	580	563	434	435	372	390	370	391	450	383
	13	469	522	573	508	277	269	378	256	573	584	582	571	432	436	375	401	364	380	449	364
	14	477	509	572	503	273	275	378	265	577	573	581	573	428		387	406	367	373	450	329
	15	471	518	573	494	271	272	348	277	575	575	581	562	430	434	386	399	364	369	451	334
	16	476			487	265	270	356	272	570	577	595	553	430		387	391	359	370	433	325
	17	483	506	582	493	261	265	350	266	570	575	589	556	437	427	394	399	371	378	434	330
	18				494	261	261	351	262	566	578	579	557	425		430	400	376	376	449	345
	19	495		522		266	261	342	265	567	574	575	560	424		438	404	375	375	448	355
	20	488	494	527	480	265	265	349	257	569	578	575	566	420	426	439	399	374	374	443	356
	21	476	484	517	482	263	265	341	253	572	580	579	561	419		446	401	369		437	352
	22	478	472	496		262	266	347	253	563	575	580	564	411	424	446	409	369	367	414	350
	23	472	470		473	262	266	359	257	567	575	581	566				414	367	367	406	344
	24	470	474	496	473	264	267	367	254	569	570	571	568	414			415	365	364	404	346
	25	470	473	486	472	264	264	328	258	570	570	574	570	415	424	445	414	363	364	380	348
	26	471	476		472	260	260	326	258	566	571	575	571	416	417	447	421	356	363	380	350
	27	469	471	477	470	258	258	297	258	567	567	582	570	418	417	439	414	355	362	376	350
	28	470	472	473	470	259	259	257	259	567	567	586	569	418	418	421	414	354	356	377	349
	29	470				259				567				418				355			
	R_{0}	764				670				788				629				692			
	R_{1}	688				546				697				558				589			

TABLE 1 (Cont.)
Weight-Validities for Four Methods and Five Criteria
($N_{0}=75$)

	Criteria:	All-Univ				Math				Engl Comp				Chem				Psych			
	Methods:	1	2	3	5	1	2	3	5	1	2	3	5	1	2	3	5	1	2	3	5
	1	399	399	503	503	363		403	403	458	506	542	542	476	476	492	492	443	443	381	381
	2	360	360	492	515	300	375	381	299	581	545	542	580	387	387	470	391	409	527	367	538
	3	338	410	493	501	315	304	361	293	588	529	528	567	304	304	479	372	441	469	532	523
	4	314	388	492	511	249	298	381	282	596	542	546	543	248	324	480	226	425	441	511	533
	5	320	419	507	510	299		336	244	582	591	575	551	229	269	486	202	414	450	465	485
	6	294	396	500	446	300		314	249	588	593	561	579	238	253	499	216	385	445	452	468
	7	325	382	503	421	295		302	249	582	582	554	535	259	247	493	215	400	443	452	455
	8	317	365	497	373	268	273	281	221	565	582	553	537	251	252	513	180	359	390	445	437
	9	349	354	492	372	263	270	279	211	561	575	553	529	259	227	514	211	353	371	446	420
	10	347	363	492	377	272		284	213	557	575	541	528	229	222	436	206	356	363	429	414
	11	370	359	486	367	267	257	257	202	545	568	537	500	252	237	429	164	341	360	418	386
	12	354	341	495	374	258	250	280	220	527	569	530	483	247	248	450	179	312	383	449	384
	13	352	335	493	371	254	243	280	231	519	568	567	482	241	258	426	156	291	376	454	386
	14	324	340	489	366	255		278	218	492	561	576	480	208	261	430	169	320	337	435	369
	15	326	316	479	358	246		213	207	500	564	572	471	219	250	300	168	320	333	419	370
	16	325	332	468	353	231	239	224	222	507	563	557	463	212	245	305	178	316	340	434	332
	17	333	333	444	355	230	219	226	215	482	543	554	459	219	253	307	190	328	326	433	315
	18	335	335	445	353	224	225	233	201	470	541	558	469	225	240	316	212	335	330	418	317
	19	344	344	441	348	222	213	239	196	462	520	558	475	215	223	265	194	337	328	411	310
	20	336	336	427	338	223		248	198	458	496	556	466	211	211	283	201	339	342	423	301
	21	325	325	378	338	222	209	242	203	471	483	567	465	215	202	272	190	328	332	418	315
	22	325	325	371	343	222	211	245	199	475	476	571	464	215	201	292	203	332	335	403	325
	23	320	320	371	336	221	211	221	204	477	474	535	468	207	205	252	199	323	333	396	320
	24	322	322	360	336	216	212	201	206	467	480	532	467	204	205	233	200	320	326	370	315
	25	320	320	362	330	212	211	197	208	471	469	522	472	205	206	219	201	319	321	371	317
	26			358	329	210			206			511	476	206			205	319			317
	27	324	324	331	326	210	205	200	205	470	470	514	478	203	205	225	204	319	320	351	318
	28	325	325	324	325	208	208	204	205	470	471	470	476	203	203	204	206		319	354	319
	29	325				208				475				204				319			
	R_{0}	655				755				748				760				790			
	R_{1}	572				528				716				620				609			

TABLE 1 (Cont.)
Weight-Validities for Four Methods and Five Criteria
($N_{0}=30$)

six original-sample sizes used, ranging from 255 down to 30 cases. This size is denoted by N_{0}. In each instance, the new sample contained 252 cases. An original sample and a new sample were independently drawn for each size and each criterion, for a total of 30 original samples and 30 new samples. Since for rank 29, all methods are equivalent (aside from rounding error), the corresponding weight-validity is listed only under method 1. The fullrank (rank 29) multiple correlations for each sample are also listed under method 1, the subscripts 0 and 1 denoting the original and new samples, respectively.

Although the weight-validities using method 4 were computed on the basis of the data given above, they are not presented. For all ranks, criteria, and sample sizes, these weight-validities were substantially lower than those for any other method or for the full-rank weights. They were frequently negative, rarely greater than . 10 , and virtually always less than half as large as the weight-validities obtained by any of the other methods. Our expectation that the method of smallest principal-axes factors would give less accurate predictions than the other methods is thus unequivocally confirmed.

To assist in comparing the other four reduced-rank methods, Table 2 was prepared from Table 1. For each original-sample size and each criterion, two comparisons are made. In each of the first five columns, the number of ranks for which each method was superior to the other three methods is given. In making the counts, ties were divided equally among the methods sharing the high value for a particular rank. In each of the second five columns of Table 2, the number of ranks for which a particular method was superior to the full-rank weights is given. When for a particular rank a method had the same weight-validity as the full-rank weights, the count was increased by one half.

Of the four methods, the method of largest principal-axes factors most often gave the highest weight-validities in 26 of the 30 samples. This trend was most marked when the weights were computed on smaller samples, particularly samples of size 30 . The only exceptions occurred for samples of 210 and 255 cases. The superiority of method 3 was most pronounced for Psychology and Mathematics and less clear-cut for English Composition and Chemistry. Method 3 was also more often superior to the full-rank weights than were the other methods. Thus it appears that our expectation as to the superiority of method 3 is also confirmed, but with the qualification that, for larger samples and for certain criterion variables, one or more of the other methods may be preferable.

Another possible basis of comparison would be the number of samples for which a particular method gave the highest weight-validity for any rank. Of the 30 samples, method 3 gave the highest validity in 12.5 , method 5 in 8.5 , method 1 in 5 , and method 2 in 4 samples. The comparisons of Table 2 would appear to be more meaningful than this comparison, however, since

TABLE 2
Comparisons Between Four Reduced-Rank Methods With Respect to
Weight-Validities for Five Criteria

Sample Size	Methods	Number of ranks for which weight-validity is higher than for other methods					Number of ranks for which weight-validity is higher than full-rank method				
		All-Univ	Math	Engl	Chem	Psych	All-Univ	Math	Engl	Chem	Psych
255	1	0.	2.75	5.17	2.	6.	5.	13.	9.5	9.5	16.5
	2	0.	. 75	3.33	5.	2.	6.5	13.5	8.	15.5	17.
	3	24.5	19.75	13.83	6.	19.5	28.	28.	18.	11.5	25.
	5	3.5	4.75	5.67	15.	. 5	26.	24.5	17.	21.	7.
210	1	. 5	0 .	6.17	8.	0.	5.	26.	19.	22.5	12.
	2	. 5	0.	9.67	17.	0.	13.	26.	20.	24.	11.
	3	11.5	19.5	8.	2.5	27.	24.5	28.	14.5	8.	27.
	5	15.5	8.5	4.17	. 5	1.	26.	27.	4.	12.	9.
165	1	0.	0.	0.	1.	3.	18.5	24.5	7.	24.	28.
	2	0.	0.	7.	4.	1.	17.5	27.5	15.	24.	26.
	3	27.	27.5	13.5	22.5	24.	27.	28.	23.	28.	27.
	5	1.	. 5	7.5	. 5	0 .	14.	24.	25.	6.	18.
120	1	0 .	. 33	5.5	6.	0.	15.5	26.5	22.	15.	26.5
	2	0.	. 33	9.5	5.	0 .	25.5	26.5	26.	16.	28.
	3	26.5	25.5	13.	15.5	25.	28.	27.	21.	18.	28.
	5	1.5	1.83	0.	1.5	3.	26.	18.	10.5	4.	14.5
75	1	. 33	7.	3.5	0.	. 5	15.5	27.5	17.5	25.5	23.
	2	. 33	2.5	9.5	0.	. 5	20.5	26.5	23.	24.5	27.5
	3	22.5	18.	13.5	26.5	22.	27.	23.	27.	27.5	28.
30	5	4.83	. 5	1.5	1.5	5.	27.5	15.5	17.5	11.5	18.5
	1	0 .	0.	3.	0.	0 .	26.5	23.	28.	19.	26.
	2	5.	0.	0.	2.	1.	28.	28.	28.	28.	28.
	3	22.5	27.5	24.5	25.5	26.5	28.	28.	28.	28.	28.
	5	. 5	. 5	. 5	. 5	. 5	13.	27.	12.	10.	19.

TABLE 3
Total Squared Errors of Prediction and Weight-Validities for Four Methods and a Single Criterion

[^1]| | 1 | 349 | 450 | 481 | 481 | 893 | 799 | 770 | 770 | 340 | 412 | 502 | 502 | 901 | 835 | 749 | 749 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 | 410 | 481 | 507 | 469 | 843 | 771 | 743 | 782 | 411 | 462 | 516 | 511 | 842 | 791 | 734 | 740 |
| | 3 | 467 | 497 | 506 | 497 | 789 | 756 | 744 | 753 | 451 | 486 | 514 | 524 | 807 | 768 | 736 | 726 |
| | 4 | 480 | 508 | 518 | 511 | 776 | 744 | 732 | 739 | 473 | 504 | 535 | 542 | 786 | 750 | 714 | 707 |
| | 5 | 491 | 498 | 519 | 510 | 767 | 756 | 731 | 742 | 506 | 508 | 535 | 521 | 749 | 745 | 714 | 732 |
| | 6 | 482 | 519 | 530 | 523 | 781 | 732 | 720 | 728 | 495 | 514 | 548 | 538 | 762 | 739 | 700 | 714 |
| | 7 | 486 | 517 | 519 | 522 | 779 | 735 | 731 | 729 | 485 | 502 | 533 | 537 | 777 | 754 | 716 | 714 |
| | 8 | 509 | 503 | 518 | 521 | 752 | 753 | 733 | 732 | 491 | 491 | 535 | 528 | 770 | 766 | 715 | 725 |
| | 8 | 504 | 526 | 518 | 526 | 756 | 728 | 733 | 726 | 495 | 496 | 516 | 537 | 765 | 765 | 737 | 717 |
| | 10 | 500 | 521 | 516 | 522 | 764 | 735 | 737 | 730 | 492 | 492 | 514 | 534 | 771 | 769 | 740 | 720 |
| | 11 | 493 | 512 | 514 | 500 | 771 | 747 | 740 | 756 | 493 | 500 | 508 | 528 | 770 | 760 | 747 | 727 |
| | 12 | 498 | 507 | 517 | 511 | 765 | 755 | 736 | 745 | 497 | 496 | 510 | 541 | 766 | 766 | 746 | 713 |
| | 13 | 495 | 501 | 518 | 503 | 770 | 761 | 736 | 754 | 499 | 497 | 510 | 529 | 764 | 765 | 746 | 728 |
| A | 14 | 495 | 503 | 518 | 506 | 768 | 758 | 736 | 752 | 511 | 497 | 509 | 526 | 750 | 766 | 746 | 731 |
| م | 15 | 490 | 500 | 522 | 505 | 774 | 762 | 731 | 754 | 511 | 499 | 518 | 521 | 749 | 764 | 738 | 738 |
| | 16 | 485 | 501 | 516 | 499 | 779 | 761 | 738 | 761 | 512 | 512 | 523 | 527 | 748 | 750 | 732 | 731 |
| | 17 | 484 | 504 | 528 | 497 | 780 | 757 | 724 | 765 | 507 | 522 | 536 | 524 | 755 | 737 | 717 | 735 |
| | 18 | 475 | 499 | 522 | 497 | 791 | 762 | 730 | 764 | 504 | 522 | 542 | 519 | 758 | 737 | 713 | 740 |
| | 19 | 481 | 495 | 525 | 491 | 786 | 767 | 728 | 772 | 507 | 524 | 540 | 518 | 755 | 734 | 715 | 741 |
| | 20 | 485 | 493 | 502 | 494 | 780 | 769 | 755 | 769 | 508 | 519 | 535 | 517 | 753 | 740 | 722 | 743 |
| | 21 | 488 | 485 | 495 | 496 | 776 | 779 | 763 | 767 | 508 | 515 | 533 | 515 | 754 | 745 | 723 | 745 |
| | 22 | 492 | 488 | 497 | 496 | 771 | 776 | 761 | 767 | 510 | 514 | 532 | 514 | 752 | 746 | 725 | 746 |
| | 23 | 492 | 489 | 496 | 493 | 771 | 775 | 762 | 771 | 510 | 511 | 530 | 515 | 752 | 749 | 727 | 745 |
| | 24 | 497 | 489 | 497 | 495 | 764 | 775 | 761 | 768 | 515 | 512 | 525 | 516 | 744 | 748 | 733 | 744 |
| | 25 | 495 | 493 | 496 | 494 | 767 | 770 | 766 | 769 | 514 | 514 | 515 | 517 | 746 | 747 | 745 | 742 |
| | 26 | 495 | 497 | 495 | 494 | 767 | 764 | 767 | 769 | 515 | 516 | 516 | 516 | 746 | 743 | 743 | 744 |
| | 27 | 495 | 495 | 492 | 494 | 767 | 767 | 771 | 768 | 515 | 515 | 517 | 516 | 745 | 745 | 743 | 744 |
| | 28 | 495 | 495 | 491 | 495 | 767 | 767 | 772 | 768 | 515 | 515 | 516 | 516 | 745 | 745 | 743 | 744 |
| | 29 | 495 | | | | 767 | | | | 515 | | | | 745 | $R_{2}=638$ | | |
| | | | $N_{0}=390$ | | | | $R_{0}=619$ | | | | $R_{1}=646$ | | | | | | |

TABLE 3 (Cont.)
Total Squared Errors of Prediction and Weight-Validities for Four Methods and a Single Criterion

TABLE 3 (Cont.)
Total Squared Errors of Prediction and Wave-Validities for Four Methods and a Single Criterion

TABLE 3 (Cont.)
Total Squared Errors of Prediction and Weight-Validities for Four Methods and a Single Criterion

	1	380	380	546	546	865	865	703	703	451	451	514	514	797	797	738	738
	2	418	418	536	531	843	843	718	720	481	481	543	519	774	774	706	731
	3	474	474	536	526	806	806	718	729	467	467	545	548	811	811	704	700
	4	492	492	534	521	792	792	720	741	490	490	545	540	788	788	704	712
	5	529	529	534	504	749	749	721	767	504	504	545	514	776	776	704	747
$\begin{aligned} & \text { 步 } \\ & \text { H } \\ & \text { شٌ } \end{aligned}$	6	517	517	541	516	773	773	713	759	482	482	535	527	809	809	717	734
	7	517	514	542	526	769	777	712	748	471	483	533	521	825	807	720	745
	8	512	498	521	514	781	804	743	766	483	468	501	499	820	830	759	778
	9	496	473	512	492	807	840	754	807	467	456	505	494	845	848	752	804
	10	462	467	516	495	858	854	750	808	451	463	504	470	875	850	753	846
	11	457	465	509	480	865	852	759	839	435	455	490	453	895	866	770	866
	12	439	473	509	483	894	843	759	831	420	451	490	448	927	870	770	869
	13	432	452	509	470	910	895	759	852	431	437	490	441	917	905	770	880
	14	423	433	520	457	928	929	752	881	435	422	503	445	919	939	758	889
	15	427	433	522	446	926	925	749	898	429	415	502	449	931	943	760	886
	16	424	430	506	448	935	932	775	898	435	425	480	447	935	932	790	894
	17	430	427	496	441	931	940	789	909	437	430	487	454	936	934	783	887
	18	436	426	479	439	920	942	816	915	443	428	479	451	918	940	795	897
	19	434	426	479	440	916	944	816	916	448	426	473	449	901	947	802	901
	20	433	431	484	440	925	934	817	917	449	429	474	447	901	939	810	907
	21	438	425	485	440	920	945	816	916	442	429	473	442	915	942	812	915
	22	444	427	475	440	910	944	835	918	446	432	480	442	906	938	809	914
	23	447	428	478	442	905	941	838	915	443	430	454	441	909	940	852	915
	24	449	426	482	440	902	943	833	917	443	433	450	441	908	935	862	915
	25	444	428	466	440	912	935	863	918	444	437	432	441	910	922	895	916
	26	445	433	462	441	910	926	870	917	441	441	428	440	915	915	905	918
	27	443	432	448	442	913	931	904	914	441	444	434	440	916	912	921	916
	28	443	442	441	442	914	916	917	915	441	443	440	441	916	912	917	916
	29	443				914				441				916			
		$N_{0}=120$				- $R_{0}=737$				$R_{1}=638$				$R_{2}=642$			

TABLE 3 (Cont.)
Total Squared Errors of Prediction and Weight-Validities for Four Methods and a Single Criterion

REDUCED RANK MODELS FOR MULTIPLE PREDICTION

	1	-137	344	429	429	1009	1001	817	817	-139	436	411	411	1009	874	838	838
	2	083	241	429	503	,	1269	817	754	114	376	411	544		1029	837	709
	3	235	204	503	267	1330	1316	754	1483	355	365	545	302	1113	1043	709	1440
	4	201	187	492	224	1350	1302	766	1597	322	325	537	260	1146	1071	718	1549
	5	208	208	467	173	1314	1295	791	1951	345	354	529	254	1096	1039	725	1821
	6	176	200	426	150	1432	1336	836	2008	322	373	479	220	1201	1020	779	1920
	7	179	222	412	148	1594	1307	850	2061	323	398	473	237	1312	989	786	1856
	8	143	232	424	191	1772	1334	846	2004	298	407	477	294	1503	1004	790	1833
	9	076	210	432	187	2291	1427	852	1986	231	373	509	293	1960	1114	758	1823
	10	065	164	347	197	2308	1630	984	2748	184	333	413	281	2137	1256	909	2120
	11	074	159	336	209	2379	1626	1015	2766	205	350	442	301	2168	1257	865	2137
	12	044	179	337	289	3088	1602	1012	3817	197	379	440	213	2767	1207	867	3708
	13	032	186	317	296	3642	1616	1036	3869	196	391	427	222	3194	1207	878	3739
-	14	026	205	321	273	3573	1611	1045	4735	192	392	427	259	3149	1222	887	4338
~0	15	029	184	279	267	3773	1935	1117	4798	179	363	403	255	3332	1451	938	4388
	16	050	191	270	258	3622	1999	1126	4795	190	330	400	250	3153	1523	943	4323
	17	047	205	264	242	3672	2009	1152	6552	183	306	419	159	3257	1588	933	6374
	18	047	174	257	223	3908	2365	1181	8157	175	263	387	105	3487	1865	980	7761
	19	044	204	305	225	4863	2608	1169	8160	142	275	447	107	4445	2015	957	7803
	20	039	232	222	218	6698	3134	1547	8106	108	258	411	105	6227	2568	1169	7823
	21	027	249	196	217	*	5221	1648	8195	074	205	391	097	*	4682	1237	7856
	22	012	252	198	210	*	6507	1708	8322	058	189	376	091	*	5703	1326	7902
	23	-030	244	138	199	*	7984	2427	8718	-007	175	279	086		7060	2056	$\underset{*}{8218}$
	24	-037	240	164	-085	*	8435	3041	*	-015	173	274	-077	*	7470	2310	*
	25	-046	242	143	-085	*	9995	4042	*	-048	159	287	-077		8797	3290	
	26	-050	237	134	-085	*	*	4934	*	-065	171	215	-076	*	9289	3873	*
	27	-067	225	209	-085	*	*	6529	*	-069	161	164	-076	*	8726	5785	*
	28	-072	227	196	-085	*	*	9073	*	-069	138	092	-076	*	*	8519	*
	29	-085	N_{0}			*	$R_{0}=$	999		-077	$R_{1}=$			*	R_{2}	672	

* Value greater than ten.
the outcome of the latter would presumably be much more subject to random variability of weight-validities from rank to rank.

In Table 3 are presented data from ten additional original samples from the criterion-1 (All-University) population, with sizes ranging from 435 down to 30 cases. Here all sets of weights from each original sample were crossvalidated on two new samples, where again each new sample consisted of 252 cases. Total squared errors of prediction are presented as well as weightvalidities for each of the 20 new samples. Method 4 was omitted from this phase of the computations. At the bottom of each page of Table 3 are given, in addition to the original sample size N_{0}, the full-rank multiple correlations for the three samples represented by that page; these are denoted by R_{0}, R_{1} and R_{2} for the original sample, first new sample, and second new sample, respectively.

Since the criterion variable (as well as the predictors) was normalized before the computations were carried out, the total squared errors of prediction are comparable from sample to sample as well as from method to method and rank to rank. Expressed in normal deviates, the criterion mean is zero and the sum of squares is one. Thus if a prediction of zero were made for each case, without ever going to the trouble of computing regression weights, the total squared errors of prediction would be one. Since, for example, the total squared errors of prediction using the full-rank weights from an original sample of size 75 are greater than one in both new samples, it appears that this particular regression equation is worse than useless. Yet for this same sample the rank-1 errors for method 3 of .737 and .655 are actually lower than either of the full-rank errors obtained for the sample of 390 cases, which were .767 and .745 . In general, it may be seen that the lower-rank errors obtained with method 3 using small original samples compare favorably, or at least not unfavorably, with the full-rank errors obtained using large original samples. A similar trend may be noted, though not so clearly, with regard to weight-validities.

Table 4 was prepared from Table 3 in a manner analogous to the preparation of Table 2 from Table 1. Here, of course, only one criterion variable is involved, and the comparisons are made with respect to total squared errors of prediction as well as to weight-validities. For the larger originalsample sizes, the outcomes of the comparisons are not appreciably affected by the index of accuracy used. For the smaller sizes, however, the total squared errors of prediction tend to favor method 3 over the other methods and the lower ranks over the higher to a greater extent than do the weight-validities. In the present series of samples, just as in the preceding series, method 3 appears to be definitely superior to the other methods. And even for the largest original-sample sizes, method 3 appears preferable to the full-rank system.

It appears that method 3 could be used to considerable advantage in

TABLE 4
Comparison Between Four Reduced-Rank Methods With Respect to Weight-Validities and Total Squared Errors of Prediction for a Single Criterion

Sample Size	Methods	Index	Number of ranks for which index is superior to other methods				Number of ranks for which index is superior to full-rank method			
			W_{1}	ψ_{1}	W_{2}	ψ_{2}	W_{1}	ψ_{1}	W_{2}	ψ_{2}
	1		2.33	2.33	. 25	0 .	6.5	6.5	10.5	11
435	2		3.33	3.83	. 25	0.	3.5	5.	8.5	10
	3		21.5	21.	26.75	27.5	18.	20.	27.5	28
	5		. 83	. 83	. 75	. 5	0.	0.	17.5	19.5
	1		1.33	1.	0.	0 .	8.	7.5	2.	2.
390	2		2.33	2.	. 33	. 5	18.5	18.5	6.5	8.
	3		19.	20.5	14.33	15.5	24.	24.5	20.5	22.5
	5		5.33	4.5	13.33	12.	19.	17.	24.	25.
	1		. 83	. 5	2.5	1.5	12.	10.	20.5	24.
345	2		3.83	3.5	3.5	4.	10.	9.5	20.	22.
	3		20.83	21.5	20.5	22.	18.	21.	27.	27.
	5		2.5	2.5	1.5	. 5	5.	4.	20.5	21.5
	1		1.	1.	2.	2.	6.5	5.	6.	6.
300	2		0 .	0.	3.	3.	12.5	12.	11.5	11.5
	3		24.	24.	18.	18.	27.	27.	20.	20.
	5		3.	3.	5.	5.	20.5	20.5	16.	16.5
	1		1.	1.	2.5	2.	11.5	13.5	16.5	14.
255	2		2.	2.	10.5	8.	13.	14.5	19.5	20.5
	3		23.	23.	4.	6.5	24.	24.	8.	21.
	5		2.	2.	11.	11.5	14.5	14.5	21.5	27.
	1		. 33	. 33	2.	1.5	3.	5.5	8.	13.5
210	2		. 33	1.33	2.	1.5	5.5	9.5	9.5	14.5
	3		21.	22.	21.5	22.5	24.	24.	25.	26.
	5		6.33	4.33	2.5	2.5	18.5	21.5	14.5	14
	1		4.33	4.5	0 .	0.	7.	8.5	18.5	20.5
165	2		3.83	5.5	1.	1.	4.	6.5	19.5	24.
	3		11.5	14.5	26.5	26.5	15.	21.	27.	27.
	5		8.33	3.5	. 5	. 5	22.5	22.	6.5	8
	1		1.	1.	1.5	0.	15.	19.5	19.5	20.
120	2		0.	0.	2.5	2.	11.	13.	14.5	16.
	3		26.5	26.5	22.5	24.5	27.	27.	24.	26.
	5		. 5	. 5	1.5	1.5	16.	17.5	23.5	25.5
	1		5.33	0.	0 .	0 .	18.	27.5	26.	23.5
75	2		3.33	1.	1.5	0 .	17.5	27.	28.	26.5
	3		18.5	26.5	26.	27.5	20.5	27.	28.	28.
	5		. 83	. 5	. 5	. 5	12.	25.	28.	26.5
	1		0.	0.	0 .	0 .	27.	28.	27.	28.
30	2		9.	0 .	2.	0 .	28.	28.	28.	28.
	3		17.5	26.5	25.	26.5	28.	28.	28.	28.
	5		1.5	1.5	1.	1.5	25.5	25.	24.	26.

either of two situations. The first would be where, for a given original-sample size, one wanted the greatest accuracy of prediction obtainable. The other would be where, for a given accuracy of prediction, one wanted to use the smallest possible original sample. In order actually to compute the coefficients for a reduced-rank prediction equation, however, one has, of course, to select the particular rank to be used. To provide some indication as to how satisfactory the statistics \hat{W} and $\hat{\psi}$ would be for this purpose, they are computed for the original samples of Table 3 using (46) and (96), respectively. They were computed only for method 3 , since the other methods are dependent on the criterion observations for order of selection, contrary to the assumptions used in deriving the above statistics. These estimated values for weightvalidities and total squared errors of prediction are given in Table 5. To facilitate comparisons, the obtained values from Table 3 are reproduced in the adjacent columns. At the bottom of each page are given the originalsample size and the full-rank multiple correlations for the two cross-validation samples. The multiple correlation and the estimated population correlation, from (32), in the original sample are given for each rank. The column headed $\hat{\alpha}$ is an estimate of the standard error of $\hat{\psi}$, and may be derived as follows. We let a be a column vector composed of the elements of z_{2} and z_{3} in (91). Then we may write

$$
\begin{equation*}
\hat{\psi}=\frac{N+L}{N-L} a^{\prime} a \tag{135}
\end{equation*}
$$

where the elements a_{i} of a are independently distributed with mean zero and variance σ^{2}. The variance of $a^{\prime} a$ will be

$$
\begin{equation*}
\operatorname{Var}\left(a^{\prime} a\right)=E\left[\left(a^{\prime} a\right)^{2}\right]-\left[E\left(a^{\prime} a\right)\right]^{2} \tag{136}
\end{equation*}
$$

Under the reduced-rank hypothesis, $a^{\prime} a$ will be simply the error sum of squares in the original sample, so that from (71), the second term on the right of (136) will be

$$
\begin{equation*}
\left[E\left(a^{\prime} a\right)\right]^{2}=\left[(N-L) \sigma^{2}\right]^{2}=(N-L)^{2} \sigma^{4} \tag{137}
\end{equation*}
$$

Expanding the first term on the right of (136), we obtain

$$
\begin{equation*}
E\left[\left(a^{\prime} a\right)^{2}\right]=(N-L) E\left(a_{i}^{4}\right)+(N-L)(N-L-1) E\left(a_{i}^{2} a_{i}^{2}\right), \quad i \neq j \tag{138}
\end{equation*}
$$

Since the a_{i} are independent, we have

$$
\begin{equation*}
E\left(a_{i}^{2} a_{i}^{2}\right)=E\left(a_{i}^{2}\right) E\left(a_{i}^{2}\right)=\sigma^{4}, \quad i \neq j \tag{139}
\end{equation*}
$$

If the elements of the criterion vector, y, are assumed to be normally distributed, the elements of a, being linear combinations of the criterion observations, will also be normally distributed. Thus we have (Cramér, 1946, p. 212):

$$
\begin{equation*}
E\left(a_{i}^{4}\right)=3 \sigma^{4} \tag{140}
\end{equation*}
$$

TABLE 5
Estimated and Obtained Measures of Accuracy of Prediction Using Method of Largest Principal-Axes Factors

		R_{0}	$R_{\text {c }}$	$\hat{\alpha}$	\hat{W}	W_{1}	W_{2}	$\hat{\psi}$	ψ	ψ_{2}
	1	539	538	048	536	582	488	712	663	763
	2	549	546	048	543	596	487	705	647	764
	3	549	545	048	540	596	487	708	647	765
	4	550	544	048	538	599	491	711	643	760
	5	558	551	048	543	603	499	705	638	753
	6	559	550	048	542	608	503	707	633	749
	7	568	558	048	548	619	513	700	619	738
	8	568	556	048	545	620	513	703	617	738
	9	568	555	048	543	620	515	706	617	737
	10	568	554	049	540	620	516	709	618	736
	11	571	555	049	540	613	514	709	625	738
	12	571	554	049	537	613	514	712	625	738
	13	571	552	049	534	613	514	716	625	738
	14	571	551	049	532	614	511	718	624	741
	15	578	557	049	536	613	507	714	625	747
16		583	561	049	539	617	518	711	620	734
17		584	561	049	538	617	514	713	619	739
18		590	566	049	543	624	525	708	611	729
19		593	568	049	543	622	526	707	613	728
20		594	567	049	542	629	521	709	604	734
21		609	582	048	556	614	491	693	623	776
22		611	583	048	557	619	500	693	617	767
23		615	586	048	558	617	496	691	620	774
24		617	587	048	558	621	492	692	616	780
25		619	588	048	558	615	488	692	623	787
26		619	587	048	556	615	486	695	624	789
27		622	589	048	557	610	478	694	630	797
28		625	590	048	558	608	472	693	633	805
29		626		049	557		472	694		806
		$N_{0}=435$			$R_{1}=684$			$R_{2}=582$		

Decimal point preceding each entry has been omitted.

TABLE 5 (Cont.)
Estimated and Obtained Measures of Accuracy of Prediction Using
Method of Largest Principal-Axes Factors

TABLE 5 （Cont．）
Estimated and Obtained Measures of Accuracy of Prediction Using． Method of Largest Principal－Axes Factoris

＊		R_{0}	$R_{c} \because \because \hat{\alpha}$	$\stackrel{\text { Wh．}}{ }$	$W_{1} \div W_{2}$ त	$\hat{\psi}$	ψ_{1}	ψ_{2}
$1 \cdot$	$1 . \mathrm{i}$	598	596 － 049	595	511 品 531 ！	646	747	23
－	2：	601	598 ～．．c 049 －	595	524 ，＇＇ 5355	646.	732 ＇．	718
91	3 ：\％	605	600 － 049	596	518 」it 530 －¢	645	741 ：	724
\therefore	410	622	$616 \cdots 048$－ m \％	610 ：	516 ！い＂ 524 ：	628	753	735
？	5	625	618	611 ：	523 － 530	627	742	727
	6 \％．：	627	618 ： 048 ¢＇ı	610.	527 － 536	629 ：	735	720
¢9	$7 \cdots$	628	618 い 048 ¢ir	608.	530 แ， 536	630	731 ：	721
：0	8 \％	630	618 －5．049＇it，	60π	534 いこ535：	632：	726 ：	722
\cdots	9%	630	617 ¢¢¢ 049 d）	604.	535 ： 11535 （	636	726	722
3%	$10 \cdots$	633	619	605	537×532	635	724 ：	27
Q	11	63	619 亿\％ 049	603	536 －53	637：	727 ＇！	730
	12 ¢r：	641	624 ？ 0493 3	608.	534 ：0．313－\％	631	$735:$	756
	13	643	625 और 049% ¢	607 ：	531 ¢ 5060 ＇，	633	738 ：\％	768
	14 in	643	623 ，it 049 1m	604 ：	530 ¢	636	739 ！	768.
	$15!$	652	631 Г－649 \％	612.	549 こ115516 ㄴ，	628	716 ：	59
	16 ？：	654	633 ： 049 ：	612.	546 ¢－507 50	627	722 ：	771
chtit	17 ：${ }^{-}$	658.	635 处649 \％	618 ：		626：	726 －	766
¢rie	18	$659{ }^{\circ}$	635 385049 dec	$611{ }^{\circ}$	541 ¢4， 513 ict	628：	728 ？	762
9 ma	19	$659{ }^{-}$	633 ว゙¢ 049 わた	609.	541 －4 512 －弓t	632：	728 ¢	763
\because	20 mb	661.		609 ：	553 －ru：519	632 ？	712 \％	752
	21.34	664	636 ！ic 049 \ธ்	609.	547 \＄00521 cic	632	719 ：	750
\because	22	$666{ }^{-}$	637 ¢T¢ 050 ¢z：	610 ：		632：	716	756
ano	23 い象	666	636 ma 050 ¢ด	607 ，	552 t： 519 ＠	635 ；	712 S＇	755
¢5．	$24{ }^{10}$	668：	637 ！ic050 3！	607	548 ＋0：518 $!$ ¢	630\％	717	
	25	673	641 ษ¢050 1 c	610.	535 ¢n， 509 ：二	632	732	769
bro	26 \％	673：	639 vec050 $\because 6$	607.	535 ：01509 ธ¢¢．	636：	732 ふ	
－3	27	674：	639 －2050 0¢5	6065	535 か） 503 心a゙	638：	732 「5	778
St	28 Cr	675	639 むさ 051 Јad	604	532 ¢60497 ！\％	640 ）	737 8：	788
80	29	676：	638 טnce 051 さ¢ç	602	533 勺： 0502 आ¢	642	$736{ }^{2}$	782
$108=-31$		$N_{0}=345 \quad 400=\cdots$		$R_{1}=649 \quad \text { 论 }=$			$R_{2}=630$	

TABLE 5 (Cont.)
Estimated and Obtained Measures of Accuracy of Prediction Using
Method of Largest Principal-Axes Factors

TABLE 5 (Cont.)
Estimated and Obtained Measures of Accuracy of Prediction Using Method of Largest Principal-Axes Factors

		R_{0}	R_{c}	$\hat{\alpha}$	\hat{W}	W_{1}	W_{2}	$\stackrel{\text { \% }}{ }$	ψ_{1}	ψ_{2}
	1	559	557	061	555	561	473	692	687	780
	2	593	588	058	584	592	443	659	650	820
	3	593	587	059	580	590	443	663	652	820
	4	593	585	059	576	590	443	669	652	819
	5	595	584	060	573	597	446	672	644	817
	6	596	583	060	570	596	439	676	645	825
	7	599	583	061	568	612	446	678	627	817
	8	599	581	061	564	611	446	683	627	818
	9	601	581	062	562	612	446	686	626	821
	10	601	579	062	557	612	447	691	626	821
	11	601	577	063	553	614	449	696	624	818
	12	602	576	063	550	608	441	700	631	827
	13	604	575	064	547	607	436	704	633	832
	14	605	574	064	545	616	435	707	622	834
	15	607	573	065	542	612	438	711	625	832
16		608	572	065	539	608	441	714	630	830
17		612	575	065	540	608	435	714	631	836
18		618	579	065	542	620	442	711	616	828
19		623	582	065	544	602	434	710	638	841
20		623	580	066	540	600	435	716	640	840
21		626	581	066	539	599	435	717	642	839
22		639	593	065	551	600	443	704	640	833
23		640	593	065	549	589	449	707	654	828
24		641	591	066	545	591	449	712	652	829
25		644	592	066	545	581	452	713	667	828
26		645	592	067	543	573	457	716	676	821
27		645	590	067	538	572	457	722	678	822
28		646	587	068	534	569	456	727	682	823
29		646	586	069	531	576	448	732	673	832
		$N_{0}=225$			$R_{1}=717$			$R_{2}=563$		

TABLE： 5 （Cont！）
Fstimated and Qbtained Measures of Aceuracy of Prediction Using
Method of Largest Principal－Axes Factors

${ }^{3}$	¢	${ }_{\text {R }}$	$R_{\text {c }}$ ］f	人 ${ }_{\text {a }}$	W	W_{1} ；	W_{2} ．	\％	ψ_{1}	ψ_{2}
085	1781	928	525 ¢¢	071 10¢	622	498：	571－d	728	753	676
088	$2{ }^{\text {ça }}$	537	530 \％，1＋4	071 g g	924	506 ş．．1	566 ，mi	726	745	680
8	3 sca	83，	528；	07200\％	399	507	563－26	731	744 \％	84
ela	4 c a	598	$525{ }_{\text {G上 }}$	072 ¢9\％$^{\text {a }}$	512	508，6，	563；	738	743	83
8	5 ± 0	$\underline{546}$	$5311_{\text {¢4，}}$	072－4G	515	498 \％iw	565；	736	754	681
688	$6_{\text {6，よう }}$	583	566 ¢я	06930 ${ }^{\text {a }}$	550	525 вй	572	699	727	673
518	$7{ }^{\text {a }}$－	691	582 dit	067sıa	56.4	5191；	570	683	740	677
818	8 Ea	607	586 \％）	$0^{067}{ }_{\text {Li }}$ \％	566	522 （；1）	576138	682	7363	670
IS8	9 9sa	697	$583{ }^{\text {in－}}$	068： 19	561	521×1,	$575{ }_{123}$	688	737 ？	671
8 8	103 cg	698	581－1＋4	069 cio	556	522：\％11	573：1909	694	735 ）	673
818	$11_{\text {Sa }}$	609	5803＋4	070 ． 13	552	521 ：3\％	571－7	698	737 i，	77
Fers	1258	$6{ }_{6} 6$	579 ${ }_{\text {明 }}$	070 0 d	549	526 \％	569.6	702	732	679
S发	13 ¢\％ 7	${ }_{6} 616$	58198	070 0id	549	520 i：川	552．－a	703	740 S	791
10	14×5	676	579 GGA	0719\％	．544	519：	554－7	81.9	743 －	699
SC8	$15_{6 \mathrm{Ca}}$	632	59488，	070－919	558	509\％\％	560：：$¢$	694	7623.	695
088	$16_{0 ¢ \%}$	633	593 ［＋！	07180	65.	$514{ }_{6} \mathbf{i}+1$	561．－6	698	756	695
288	17_{18}［\％	669	$596{ }_{6}^{6} ¢$	071816	857	$500{ }_{\text {i，i＊}}$	554	696	774 \％	05
858	18 ¢1a	647	603 c 4	070）co	562	499 \％ial	539．${ }^{\text {－}}$	691	7733	725
$1+8$	$19_{8 ¢ \%}$	647	6^{601}	071 $\mathrm{com}^{\text {a }}$	558	499\％\％，	538：3	697	774\％：	72
8	20_{04}	647	598安：	072093	55^{5}	499 isi	540，	764	77305	72
E88	21_{4+0}	651	$6000_{\text {，}, 8 \pm}$	$072_{\text {¢0，}}$	559	504＊＊＊	532	704	$766_{\text {is }}$	732
¢¢8	2204.0	693	599	07300a	550	5076：\％	542： 30	808	$762 \times$	72
8	$23_{ \pm \text {da }}$	$6{ }_{6} 9$	597 en	07498 F	545	506\％；	$542: 3 \%$	715	7648 ：	722
¢s8	24sà	658	$599{ }_{\text {pft }}$	074 ［pe	546	500 刀\％\％	542	714	775	72
858	25ヶวо	669	600 cat	074186	545	488：9：0	539 － 2	716	795 Es	730
158	$26^{\text {aro }}$	664	602 －¢̆¢	074ça	546	490－：～	523 36	716	79435	754
sc8	$27_{8 \text { a }}$	665	6^{600}	075：	540	486－（in）	519，ӟ	72	7985	759
ES8	28－89	665	5970 ¢̆	076 pzt	5366	486\％；州	520－3\％	829	79785	758
Sce	29 ${ }^{\text {cia }}$	679	${ }^{600} 31+$	076 ¢¢	538	493 zon	524，88	328	789 as	757
	$\hat{6} \mathrm{a}=\mathrm{s} \mathrm{s}$		$N_{0}=210$	$\Gamma 5=0$		$R_{1}=605$	$\therefore=x=x$		$R_{2}=653$	

TABLE 5 （Cont．1）

Estimated and Obtained Measures of Accuracy：of Prediction Using Method of Eargest Principal－Axes Factors

		R_{0}	$R_{c}{ }^{\prime}$	$\hat{\alpha} \times 11$	$\stackrel{\hat{W}}{ }$	W_{1}	$W_{2} \cdot \therefore$	安	ψ_{1}	ψ_{2}
－	1%	544	540：：	078 iti	536	587114	540：4¢	712	658 ：	709
\cdots	$2 \cdot$	544	536：．．	079）	508	588\％；	541－6	721	657 ．	708
i	3	549	537\％	080 ki	525	581 ＋6	543 ，	725	665	705
	4 －－	563	548：4．	079 ¢	533	591－	537\％itis	716	652	712
\cdots	5	582	564：	078．ぇ之，	546	579	539	703	665；	710
	6	590	569% ．	078 1 ¢	548	578；	534\％	701	666 ，	716
	7	593	569% ．	079ジース．	545	582： 0	547\％	705	661 i	702
	8%	608	$581{ }^{\text {1s }}$ ．	078	555	584， 6	537	695	660 ＇	716
	9．	618	588：～．	078	560	573－1）	538 \％	690	676.	717
	$10 \div$	618	$585{ }^{14}$	079）！	553	$574{ }^{\text {ital }}$	$541+0$	698	675 ：	714
6 \％	$11{ }^{\text {\％}}$ ，	639	$605:$	077：\％	573	563 （：4）	52700	677	696	736
	$12 . \therefore$	645	609 －	077\％	574	557 H：	522\％	675	707：	743
㫛	13：＊	645	606	078 vi	568	$559 \cdot 6$	$523 n \cdot$ ，	683	704，	74
A	14－$\%$	646	$603:$	0791く	562	55514	522，	1691	710	744
	$15^{\text {\％}}$	648	601－	0800	558	555 （1）	529016	697	712： 1	735
M：	16\％：	648	598%	081\％\％	552	554：！	529！\％	705	713！	735
it	17\％	648	594：	082 6	545	550 （\％）	528，（0）	743	719 ${ }^{-1}$	736
0	18－5	649	591	084	539	550 ：1	529 ！3	721	719 i	735
3ic	19 ：	649	588：	085：－	533	552．11i	534．0h	7729	$717{ }^{1}$	729
lif：	20 \％	650	585 ㄱ，	086以	527	558 H：	538＊世4	1737	$708{ }^{12}$	722
\therefore	21 ：	651	583－1	087．2．	522	550%	536．${ }^{\text {\％}}$	784	$721{ }^{\text {2 }}$	725
$3:$	22：re	657	$586 \cdot{ }^{\text {r }}$	087\％	523	543 ！	532 F	7744	733：	731
－	23：	657	582%	089315	516	543 い	532－8	753	733：	731
隹兵	24\％	658	580 品	090\％	511	544，${ }^{\text {a }}$	52דご0	761	732 －	741
\therefore	25.4	659	578： 1	091）${ }^{\text {a }}$	506	5390：	528：ii	767	740：－	740
\％	265 c	659	$573 \div$	093at	：499	539 п！	$528) 180$	787	740\％	740
－	27 ¢：	659	569 ${ }^{\text {：}}$ ，	0943＋	492	538；0；	529：8\％	1787	741：	738
！	28．1．	665	573 ！	094：	494	551	499，co	786	727？	778
At	29 ${ }^{1}$ ？	666	570 ：	096	487	55512	502163	794	7235	777
－	$\therefore d=$	$N_{0}=165$		Pi:i. - :		$R_{1}=679$			$R_{2}=646$	

TABLE 5 (Cont.)
Estimated and Obtained Measures of Accuracy of Prediction Using Method of Largest Principal-Axes Factors

TABLE 5 (Cont.)
Estimated and Obtained Measures of Accuracy of Prediction Using Method of Largest Principal-Axes Factors

TABLE 55 （ $(\mathrm{C}$ 6nt．$)$
 Estimated ànd Obtained Mèasuresı of Aè ćuracy：of（Prediction：Using Method of Largest Pfincipal－Axes Factors

：${ }^{\text {d }}$	4	\dot{R}_{0}		W	$W_{1} \stackrel{ }{*}$	W_{2} ，${ }^{\text {T }}$	$\hat{4}$	ψ_{1}	ψ_{2}
$\stackrel{\square}{\mathrm{c}} \mathrm{C}$ ¢	1785	593		555	429 SS	4110 ［	694	817 I	838
00°	28．67	593	552 เea 191ヶ！	514	4298 ct	411 ア1	742	817	837
080	380 T	662	61302 c 180 c ¢	567	503 cel	54578	687.	754 \＆	709
002	488	681	617 ¢尸́̆ 187 çt．	560	492 ill	537876	701	766 ：	718
T¢̄）	$5 ¢ 85$	690	61088\％ 199181	539	467 I	5297 ¢a	733	791 ¢	725
$\underline{+}+60$	615	722	634 10с 199 гоt	557.	426	479 eos	718	836	779
180	$7 \mathrm{SS8}$	732	62805a 211 cas	538	412 ss	$473+8 \mathrm{C}$	747	$850{ }^{-7}$	786
780	8088	744	62620с 2220दt	526	4240 ¢	4770 ¢	770	$846 ?$	790
980	9088	759	6298から 232 「く！	520	4320 ¢	50950 d	786	852 亿	758
280	100 C 8	803	683006 2158 ¢5．	581	$347 \div$	41310 c	712	984！	909
807	1178	823	701 GGT 215 ［4t	597	336	442 c ¢	695	1015 ！［	865
\％00	12 E 78	824	682\％\％¢ 237¢\＆t	564	337081	440き76	750	1012：＇í	867
号	13000	830	6710nc 2560¢4	542	31748：	427：00	789	10362．	878
䍃	14！801	887	661 CEc 27588¢	523	32180 L	427802	825	1045 I I	887
105	15t80］	843	65086c̆ 29788¢	501	279	403 Sea	866	11176：	938
18	16 fr 0 L	845	2305 c 332088，	459	270 ¢	400 I？0	938	11260］	943
cer	173S0I	848	5925¢¢ 37200f	418	26460 ！	419－¢5	1018	1152\％	933
108	187501	853	566ack 41100t	375	25700 i	387 SST	1088	1181关	980
50，	19850 C	872	58904¢ 41810ト	398	3058 ［1	44725	1067	1169 ？ 1	957
105	20810！	906	682\＆	513	2227	411 SI	892	15470	1169
－	21 ［10）	91.1	660¢\＆ 409 ［14	428	196 is	391005	959	1648 ： 2	237
818	22 ± 801	915	6250 － 473008	426	198 ISI	$376 \leq 5$	1057	1708 ¢	1326
008	23 forr	952	773⿺𠃊⿳亠二⿺𠃊⿻丷木斤丶 33600¢	627	1380sI	27985	712	2427 ¢¢	2056
ST8	241115	964	80501a 317188	672	1640SI	274185	634	3041	2310
888	25ESII	672	820 ¢́ç 321076	692	$143 \pm$ ¢	28765	600	4042	3290
180	268es	978	82410 ¢ 345188	694	134815	2158 C	598	4934，${ }^{\text {S }}$	873
38 e	270881	988	875t0 $281+88$	775	20981 ［	1645 S 5	445	6529 TS	5785
880	280SSI	995	$91600 \mathrm{c}^{219 \mathrm{c} 88}$	844	1968 EI	$092 \partial \stackrel{T}{ }$	$3 \mathrm{H0}$	9073 8：	8519
0801	29 IGSI	999	975 Iet 081088	951	$R_{1}=619 \quad \text { ar }=\mathrm{n} \mathrm{~V}$			as	＊
$180=s$			$N_{0}=30 \quad 800=\mathrm{N}$					$R_{2}=672$	

[^2]
\[

$$
\begin{equation*}
E\left[\left(a^{\prime} a\right)^{2}\right]=\left(N^{\prime} L\right)(N-L+2) \sigma^{4} \tag{141}
\end{equation*}
$$

\]

 Foran unbiased estimaterof α^{2} we aser (141) and (95) to obtain smoncro at

The values for α given in Table 5 wero computed from the square root of (144)) r:In discussing Table 5;'we will consider first thei16 new sdimples corresponding, to the original-sample sizes of 120 and up. Wither few exceptions; the estimated errors of prediction did notidifer from the ofbtained walues by more than onear-two times the istandard error of the estimate: The the fullrank: case;'for example;: the difference between wand hisasiless' than α in
 two samples! Tem of the obtained valuesffell above the estimated and six fell ibelows Estimates for the lower ranks tended to be more accuraterThe weight-validities and their:estimates evidently were less wariable than!the errorsiof prediction. Thoughnomestimate of the standarderrotiof $: \hat{W}$ is avails ableyrits accuracy is lapparently icomparable to that of $\hat{\psi}$ iqTaking inter cont sideration thervariability of the obtained measures' of accuracyly, both statisties appears to be fairly good estimatest of the corresponding expected values', though thein standard errors âfe ratherdarger thanonercould wishto moitsioz ing of perhaps morersignificaince thand the absolute magnitdes iof the expeoted wahues fon : wand Whare thesrelative magnifudes from oone cranknto: andther As andoughindication of howfeasiblesit) would bet base the choice of theirarketo betused on $\hat{\psi}$, we mayyeompare the values of $\bar{\psi}$ corresponding to
 only the 16 new samples odrresponding to thefroriginalesamplessize of 120 and
 ohoser gave more wecurate predictions thainsdidd the fuduriank weightsisisome of these improvementstwere, oficourse,uveryismally For:example, in:only 8 of the 16 new samplesi was the reduction initotalssicuared enforsof prediction as darge;as 4 per:cent. The Largestreductionswere 2819 pencentrand 21.4 .pér oent, bothifor weights: from the obiginadisatimplesof 120.ceasesiJustrkowclarge thereduetion would have to be to ataint practiost signifiearceciss oficourse;

In an effort to evaluate the success of $\hat{\psi}$ as an indicator of the rank corresponding to the lowest expected error of prediction, two comparisons were made. First, it would seem reasonable to require that the total squared errors of prediction for the selected rank be closer to the lowest value obtained in a given sample than to the highest. This is the case, however, in only 9 of the 16 samples. A second comparison, intended to control for variability in the obtained errors of prediction, was made on the basis of the rank orders (from lowest to highest) of these values in the individual samples. For each member of each pair of samples corresponding to a particular original sample, the rank corresponding to rank-order 1 was determined. The rank order in the opposite member of the pair of the error of prediction corresponding to the optimal rank in the first member was then obtained. The average of these 16 rank orders was 7.4 , suggesting a fair degree of stability in optimal rank. In contrast to this value, the average rank order of the errors of prediction corresponding to the selected ranks was 12.4 . Since, if the ranks had been selected at random, the expected rank order would be 15 , it appears that $\hat{\psi}$ does not provide a satisfactory basis for selection. However, a better basis does not appear to be available.

We consider now the results of Table 5 for the original-sample sizes of 75 and 30. For the higher ranks, both estimates appear to break down completely. For the lower ranks, taking into account the large standard errors, the two estimates appear to do about as well as in the larger samples. Because of these large standard errors, however, $\hat{\psi}$ and \hat{W} are not very helpful as guides to the absolute magnitude of the corresponding expected values. If taken as an aid to judgment rather than as an index to be applied blindly, $\hat{\psi}$ in particular might be of value in arriving at an optimal rank. In the original sample of size 30 , the lowest value of $\hat{\psi}$ for ranks below 24 occurred for rank 3 . Very little judgment is required to select a rank-3 solution in preference to a solution of rank 24 or more on a sample of 30 cases. As it turned out, the optimal rank was in fact 3 in both cross-validation samples. In the original sample of size 75 , the alternative to a rank-4 solution would be one of rank 14 or more. For samples of 75 cases an optimal rank of 14 is certainly possible, though unlikely. In any event, it appears that, providing unrealistically low values for higher ranks are ignored, $\hat{\psi}$ is potentially of some value in deciding what rank to use for small samples as well as for large ones.

It will be recalled that in deriving $\hat{\psi}$ and \hat{W}, the assumption was made that the factor loadings of the predictor matrix would be constant from sample to sample. Thus the very limited success of these statistics may be due to the failure to take sampling variation of the factor loadings into account. This, of course, could not have been done within the context of regression theory, since there only the criterion variable is considered random. The regression model was selected for this study largely on the basis of its simplicity, but also on the grounds that it is the model generally used in con-
nection with prediction problems. However, it seems likely that an analysis of prediction problems in terms of the multivariate normal model of correlation theory or in terms of some other model where the predictor variables are considered random would lead to more successful estimates of accuracy of prediction than those obtained using regression theory.

SUMMARY AND CONCLUSIONS

The primary concern of this study has been with the possibility of using reduced-rank solutions for regression weights to increase the accuracy of prediction obtainable in future samples. Using regression theory, a general factor model for reduced-rank prediction was developed. It was shown that, if errors in the criterion observations are not to be capitalized upon, the optimal basis for determining a lower-rank solution will be the amount of variance accounted for in the predictor data matrix. Thus the best alternative to reduced-rank methods that seek to obtain the maximum multiple correlation with the criterion would be the method of largest principal-axes factors, as suggested by Horst (1941). Estimates of the weight-validities and total squared errors of prediction to be expected when a particular set of weights is applied in future samples were also derived.

An empirical comparison of five particular reduced-rank methods was carried out, using 29 predictors and with partial replication on five criteria, Weights were computed on samples ranging from 30 to 435 cases. As expected, the method of largest principal-axes factors was markedly superior to the other methods tested. This superiority was quite general, appearing in all samples for some criteria, and in some samples for all criteria. The above finding, together with the very poor showing of the method of smallest principal-axes factors, supports the conclusion regarding the importance of predictor variance accounted for by the lower-rank system. The fact that the largest principal-axes factors tended to give more accurate predictions than d d dhe principal-axes factors having the highest multiple correlation with the criterion suggests the desirability of selecting predictors independently of the criterion observations. The exceptions to this trend for the larger original-sample sizes on some criteria indicates the desirability of developing some sort of statistical test for deciding when the predictorselection methods using the criterion observations may be advantageously applied.

Although their standard errors were rather large, especially in small samples, the estimates of weight-validity and of total squared errors of prediction to be expected in future samples appeared to be reasonably serviceable as regards absolute magnitude. As to relative magnitude from one rank to another, however, it may be questioned whether a rank chosen on the basis of these estimates would be preferable to a rank chosen at random. As estimates of either absolute or relative magnitude, it seems likely that the
statistics derived here could be substantially improved upon if variation in the predictor variables on their factor loading were taken into account. Without such improved estimates, the large potential advantages of reducedrank methods demonstrated here cannot be fully realized Thus it would seem well worthwhile to undertake an analysis of prediction problems using a statistical model which, unlike regression theory', treats the predictors as random variables.

Until more efficient methods are developed, it is suggested that a regression equation based on the subset of largest principal-axes factors for which $\hat{\psi}$ is smallest will be the best available. For samples with less than, say, 50 degrees of freedom, this procedure must be supplemented by a subjective process to the extent of ignoring low values of $\hat{\psi}$ for ranks of say, ten or more. Although this procedure leaves considerable room for improvement, the relevant evidence seems sufficiently favorable to warrant further empirical research. At any rate, the strong possibility has been raised that the conventional full-rank weights can almost always be improved upon even in samples of several hundred cases. Such weights, moreover, may give predictions only slightly more accurate than those made from weights obtainable with samples of as few as 30 cases.

REFERENCES

Anderson, T. W. An introduction to multivariate statistical analysis. New York: Wiley, 1958. Cramér, H. Mathematical methods of statistics. Princeton: Princeton Univ. Press, 1946.
Davis, F. B. The reliability of component scores. Psychometrika, 1945, 10, 57-60.
Edwards, A. L. The Edwards Personal Preference Schedule. New York: Psych. Corp., 1954.
Guttman, L. To what extent can communalities reduce rank? Psychometrika, 1958, 23, 297-308.
Horst, P. (ed.) The prediction of personal adjustment. New York: Social Science Research Council Bulletin 48, 1941.
Horst, P. A technique for the development of a differential prediction battery. Psychol. Monogr., 1954, 68, Whole No. 9.
Horst, P. A technique for the development of a multiple absolute prediction battery. Psychol. Monogr., 1955, 69, Whole No. 390.
Horst, P. Matrix algebra for social scientists. Technical Report, Office of Naval Research Contract Nonr-477(08) and Public Health Research Grant M-743 (C6), Univer. of Washington, 1961.
Horst, P. and MacEwan, C. Predictor-elimination techniques for determining multiple prediction batteries. Psychol. Reports, Monogr. Suppl. 1-V7: 1960.
Kempthorne, O. Design and analysis of experiments. New York: Wiley, 1952.
Leiman, J. M. The calculation of regression weights from common factor loadings. Unpublished doctoral dissertation, Univ. of Washington, 1951.
Mood, A. M. Introduction to the theory of statistics. New York: McGraw-Hill, 1950.
Shanker, P. The contribution of EPPS scores to differential and multiple absolute academic prediction. Unpublished doctoral dissertation and Technical Report, Office of Naval Research Contract Nonr-477(08) and Public Health Research Grant M-743(C5), Univer. of Washington, 1961.
Sheffé, H. The analysis of variance. New York: Wiley, 1959.

Summerfield, A. and Lubin, A. A square-root method of selecting a minimum set of variables in multiple regression. Psychometrika, 1951, 16, 271-284.
Western Data Processing Center. The WDPC users manual. Graduate School of Business Administration, Univ. California, Los Angeles, 1961.
Wright, C. E. Relations between normative and ipsative measures of personality. Unpublished doctoral dissertation and Technical Report, Office of Naval Research Contract Nonr-477(08) and Public Health Research Grant M-743(C2), Univer. of Washington, 1957.

[^0]: Pittsburgh, Pennsylvania
 October, 1963

[^1]: Decimal point preceding each entry has been omitted.

[^2]: ＊Value greater than ten．

