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FOREWORD

Investigation by the author of models for a central prediction system
was stimulated by the joint interest of the College Entrance Examination
Board and the Educational Testing Service in the possibility of developing
a service, using secondary school grades and supplementary data, to aid
colleges in the prediction of academic success of applicants. This interest,
while existing for many years, was activated by the report of Drs. Benjamin
S. Bloom and Frank R. Peters, The Improvement o] Academic Prediction
through the Use o] a National Grading Scale, issued in 1959. A committee
was established by the Educational Testing Service to investigate the tech-
nical feasibility of a central prediction system. In addition to the author,
the committee included Drs. Henry S. Dyer, John French, Frederic M. Lord,
and William B. Schrader, of the Educational Testing Service, and Dr.
Samuel S. Wilks of Princeton University. From a study of the Bloom and
Peters report and from the considerations of the committee, the author
undertook an investigation of the mathematical structures of possible pre-
diction systems. Formal Models ]or a Central Prediction System, which was
first issued as a Research and Development Report by the CEEB while the
author was on the staff of the Educational Testing Service, summarizes the
results of these investigations.

The author is indebted to a number of individuals on the staff of the
Educational Testing Service for their comments and criticisms of the theo-
retical developments, and for their aid in the conduct of the illustrative study.
Contributions by the members of the above named committee were especially
helpful. During the computational phases of the study, most excellent assist-
ance was given by Mrs. Ruth Bredon, who carried through the intricate steps
on the IBM 650. Grateful acknowledgment is due to the officials of the
colleges who supplied the data used in the study.

Financial support for the study and, in part, for the publication of the
monograph was provided by the College Entrance Examination Board.
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FORMAL MODELS FOR A CENTRAL PREDICTION SYSTEM

Introduction

For many years, secondary school grades have been used as a basis to
form expectations as to the performances of students in colleges. Traditionally,
this process has been conducted as a subjective and judgmental operation
with, and only relatively recently, some assistance from statistical studies.
One serious problem in this field is the existence of extensive differences
among various secondary schools and among colleges with respect to their
grading standards. This is not the place to review the ways in which the
enforcement of some common minimum standard of instruction has been
attempted, or the success of these attempts.

Our problem is to recognize the existence of these differences among
schools and among colleges, and to develop a system for processing the data
of secondary school grades so as to obtain as effective predictions of college
performance as feasible. In addition, such a system should possess flexibility
so that additional data, such as test scores, could be included so as to arrive
at maximally valid predictions. Further, it is desired to provide predictions
of performance for a number of colleges. Thus the system should encompass
many secondary schools, a number of tests and other predictive variables,
and a number of colleges. The present monograph describes several formal
models for such a system.

Some work has been done on our problem and related problems over
the past 30 years or so. In an early report, Toops (1933) proposed to equate
grades at different institutions for students with equal intelligence. This
type of technique has been utilized in a number of situations including the
equating of grades for different class sections of a course at one institution
and, on an informal basis, the judging of levels of schools sending students
to a college. An alternative approach attempted by some colleges has been
to set up a separate regression equation for each school to predict grades
at that college. Burnham (1954) describes some aspects of such a program
developed for Yale University. A common experience for colleges that attempt
to set up such regression systems is to find that only a few schools provide a
large enough sample of students, to establish stable regression coefficients.
One of the hopes of a more general and, consequently, centralized system
using data from a number of colleges is that the number of cases can be built
up, and stable coefficients can be determined for a larger number of schools.

The secondary schools share the problem in that they desire to evaluate
their grades and also need information with which to guide students in their

1



2 FORMAL MODELS FOR A CENTRAL PREDICTION SYSTEM

choice of a college or a field of study. The iob that a school would have in
following up its graduates is complicated by the scattering of students to
numerous colleges, with too few cases at most of those colleges to establish
stable relations between school grades and college grades.

A major step toward solving these problems was taken in the study
by Bloom and Peters (1961) for the National Council of Independent Schools
and the National Registration Office of Independent Schools. In this study a
procedure was developed for adiusting both secondary school grades from a
group of secondary schools and college grades from a variety of colleges. They
termed this procedure the "internal method." The results from this study
are exceedingly promising in that high validities obtained for one sample of
students held up in subsequent samples.

Th~ major emphasis in this monograph will be on possible complete
systems and their properties. These are described (i) to provide an under-
standing of the interrelations of parts of the systems and (ii) to anticipate
features of each system that will be important when it is applied to data and
placed in operation. Furthermore, a comprehensive analysis of the complete
systems should lead to the discovery of their more subtle aspects and conse-
quences. An investigation of the formal structure of the models underlying
the systems may provide a base for further developments.

Consider the following two equations,

(1) (SG),w, -t- u. = (ASG), for i from s,

(2) (CG),wo -b uo = (ACG), for i at c,

where (SG)~ is an individual’s secondary school grade in terms of the grading
scale of his school s, and (ASG)~ is the school grade on an adjusted scale,
w, being a scaling factor and u. an additive constant for school s grades.
Similarly, (CG)~ is an individual’s college grade on the grade scale for his
college c, and (ACG)~ is the college grade on an adjusted scale, we being 
scaling factor and u~ an additive constant for college c. The adjusted grade
scales are to be established in such a way that they apply across schools or
colleges and are not particularized by individual institutions. Differences
between institutions are to be absorbed in the values of the scaling factors
w and additive constants u.

A number of past suggestions have dealt, separately, with one or the
other of these equations. Toops’ proposal was to establish the values of the
w’s and u’s in terms of the relations of the grades at each institution with
scores made by these students on an intelligence test. The regression ap-
proach used at individual colleges involves the use of (1) for the separate
schools, the w’s and u’s being regression coefficients for predicting grades at
the college from grades at the schools. In this formulation, the second equation
is not uti!ized. A parallel system could be employed by an individual secondary
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school to develop information on the validity of its grading system by a
backward prediction of the grades at that school from the grades its students
earned in the various colleges they attended. This type of system employs (2)
to obtain adjusted college grades with which the secondary school grades
are correlated.

The "internal method" of Bloom and Peters (1961) used both equations,
alternating between them in a successive approximation scheme. Each trial
started with conversion of the college grades by (2), using guessed weights,
to a temporary adjusted college grade scale. Then regression weights were
developed for predicting these adjusted college grades from the various
secondary school grades, this yielding the w’s and u’s in (1) for the schools
and adjusted secondary school grades. Finally, the regression equations were
determined for predicting the adiusted school grades from the college grades
which yielded new w’s and u’s for the colleges. In their application of this
system to data from the files of the National Registration Office, Bloom and
Peters carried through three trials.

With the method formulated in the foregoing manner, difficulties exist
in the development of properties of the system as a whole and in anticipating
the nature of the solution when carried to convergence. One possibility is
that all w’s, ~or schools and colleges, will iterate to zero and all u’s, for schools
and colleges, will iterate to a single constant. Thus, all adjusted grades would
be the same constant, that of the u’s. Evidence for this possibility is given by
the decrease in variances of the adjusted grades from trial to trial in the
study by Bloom and Peters. With a slight modification, that of rescaling the
adjusted college grades at the beginning of each trial to some fixed variance,
this method would yield the first total covariance and variance canonical
solution to be discussed in a subsequent section.

The quantitative models to be considered here involve the simultaneous
treatment of systems of equations (1) and (2), or, in particular, equations
derived from them. Equations (1) and (2) may be termed the separate variable
formulation of the problem. A construction will be employed to facilitate the
development of these models which encompass the aggregate of separate
variable equations for the various schools and colleges. Included in this
construction are "scattered data matrices" and associated transformation
matrices which will be defined and discussed in the section on mathematical
constructions. An isomorphism exists between the system of separate variable
equations and the operations possible with the scattered data matrices.
Consideration of the quantitative models in terms of the scattered data
matrices offers several advantages. Considerable knowledge concerning the
properties of any particular model may be derived on deductive bases and
then checked with application to actual data. When several models have
been explored in this fashion, it will be possible to choose the one which most
nearly meets the requirements of each practical situation. Alternatively, the
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results from the study of these models may indicate important aspects of the
practical situations which were not otherwise anticipated. As a result, the
statements of the practical problems may be reformulated.

Plan o] an Illustrative Study

A number of the developments described in later sections will be illus-
trated with results from a small study involving data on a total of 387 students

¯ in six college groups who graduated from 19 secondary schools. All of these
students entered college in the fall of 1956. Following is a short description
of the six college groups (hereafter referred to as "colleges").

1. Men at a liberal arts college
2. Students at a university in an urban environment
3. Men at a technical college
4. Men at a technical college
5. Men entering a university in an urban environment who

indicated a desire to major in the college of liberal arts
6. Men entering the same university as no. 5 but who indicated

a desire to major in the college of engineering

None of these colleges is state or municipally supported, and all are located
in the northeast United States. Note that students in colleges nos. 5 and 6
are, in fact, registered at one university and are differentiated only by their
statements as to intended majors as upperclassmen.

Table i presents, for the students in the study, the number from each
school who attended each college, N,~, .the total number from each school,
N~. , the total number at each college, N.o , and the total number in the
study N... Equations (3)-(5) give the relations among these counts.

(3) N.. = Z~ N.o ,
c

(4)

(5) N.. = Z: = =

The data in Table 1 are fairly representative of the larger supply of data
from which the sample was drawn. Data for the study were obtained from
validity study flies at Educational Testing Service. The six colleges were
selected to provide as complete data as possible on a diverse sample of liberal
arts and technical colleges from the northeastern section of the United States.
All secondary schools considered had at least four graduates at one or another
of the six colleges. Final selection of the schools involved an attempt to have
the schools utilized represent the full pool of schools which satisfied the
preceding requirement.
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TABLE 1
NumberofStuden~inStudy

Co~ege
School 1 2 3 4 5 6 Total

1 4 2 6
2 1 10 4 2 3 20
3 2 16 27 3 10 58
4 2 1 3 4 4 4 18
5 3 1 6 1 11
6 2 2 2 5 11
7 4 9 17 10 8 48
8 ~ 3 II 1 1 19
9 2 6 2 9 5 24

10 3 8 3 8 2 24
11 14 1 1 1 17
12 10 2 12
13 22 3 1 26
14 9 1 2 12
15 4 1 2 1 8
16 1 13 1 1 16
17 5 4 2 2 2 15
18 22 1 2 1 26
19 10 5 1 16

Total 66 61 84 85 50 41 387

A point of some interest exhibited in Table 1 is the varying extent to
which the colleges draw their students from the same secondary schools.
Colleges 3 and 4 draw relatively heavily from the same schools. College 2,
in contrast, draws the majority of its students in this study from schools
11-14 which, in turn, send the mQority of their students in the study to
college 2. This varying degree of overlap of students between the schools
and colleges in the study has a considerable effect on the results for some of

the models for a central prediction system.
Data for each student included his rank in secondary school class and

his freshman average grade in college. For the students from each school,
their ranks in secondary school class were converted to percentile ranks and
then to corresponding deviates for a normal frequency distribution with
zero mean and unit standard deviation. The average freshman grades for
the students in the study at each college were converted linearly to standard
scores (zero mean and unit standard deviation). For approximately 90 per cent
of the students at each college, Verbal and Mathematical scores on the CEEB
Scholastic Aptitude Test were entered into the analyses. Test scores were

not available for some students and test scores were discarded for a random
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sampling of other students so as to reach the aforementioned level of approxi-
mately 90 per cent. Our purpose was to illustrate the effects of missing test
data and the manner in which the models allowed for these missing data.

Mathematical Constructions

Before consideration is given to particular models for a central prediction
system, several mathematical constructions, which will form a general basis
for these models, will be discussed¯ A more precise notation will be adopted
than that employed in (1) and (2); special matrices will be defined, including
scattered data matrices and associated transformation matrices.

Indexing Subscripts

A number of indexing

s = 1,2,
c ~ 1, 2,
t = 1, 2,

¯ i = 1, 2,
j or k -- 1, 2,
g or h = 1, 2,
p or q -- 1, 2,

subscripts will be used as follows:

¯ . n, : secondary school;
¯ . no : college;.
¯ . n, : test;
¯ . N.. : individual student;
¯ ̄ n~ : predictor variable;
¯ . n~ : criterion variable;
¯ ̄ n~ : array of composite scores.

The meanings of the first four of these indices are obvious; they indicate the
basic elements to be considered in a central prediction system. A special
point concerning the index i is that a unique value of i will be assigned to
each student irrespective of the secondary school or college he attended¯ At
times it will be convenient to indicate the school or college, or both, that he
attended by use of s and c as subscripts to the index i. Thus, i, is to be in-
terpreted as extending over all individuals who attended school s; io is to be
interpreted as extending over all individuals who are attending college c;
and i,o is to be interpreted as extending over all individuals who attended
school s and are attending college c.

The last three indices will be used as generalized indicators over fields
of variables that will be constructed. A possibility exists that the school
grades might be combined into several categories rather than into a single
average grade or rank in class. Different uses might be made of average
English grades from uses made of average mathematics and science grades.
Each category of grades from each school will be assigned a unique value of j.
In the present formulation it is not necessary that the grades of each school
to be grouped into the same categories as the grades of every other school¯
Values of j will be assigned to whatever categories of grades exist at each
school. For convenience in some of the equations to follow, the subscript s
will be attached to j to indicate consideration of only those values of j asso-
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ciated with school s. Thus, j. is to be interpreted as extending over all cate-
gories of grades j at school s.

The index j will be used for scores on tests, a unique value of j being
assigned to each category of scores on each test entered into the system as a
predictor variable. The values of j for a particular test will be indicated by j,
in several subsequent equations.

The index g will be used for indicating grades at the colleges just as the
index ~ is used for indicating grades at the schools. As in the case of the
schools, it may be of value to consider several categories of grades at each
college. A unique value of g will be assigned to the grades at each college,
and go is to be interpreted as extending over the g for college c. These variables
are the criteria to be predicted by the system.

The index p represents a further expansion in the considerations of a
central prediction system. When particular values are given to the weights
and additive constants in equations (1) and (2), an array of adiusted school
grades and an array of adiusted college grades may be determined. If the
weights and additive constants are changed, the adjusted grades will be
changed. Each collection of particular values of the weights and additive
constants and associated arrays of adjusted grades will be designated by the
index p. As will be discussed in detail later, it is possible to consider several
of these collections simultaneously. On intuitive grounds, it may seem reason-
able that the grades for each school may be differently adiusted for best
relations to grades at liberal arts colleges than for best relations to grades
at technical colleges. If this be the case, there would be two optimal solutions
for the school weights and additive constants. Each of the models to be
considered can encompass several collections of weights, etc., simultaneously.

A change in terminology is indicated, also, in the definition of the index p.
Instead of "adjusted grade," the term "composite score" will be used to
designate the weighted sum of the variables. "Predictor composite score"
will designate a weighted sum of the predictor variables, and "criterion
composite score" will designate a weighted sum of the criterion variables.

Predictor Variable Constructions

Initial consideration will be given to each school, separately. Sub’se-
quently, a system to encompass all schools will be described. For simplicity,
the construction to include test scores in the system will be delayed until
later in this section.

Predictor variables will be indicated by the lower case letter x; thus,
x,;. will designate the secondary school grade of individual i. in grade cate-
gory jB , both being for school s. This notation replaces the (SG)~ in (1).
The scaling weights w. of (1) will be replaced by ai.~ , which is the weight
applied to category of grades ~ for array p of composite scores. The first
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term in (1), (SG)~wo , will be written in the present notation 

in which ~ is to be read "the sum of all elements having j for a given s."

The index under the summation symbol in front of the colon indicates the
variable index for the summation while the index following the colon indicates
a limitation on the variable index. This notation permits the consideration
vf several categories of grades at each school and consideration of several
composite scores.

The additive constant u. of (1) will be designated in the present notation
by aJo~. Note the use of the capital letter J which is to have for each school
a single, unique value of the index j. Initially, let ~o include every category
of grades at school s but not include J.. A dummy variable x,j. is defined
to have a value of unity for each individual from school s. Equation (1) can
be rewritten in the present notation as (6).

(6) ~_, x,.~.a,~ + X,o.~.a~.~ = 1,.~ (j. ~ Jo),

where )¢,.~ is the predictor composite score for individual i. in array p. The
dummy variable x,~. was introduced so that the additive constant for the
school could be included within the summation by dropping the restriction
on j. and letting ~° include every category of grades at school s and J° .
Then

By defining matrix Xo to contain the x,~., matrix A. to contain the a~.o,
and matrix F° to contain the )¢,~, (7) may be stated in matrix form.

(S) X°A. = F..

Note that there are matrices X. , A° , and F. for each school and that (8)
applies to each school.

In order to consider all schools simultaneously, the following matrices
are defined. These matrices will be called the scattered data matrices.

(9) X =

-X1 0 -.. 0 ... 0

0 X2 -.. 0 ..- 0

0 0 *’° 0

o o ... o ... x,
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(10) A =

(11) F =

A,

A~

A,

.An

The scattered data matrix equation corresponding to (8) 

(12) XA = F.

Note, for any given school s, that all matrix products are zero except for tho
product X.A. which corresponds to (8)¯ Thus, for any collection of weights
whatsoever in the Ao matrices for the various schools, (12) will yield the cor-
responding predictor composite scores¯ The importance of this construction
is that it brings together all of the separate equations for the various schools
into a single equation and provides a means for studying the properties of
the system as a whole¯

Up to this point test scores have not been included in the constructions.
The matrices X and A may be extended to include sections for test scores
and their weights. Let x,, be the score of individual i on category j, of test
scores. If individual i took the test, x,, will be his observed score; if individual
i did not take the test, x,, will be set at zero. This construction parallels the
insertion of zero sections in the scattered data matrix X in (9)¯ Let
be a dummy variable for test t with a value of unity for each individual who
took the test and a value of zero for each individual who did not take the
test. Let the weights for these variables be a;,~ and a.~,~ . A contribution
of the test scores to predictor composite score p may be written as

when j, does not include J, . For individuals who did not take the test this
contribution is zero since all their x’s are set at zero. Note that taking the
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test might not always lead to a positive contribution to an individual’s
composite score. The weights may be negative, especially aj,~ . If aj,~ is
negative, an individual has to make high enough scores, x,, , so that the
weighted sum of these scores overcomes the effect of the negative aj,~ in
order to obtain a positive contribution to his composite score.

If j, is permitted to include J, , the contribution to the composite score
can be stated more simply by

Z xii~ai~ .

This contribution can be incorporated into the scattered data formulation
by adding columns to matrix X for the x~, and adding rows to the matrix A
for the a~,~ . Equation (12) will apply to the extended matrices, and the
matrix F will contain the composite scores which are the additive results
of the contributions from school grades and from the test scores. Solutions
for optimal weights in the matrix A will provide, consequently, optimal
relative contributions to the composite scores from the school grades and
from the test scores.

A point to be noted is that after the scattered data matrices X and F
have been established, the rows of these matrices may be rearranged so that
the individuals are in any desirable order. Such a rearrangement is necessary,
in fact, so that the individuals may have the same order in the matrices for
predictor variables and the matrices for criterion variables. This rearrange-
ment of rows of A and F has no effect on the accuracy of (12).

Criterion Variable Constructions

The criterion variable constructions parallel closely those for the pre-
dictor variables and will not be presented in detail. As for the secondary
schools, several categories of grades at each college may be established and
entered into the system. These grades at college c for individuals attending
that college will be designated by y, oo . The scaling weights for these grades
will be designated by boo~.

A dummy variable will be established for each college to provide for
*he additive constant for the college. Scores Y,oo will be unity for all individ-
uMs attending college v. The additive constant will be handled by a weight
bao~ applied to the dummy variable. Equation (13), which parallels (6),
yields the criterion composite scores Z,o= for individuals attending college c.

(13) ~_. y,o,.bo°~ + y,ooob~o~ = z,o~ ,

where go does not include Go . When go is permitted to include Go , (13)
reduces to

(14) ~, y,,,.b,o~ = z,o~, .
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Scattered data matrices Y, B, and Z for the criterion variables are defined
parallel to scattered data matrices X, A, and F, respectively, for the pre-
dictor variables. These definitions and (14) yield (15), which parallels (12).

(15) YB = Z.

In the present formulation no provision will be made for tests on the
criterion side of the system. If a situation arises in which test scores or other
variables, that extend beyond single colleges, become relevant, these variables
could be included by extending the matrices Y and B in a manner parallel
to the extension of the matrices X and A for test scores on the predictor
side of the system.

Illustration of Scattered Data Matrices

An illustration of the scattered data matrices X and Y is given in Table 2
in which the grades and test scores are given for ten individuals from the
illustrative study. Note that the school grade variables, the additive constant

dummy variables, and the tes~ score variables are numbered consecutively
fromj = 1 to j = 41 in the matrix X. The college grade variables and additive
constant dummy variables are numbered consecutively from g -- 1 to g = 12
in the matrix Y. The students are numbered consecutively within college,
and the rows of the predictor variable matrix X have been arranged ac-
cordingly. Consequently, the students from each school do not appear as a
block as they do for each college in the criterion variable matrix Y. The ar-
rangement of the rows of X, however, does not affect the properties of this
matrix.

Each student has one grade in one school in matrix X and a score of
unity in the additive constant dummy variable for the same school. The
entries in the row for each student in columns for the schools he did not attend
are set at zero in the construction of the matrix. Nine of the students have
scores on the College Entrance Examination Board Scholastic Aptitude Test;
only individual 70 does not have a test score. These scores for the nine individ-
uals are entered in the test variable columns of matrix X, and unity is entered
in the additive constant dummy variable for the test. All three entries for
individual 70 are left blank and are set at zero.

In matrix Y, the college grade for each student is entered in the grade
column for the college he attended and unity is entered in the corresponding
additive constant dummy variable. All other entries are left blank and
defined as zero.

A row of weights is given beneath each of the matrices X and Y. The
determination of these weights will be discussed in a later section. These
weights are used here to illustrate use of the scattered data matrices in ob-
taining the composite scores given at the right of each matrix. The predictor
composite score for each student is obtained by finding the sum of products
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TABLE 2
Illustration of Scattered Data Matrices*

Predictor Score Matrix X

Student
School 1 School 2 SAT Scores Predictor

Grade Const. Grade Const.... Verb. Math. Const. Composite
j--1 j--2 j--3 ~--4 j=39 j=40 j=41 Score

1 .00 1.00 -.22 -.17 1.00 .40
2 .25 1.00 .90 1.98 1.00 .59
3 .25 1.00 .95 .22 1.00 .39
4 .00 1.00 1.00 .81 1.00 .65
5 1.25 1.00 1.43 1.49 1.00 .37

.25 1.00 --.75

.25 1.00 1.69
.95

67 1.59 1.00 .36
68 2.17 1.00 .70
69 1.75 1.00 1.69 1.00 .48
70 1.50 1.00 .43
71 1.25 1.00 1.69 1.69 1.00 .42

Weightst -.74 .77 .28 .01 .11 .12 -.33

C~terion Score Matrix Y

College 1 College 3 College 6 Criterion
Student Grade Const. "" Grade Const.... Grade Const. Composite

g = 1 g = 2 g = 5 g = 6 g = 11 g = 12 Score

1 --.97 1.00 .45
2 --.78 1.00 .45
3 .14 1.00 .45
4 --.13 1.00 .45
5 1.09 1.00 .45

67 --.10 1.00 .47
68 .46 1.00 .50
69 .28 1.00 .49
70 .00 1.00 .48
71 --1.56 1.00 .40

Weigher .00 .45 .05 .48 .46 .36

*All blank cells are to be interpreted as filled with zeros.
tThe weights are for the first total covariance and variance canonical variate (to be

described in a later section).
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between the values in his row of X and the values in the row of weights at
the bottom of matrix X. The criterion composite score for each individual is
the sum of products between the values in his row in matrix Y and the
values in the row of weights at the bottom of matrix Y.

The construction for including test scores in the predictive composite
scores is illustrated also in Table 2. One concern to a number of people when
they are first introduced to this construction is that a student receives an
automatic bonus when he takes the test. Remember that the test scores were
scaled in the study so that a 500 on the CEEB scale was translated to zero
and that a difference of 100 on the CEEB scale was made unity. The SAT
scores of individual 1 on the CEEB scale were 478 and 483 which were trans-
formed to the -.22 and -.17 recorded in matrix X and used in the study.
The contribution of the test scores to the composite score for this individual is

(--.22)(.11) ~- (--.17)(.12) + (1.00)(--.33) 

This individual would have had a predictive composite score of .77 if he had
not taken the test. The test scores for individual 2 were high enough to
counterbalance the additive constant of -.33. Other individuals made
high enough scores to obtain a positive contribution to their predictive com-
posite scores, as for example individuals 68 and 71. Thus, taking the test
need not necessarily yield a positive contribution (a bonus) to the student’s
predictive composite. The construction provides adjustments of the pre-
dictive composite scores for the test scores made by the students.

Linear Scaling Trans]ormation o] Predictor Variables and Criterion Variables

Procedures for linear scaling transformations of variables in a scattered
data matrix is a topic of special importance. The grades at each school, for
example, could be expressed in terms of two different scales such as the raw
grades given to the students and in terms of deviations from the mean grade
given at the school. From these two statements of the school grades, two
scattered data matrices can be constructed. Maior questions involve the
relations between these two scattered data matrices and the appropriate
transformations of weight matrices A in order to maintain the composite
scores in F as constants. Other questions involve procedures for obtaining
composite scores which are deviation scores from the mean for all students
in the study, or which are deviation scores for the students at each college
from the mean for that college.

Special constructions and procedures are defined to accomplish linear
scaling transformations of the predictor variables and criterion variables
in scattered data matrices. The form of these constructions and procedures
will be discussed explicitly for a predictor variable scattered data matrix
with grades from a number of schools, but no test scores. Parallel constructions
and procedures apply to the criterion variable scattered data matrices and
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will not be discussed. The constructions and procedures for a predictor
variable scattered data matrix having both school grades and test scores are
a simple extension of the constructions and procedures for the scattered data
matrix having only school grades and will not be discussed.

Let the transformed school grades be designated by x~*.~, and be de-
fined by (16).

(16) x~*.,. = ~ z,.~.ti.,. + x,.j.tj.~o ,

where t~.~. are the transformation coefficients and tj.~. is the additive constant,
all for school s, and j. does not include J.. Note that the translation of grades
is accomplished by adding the product of the additive constant and the
dummy variable x,j. , and not iust adding the additive constant. This con-
struction provides a functional difference between observed zero grades,
as for individual 1 at school 1 in Table 2, and the zeros entered in a grade
column for individuals who did not attend the particular school. All observed
grades may be translated by the foregoing procedure but the artificial zeros
for students who did not attend the school will remain zero since the value
of the dummy variable is zero for them.

The subscript k. is used to designate the transformed grades at school s.
The number of/o. is to be the same as the number of j. for each school The
construction used here provides not only for linear rescaling of the grades
in each category but also for combination grades. For example, if there
were two categories of grades for a school, the first j. might be for verbal
subjects and the second j. might be for quantitative subjects; the first k.
might be for a sum of the two j. categories and the second ]c. might be for a
difference between the two j, categories. A restriction is made in the present
topic that the combination grades involve the grades at each school separately
and not at two or more schools. A second restriction is that the transformations
are linearly independent for each school.

The additive constant dummy variable is carried into the transformed
group of grades by defining the coefficients t~.~. and t~.n. as follows:

(17) t;.~. = 0,

(18) t~.~. = 1,

* is definedwhere K. is the additive constant dummy variable. The score x,~.
by (16) when K. is substituted for k.. The preceding definitions yield, then,

(19) *

Xi~K * ~- Xi,j ~ ¯

Thus, the additive constant dummy variable remains unchanged in the linear
rescaling transformations.

The coefficients t~.~. , t;.~. , t~.~. , and t¢.~. form a square matrix which
may be designated T,. The linear independence restriction stated previously
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is to be taken to imply that T. is nonsingular so that an inverse exists. Let
the inverse of T. be designated by M. with entries m,.;. , m,.j. , m~.;. ,
and m~.j.. A consequence of the definitions in (17) and (18) is 

(20) m~.~. = O,

(21) m~,j, = 1.

Solution of (16) and (19) for x~,~, yields

(22) x,;. = ~] x*,,.m,.i. A- x*,K.m~oi..

Equations (16) and (19) may be stated in matrix form 

(23) " X*~ = X.Ts,

and (19) and (22) may be stated in matrix form 

(24) X. = X*~M.,

where matrix X*. is the matrix of transformed gradesx,,.* and x~*.~. .
The effects of the linear rescaling transformations of the grades on the

weights for determining the composite scores can be traced most easily in
matrix form. Substituting in (8) the value of X. from (24),

(25) X*.M.A, = F,.

Define

(26) A*. = M.A. ;

then (25) yields

(27) X*.A *. =

Equation (26) defines the transformed weights which, when applied to the
transformed grades, yields the same predictive composite scores. Equation
(27) is in a form which is identical to (8).

In order to carry out the linear scaling transformation of grades at every
school with the scattered data matrices the following matrices are defined.

(28) T =

-T1 0

0 T2

0 0
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(29) M=

-M1 0 "" 0 "" 0

0 M2 "’" 0 "’" 0

0 0 ... M~ ... 0

.o o ... o ... U..,
Scattered data matrices X* and A* are defined for the transformed grades
and weights similar to the matrices X and A in (9) and (10). The foregoing
definitions and (23) through (27) yield

(30) X* = XT,

(31) X = X’M,

(32) X*MA = F,

(33) A* = MA,

(34) X’A* = F.

Note that the defined zero sections’ of matrix X are still zero in matrix X*
of transformed grades.

Linear Translormation o] Composite Scores

The material in this section will be limited to one class of transformations,
that of transforming an array of composite scores to deviation form from the
mean of a group of individuals. Two subclasses will be considered: in the
first subclass the deviation scores for all individuals are taken from the mean
for the entire group of individuals, in the second subclass the deviation scores
for the students attending each college are taken from the mean score for
the group attending that college. Since parallel constructions apply to the
predictor variable matrix X and the criterion variable matrix Y, only those
for the matrix X will be considered in detail. However, certain matrices
will be defined for the criterion variable matrix.

Two derived procedures will be considered for obtaining deviation
composite scores from the mean composite score for all individuals. In both
procedures, A~ will be considered as a single column of weights from a matrix
A. There are no restrictions on the contents of this column (aside from the
general assumption of all numbers being real), and, by successive applications
of the following principles to various possible columns, the following results
can apply to any and all possible columns of weights. All columns must be
of length ni, the number of predictor variables. F~ is the column of composite
scores corresponding to AT so that, by (12),
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(35) XA~ = F~.
A convenient matrix construction involves the definition of a row vector

S having as many entries as there are individuals in the study. Every entry
in S is unity. If the column vector, F~, is premultiplied by S, the result is a
single number, the sum over individuals of the entries I~ in F~ .

(36) SF~ = ~ l,~ .

The mean ]~ over all individuals will be designated by ].~ and is given in (37).

(37)

and, by (36),

(38) 1 SF~

The deviation composite score for individual i from the mean for all in-
dividuals, ].~, will be designated by ]~ and will be defined by (39).

(39) 1~, = ],, -- ].~,

or, in matrix form,

(40) F~’ = F~ -- S’].~,

in which the function of S’ in the last term is to produce a column vector
with an entry for each individual. Since S’, being the transpose of S, has an
entry of unity for each individual, and ].~ is a scalar quantity, the product
S’].~, produces a column vector with an entry of ].~ for each individual.
F~* is a column vector of deviation composite scores from ].~.

The first derived procedure for obtaining the column vector F~’ depends
on noting that each individual has one and only one entry of unity in the
matrix X on the additive constant dummy variables J, . His entries on the
other dummy variables have been set at zero. This observation depends on
an implicit assumption that each individual entered as a regular candidate
into a central prediction system will have graduated from one and only one
secondary school. Let the column vector A ~ be defined as a column of weights
with an entry of unity for each school’s additive constant dummy variable,
Jo , and entries of zero for all other variables. The preceding observation
yields the equation

(41) XA ~ = S’,

that is, the sum of the entries in the dummy variables for the schools is unity
for every individual.

In case it is desired to enter some students who have attended more than
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one school into a central prediction system, and it is desired to give different
weights to their grades according to the weights for the schools they did
attend, a construction is possible which will satisfy all of the preceding equa-
tions. This construction would lead to a number of complexities and will
not be given here.

Substitution in (40) for F~ from (35) and S’ f rom(41) yield

(42) F~ = XA~, -- XA,~].~,

or

(43) F~ = X(A~ -- Aj].~).

Let

(44) A’~ = (A~- A,~].~);

then,

(45) F’~ -- XA’~.

Equation (44) gives the procedure for revising a column of weights, A~ , 
that the revised weights, A~ , will yield deviation composite scores from the
mean for all individuals.

In the second derived procedure for obtaining the column vector F~ ,
a substitution is made in (40) from (38) for the value of 

1
(46) F~ = F~ -- S’-~.. SF~,,

1 S)F,.(47) = (z-

Substitution from (35) for F~ yields

F: = I -- S’-~..S(48)

Define a matrix ~* as

( 1)(49) ~’ = I- S’~S X.

If the matrix X were completely full of observed scores, the entries in ~’
would be termed deviations from the means of the variables; however, since
matrix X is a scattered data matrix with a number of artificial zero entries,
this interpretation of the entries in ~’ is not proper. The matrix operations
leading to the matrix ~’, as well as those using it, are proper. Equations (48)
and (49) yield

(50) F~’ = $~A~.
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The matrix ~ is a matrix such that postmultiplication by any column vector
A: will yield the corresponding deviation composite score vector F;.

An important property of the matrix ~ is developed by forming the
product ~’Aj and substituting for the value of ~ from its definition in (49).

(52) = I- S’~S S’

when substitution is made from (41) for XA.,. By the construction of vector S
with N.. entries of unity

(53) SZ’ = N...

When the S’ in (52) is multiplied into the parentheses and a substitution 
made from (53) for the SSp in the last term,

(54) C Aj = ~’- Z’ ~N
N.. ..=0.

Consequently, the rank of matrix ~’ is at least one less than the number of
columns n; . This result must be remembered when operating with the
matrix ~ in the following models.

Consider the deviation of a student’s composite score from the mean
composite score for all individuals attending the college which he attends.
This will be termed his within-college deviation composite score and will be
designated by [~o~ . Note the use of the superscript c to denote quantities
related to the within-college deviation composite scores. The mean of the
original composite scores for a given college c, designated by ]o~, is given by

(55)

Then, ]~o~ is defined by

(56)
A convenient construction is to define a row vector S: for each college

(the subscript and not the superscript c will denote the college) with 
entry of unity for each individual who is attending that college and of zero
for each other individual. These row vectors are collected into a matrix (S°).
Note that by this construction

(57) (S°)(S~)’= [N.~],

where iN.o] is a diagonal matrix containing the number of students at each
college. With the preceding construction, a column vector fo~ containing
the mean composite scores of the groups of students attending the colleges
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]c~ may be determined by

(58) ~o= -~ ° .= [N.o] (S)F.

The matrix F~ of within-college deviation composite scores ]~o~ is given by

(59) F~ = F~ - (S) Fo~.
Substituting for fo~ in (59) from (58),

(60) F~ = F~ - (S~)’[N.o]-I(S°)F~,

(61) = {I- (S°)’[N.~]-I(S°)}F~.

Substituting for F~ from (35),

(62) F~ = {I- (S~)’[N.o]-I(S°)}XA~.

Define the matrix ~° by

(63) ~° = {I- (S°)’[N.o]-I(Sc)}X;

then

(64) F~ = ~°A~.

Note the similarity between ~’ defined in (49) and ~° defined in (63).
Also note the similarity between equations (50) and (64). Postmultiplication
of ~’ by As yields deviation composite scores from the mean for all individ-
uals, and, in comparison, postmultiplication of ~ by A~ yields within-
college deviation composite scores. Insofar as A, was defined to be any possible
column vector of weights, (50) gives every possible column F’~ of deviation
composite scores from the mean of all individuals, and (64) gives every possible
column F~ of within-college deviation composite scores. Furthermore, every
F~’ resulting from (50) is a possible column of deviation composite scores from
the mean of all individuals, and every F~ resulting from (64) is a possible
column of within-college deviation composite scores. As a consequence, the
matrix ~’ forms a basis for the field of vectors F~’, and the matrix ~ forms a
basis for the field of vectors F~. These matrices will be used in this sense in
the development of models for a central prediction system.

An important property of ~° is developed by forming the product ~°A~
and substituting for ~° from (63),

(65) ~A~ = {I- (S°)’[N.o]-~(S°)}XA,,,

and, by substituting for XA.r from (41),

(66) ~°Aj = {I- (S°)’[N.o]-~(~°)}~’.

Define a row vector [1] with an entry of unity for each college. Assuming that
each student in a central prediction study will attend one and only one of
the colleges, the construction of the matrices S and (S°) yields
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(67) [1](S°) = S.

Substituting in (66) for S’ from (67),

(68) ~A.~ = II - (S°)’[N.c]-I(S~)}(S°)’[1]’.

Multiplication of the last (S°)’ into the quantity in braces and substituting
for the resulting (S~) (S~)’ in the last term from (57)

(69) ~°Aj = {(S°) ’- (S°)’[N.o]-’[N.o]}[1]’,

(70) = 0.

Thus, as is true of ~’, the rank of ~° is at least one less than the number of
columns ni .

Before going on to consider specific models for a central prediction system,
several matrices will be defined and equations presented for the criterion
side by analogy with the preceding matrices for the predictor side.

Let Z’,, be a column vector of deviation criterion composite scores from
the mean for all individuals

(71) Z’~ = Z,, -- S’~.~,

where Z~ is a column vector of criterion composite scores corresponding to
a column vector of weights B~ , and ~.~ is the mean over all individuals of
the entries in Z~ : This definition is analogous to that of F~ in (40). Let 
be defined by

(72) B~ = By -- B j~.~,

where Bj is a column vector like A j with unit weights for the additive constant
dummy variables and zero weights for the other variables. This definition is
analogous to that of A’~ in (44). By analogy with (45)

(73) Z~ = YB~.

By analogy with the definition of ~’ in (49), let the matrix i" be defined

(74) r’ = I- 8’-~--£. 8 Y.

Then, by analogy with (50),

(75) Z~ = ~"~.

The matrix ~* has all the properties of the matrix ~*, but involves the criterion
variables.

By analogy with/~o~, let 2c~ be a column vector of means of the criterion
composite scores for the students at the several colleges, and, by analogy
with (58),

(76) 2o~ = [N.,]-~ SoZ, .
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By analogy with (59), a column vector of within-college deviation criterion
composite scores is defined as

(77) Z;, = Z~ - (SC)’2c~.

By analogy with the definition of ~c in (63), let the matrix ~’~ be defined

(78) ~° = {~ - (S~)’[N.o]-’(S°)} 

Then, by analogy with (64),

(79) Z;-~ ~-CB~.

A point to note ~bout the matrix ~’~ is that all entries in the additive
constant dummy variable columns become zero. This result is most easily
understood from the similarity of the operation defining matrix ~ and that
of obtaining deviation scores within each college. The entries in each additive
Constant dummy variable in matrix Y for each college are a constant, unity
for the dummy variable for the college and zero for the dummy variables
for other colleges. The mean entry for each such variable for each college
has the same value, unity or zero, as the entries in the column; consequently,
the deviations in each column from the mean for the college are all zero.
These additive constant dummy variables may be eliminated from the
matrix ~°, thus reducing its order. The corresponding rows of B~ ~re to be
eliminated.

Canonical Correlation Model I: Total Covariances and Variances

The basic principle for the first quantitative model for a central prediction
system is that the weights be determined so as to maximize the correlation
between the predictor composite scores and the criterion composite scores.
Granting the desirability of high correlations, since the goodness of predictions
is measured by the size of the correlations involved, the foregoing principle
seems to have considerable face validity. A solution on this basis could
provide a means for scaling both the predictor variables and the criterion
variables. This corresponds to the obiectives of much of the previous work.

Before this system is adopted, however, its properties should be investi-
gated. The formal model may be established in terms of the constructs
developed in the preceding sections. Since the correlation coefficient is most
simply stated in terms of deviation scores, consider the column vectors F~.
and Z~ of deviation composite scores from the means of all individuals for
the predictor variables and the criterion variables respectively. These column
vectors were defined in (40) and (71). The parameters in this system are 
column vectors of weights, A~ and B~ , which are to be determined so that
the correlation between the entries in F: and Z: is maximized.

Equations (50) and (75) provide the most convenient statement ~)f 
dependence of the column vectors F~, and Z~, on the weight vectors A. and B,,
respectively. These statements involve the matrices ~’ und ~ defined in (49)
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and (74). A very helpful observation is to note the identity in form between
the model stated in terms of the matrices ~’ and ~" and the canonical cor-
relation model. [For a discussion of canonical correlations see Kendall (1951),
Vol. 2, pp. 348-358.] This identity between the two models provides access
to the known properties of the canonical correlation model. These properties
may be applied to the model being discussed here.

The most important property in the present context of the canonical
correlation model is the existence of a number of solutions corresponding
to the characteristic roots of a derived matrix. This property raises questions
concerning the more or less traditional formulation of our problem as that of
a rescaling of the grades at the various schools and colleges to a single, common
scale. In case the traditional formulation is correct, there should be only
one large canonical correlation. Several large canonical correlations would
cast considerable doubt on the traditional formulation. It is reasonable,
however, to attempt to think of possible sources of several large canonical
correlations. One plausible possibility is that different types of schools and
colleges might generate several types of scales of adjusted grades. That is,
different adiustments of grades relatively between general college pre-
paratory secondary schools and technical secondary schools may be ap-
propriate when the adiusted grades are being related to grades at liberal
arts colleges than when the adiusted grades are being related to grades at
technical colleges. Grades at college preparatory schools may be more highly
related to grades at liberal arts colleges than to grades at technical colleges.
The reverse may be true for technical schools. To the extent that these
differences exist, two large canonical correlations could be generated.

A closer inspection of the situation reveals another possibility. In an
extreme case the schools and colleges could separate into two subgroups
so as to form two systems such that students from school subgroup I go only
to colleges in college subgroup I and students from school subgroup II go
only to colleges in college subgroup II. This would result in a canonical
correlation of unity. The only nonzero weights in A~ would be for the additive
constant dummy variable for which weights would be a constant, say ]~ ,
for the schools in subgroup I and another constant, say ]t~ , for the schools
in subgroup II. As a consequence, the predictive composite scores for all
students from subgroup I of schools would be ]~, and the predictive composite
scores for all students from subgroup II of schools would be ]~. An identical
situation would exist for the colleges. The values of ]~ and f~ would be such
that

(80)

(Sl) g,l~" + g,,f~; = g.. ,

where N~ and N~ are the numbers of students in systems I and II, respec-
tively. In the foregoing case every student would obtain an identical predictor
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composite score and criterion composiie score. This canonical variate would
be independent of any other variate related to differences in grades within
schools and colleges.

A third possible effect is also related to the additive constants, especially
those for the colleges. This effect might or might not produce a second large
canonical correlation. The guidance programs at secondary schools may
affect the college-going plans of their students such that the students having
high grades apply to higher prestige colleges, students with middle grades
apply to middle prestige schools, and students with low grades apply to low
prestige colleges. The admission actions of the colleges tend to help enforce
this tendency, each college accepting the most able applicants up to its
capacity. Thus, generally, only the most able students are accepted at the
high prestige colleges. It is unprofitable, usually, for a student with low
grades to apply to a high prestige college. The purpose here is not to comment
on any moral issue, but to point out a possible source of correlation between
secondary school grades and the colleges to which the students go. The
additive constants, or weights for the additive constant dummy variables,
for the colleges can produce criterion composite scores which reflect the
prestige levels of the colleges if these prestige levels are correlated with the
secondary school grades. This effect could affect the values of one or more
canonical correlations.

In the usual solution for the canonical correlations and weights, inverses
are used of the matrices of intercorrelations of the predictor variables and
of ~he criterion variables. Because the ranks of the matrices ~’ and ~’ are a~
least one less than the numbers of variables, as per the implication of (54),
these matrices of intercorrelations are singular and inverses do not exist.
A solution for the present case is given in Appendix A.

In the introductory section of this report a suggestion was made that
the internal method of Bloom and Peters (1961) could be considered as 
variant of the total covariances and variances canonical model. In their
procedure they assumed a vector of weights for the college grades and com-
puted a vector of adjusted college grades, which can be identified here as a
column of Z~. They established trial school weights as the regression weights
for predicting the trial adjusted grades from the school grades. This step is
the same as indicated in equation (A.9) in Appendix A except that Bloom
and Peters did not provide for the scaling of the adjusted school grades.
In the next half of one of their cycles they reversed the function of the school
and college grades which is analogous to (A.11) except, again, for the scaling
of the new adjusted grades. In that the correlation between the two arrays
of adiusted grades is increased at every half cycle, it may be concluded that
the Bloom and Peters internal method would converge to the largest canonical
correlation solution for total covariances and variances provided that the
adjusted grades were scaled so as not to vanish.
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TABLE 3
Canonical Correlations

(Canonical Correlation Model I: Total Covariances and Variances)

25

Variate Canonical Variate Canonical
Number Correlation Number Correlation

1 .90 7 .44
2 .80 8 .42
3 .68 9 .30
4 .60 10 .29
5 .56 11 .23
6 .46

Results for the illustrative study are presented in Tables 3-6 for the
Canonical Correlation Model I for total covariances and variances. The
eleven canonical correlations are given in Table 3, the number of coefficients
being equal to the rank of the basis matrix for college grades, one less than
twice the number of colleges. Several of these canonical correlations seem
quite high in terms of predictive validity. While there is considerable capi-
talization on chance due to the small number of cases used in the study,
several of these correlations probably would remain high for a larger sample.
This evidence is indicative of the existence of more than one adjusted grade
scale.

Tables 4 and 5 give the weights for the first three canonical variates.
In Table 4 the weights are given as in matrices A and B with one column
for each canonical variate and the original variables in a single list with con-
secutive index numbers. This is the format specified in (10) for use with the
scattered data matrices X and Y. This format does not aid inspection and
interpretation of the results, however, and the weights are listed in a different
format in Table 5 so as to be easier to inspect. The format in Table 5 is more
appropriate for the separate variable formulation with the two weights for
one school for each canonical variate being given on one line. All of the weights
on each canonical variate for the grades at the schools are given in one column,
and all of the additive constants for the schools are given in another column.
The same is true for the colleges.

Note the large negative additive constant on the first canonical variate
for college 2 and the large negative additive constants for schools 11-14.
As noted for Table 1, most of the students from these schools went to college .2
and most of the students at college 2 came from these schools. None of the
other colleges has a negative additive constant and only three other schools,
and these are schools from which one or two students went to college 2, have
negative additive constants. This result corresponds to the possible effects
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TABLE 4
Weights for Variables, Scattered Data Matrix Form

(Canonical Correlation Model I: Total Covariances and Variances)

Predictor Variable Weights Criterion Variable Weights

In-

Var- dex Canonical Variate Col- Var-
School iable No. 1 2 3 lege iable

1 Grade
Coast.

2 Grade
Coast.

3 Grade
Coast.

4 Grade
Const.

5 Grade
Coast.

6 Grade
Coast.

1 Grade 1 --. 74 6.48 - 2.43
Coast. 2 .77 - 2.93 .45

2 Grade 3 .28 .35 .29
Coast. 4 .01 --.29 --1.02

3 Grade 5 .44 .17 -. 15
Coast. 6 -. 16 .06 -. 18

4 Grade 7 .52 - .01 .13
Const. 8 - .32 .05 - .76

5 Grade 9 -. 04 .38 .51
Coast. 10 .24 - 1.10 - 1.16

6 Grade 11 1.21 .26 .96
Const. 12 -2.34 -.76 -2.91

7 Grade 13 .16 .26 .37
Coast. 14 .28 -.15 -1.03

8 Grade 15 .00 .16 .04
Coast. 16 .44 .22 -. 41

9 Grade 17 .23 .60 .21
Coast. 18 .34 -.73 -.69

10 Grade 19 .06 .09 .15
Const. 20 .62 .03 -.66

11 Grade 21 .32 -.12 .73
Coast. 22 -2.22 .22 - 1.08

12 Grade 23 .58 .30 1.99
Const. 24 -1.78 .30 1.78

13 Grade 25 .53 .07 1.06
Const. 26 - 1.93 .30 .48

14 Grade 27 1.16 .21 1.53
Coast. 28 -2.95 -.18 -3.15

15 Grade 29 .48 -. 40 .64
Coast. 30 .25 -.91 -.79

16 Grade 31 -.08 .05 -.09
Coast. 32 .58 -.02 -.55

17 Grade 33 -. 01 .79 - .06
Const. 34 .53 -.64 -.37

18 Grade 35 -. 15 1.85 - .86
Const. 36 .60 - 2.84 .32

19 Grade 37 .02 .98 - .27
Const. 38 .61 -1.22 -.16

SAT Verb. 39 .11 .00 .22
Math. 40 .12 .30 -.09
Const. 41 -.33 -.18 .25

In-

dex Canonical Variate
No. 1 2 3

1 .00 1.31 -.41
2 .45 -1.72 .24
3 .54 .38 2.32
4 -2.20 .17 .56
5 .05 .05 -.04
6 .48 .48 --.19
7 .09 .36 .30
8 .32 .44 -.08
9 .48 .47 .34

10 .45 .22 -.24
11 .46 .38 .42
12 .36 .34 --.40
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TABLE 5
Wei~tsofVari~les, Separate VariableForm

(CanonicalCorrela~on ModelI:Tot~ CovariancesandVariances)
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Predictor Variable Weights

S~ool

Canonical Variate
1 2

Grade Constant Grade Constant Grade Constant

1 -- .74
2 .28
3 .44
4 .52
5 -- .04
6 1.21
7 .16
8 .00
9 .23

10 .06
11 .32
12 .58
13 .53
14 1.16
15 .48
16 -- .08
17 -- .01
18 -- .15
19 .02

SAT Scores
Verb. .11
Math. .12
Const~ -. 33

.77 6.48 --2.93 --2.43 .45

.01 .35 --.29 .29 --1.02
--.16 .17 .06 --.15 --.18
--.32 --.01 .05 .13 --.76

.24 .38 --1.10 .51 --1.16
--2.34 .26 --.76 .96 --2.91

.28 .26 --.15 .37 --1.03

.44 .16 .22 .04 --.41

.34 .60 --.73 .21 --.69

.62 .09 .03 .15 --.66
--2.22 --.12 .22 .73 --1.08
--1.78 .30 .30 1.99 1.78
--1.93 .07 .30 1.06 .48
--2.95 .21 --.18 1.53 --3.15

.25 --.40 --.91 .64 --.79

.58 .05 --.02 --.09 --.55

.53 .79 --.64 --.06 --.37

.60 1.85 --2.84 --.86 .32

.61 .98 --1.22 --.27 --.16

.00 .22

.30 -- .09
--.18 .25

Criterion Variable Weights

College Grade Constant

Canonical Variate
2 3

Grade Constant Grade Constant

.00 .45

.54 -2.20

.05 .48

.09 .32

.48 .45

.46 .36

1.31 -1.72 -.41 .24
.38 .17 2.32 156
.05 .48 -.04 -.19.
.36 .44 .30 -.08
.47 .22 .34 -.24
.38 .34 .42 -.40
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of the existence of separate systems of schools and colleges. In u similar
manner, the second canonical variate appears to be related to school-college
relations as to common paths for students to follow, in that college 1 is singled
out for a negative additive constant with the schools from which the students
came who went to college 1.

As a further indication of the values of the composite scores determined
by the several total covariance and variunce canonical variates, the correla-
tions between the predictor composite scores and the grades at each college
were computed. These correlations are presented in Table 6. The correlations

TABLE 6
Correlations of Predictor Composite Scores on Canonical Variates

with Grades at Each College
(Canonical Correlation Model I: Total Covariances and Variances)

Canonical College
Vafiate 1 2 3 4 5 6

1 .04 .58 .13 .23 .75 .54
2 .70 .67 .11 .49 .68 .52
3 -.53 .78 .00 .24 .51 .57

in the first row for the first canonical variate are markedly less than the
canonical correlation of .90. Only one coefficient in this row is greater than .60.
The correlations in the second row appear in general to be somewhat higher
than those in the first row. Three correlations in the second row are greater
than .60. Another peculiar feature of the system of canonical variates is
indicated by the negative correlation in the third row for the first college.
This coefficient corresponds to the negative weight given in Tables 4 and 5
to grades at this school for the third canonical variate. When the correlations
in the third row are considered in absolute value they appear to be of the
same order of magnitude as the correlations for the first canonical variate.

When Table 6 is inspected by columns, the low correlations at college 3
are noteworthy. None of the canonical variates would provide a worthwhile
predictor of grades at this college. Of the other colleges, only at college 5
is the correlation with the first variate higher than the correlation with other
variates. The highest correlation at college i and college 4 is with the second
variate while the highest correlation at colleges 2 and 6 is with the third
variate.

A possible interpretation of the results given in Tables 4-6 is that the
uneven linkages as to numbers of students for each school-college combination
is producing considerable disturbing effects on the system.
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Canonical Correlation Model II:
Within-College C ovariances and Variances

An attempt is made in this model to eliminate the seemingly untoward
effects of the uneven linkages between schools and colleges as to numbers
of students associated with the various school-college combinations. The
mechanism of this effect seemed to be the additive constants. Another pos-
sible effect associated with the additive constants for the colleges is the
effect of the prestige of the colleges inducing a correlation between the second-
ary school grades and the colleges to which the students went. Some people
might argue that the basis of a central prediction system should not include
this possible effect. In order to avoid these effects associated with the additive
constants and to make the basis of the system depend on the differences in
grades within each college, the within-college deviation composite scores are
used in the model to be discussed in this section.

~Iatrices ~° and ~ of (63) and (78) form the bases of the within-college
deviation composite scores in F~ and Z~ as given in (64) and (79). The solution
for this model is obtained by use of the superscript c for the matrices in
Appendix A.

Results for the illustrative study are given in Tables 7-10. The canonical
correlations in Table 7 are distinctly lower than those given in Table 3 for

TABLE 7
Canonical Correlations

(Canonical Correlation Model II:
Within-College Covariances and Variances)

Variate Canonical
Number Correlation

1 .73
2 .65
3 .59
4 .44
5 .38
6 .30

the total covariances and variances model discussed in the preceding section.
The highest coefficient has dropped from .90 in the preceding model to .73
for the present model, the second highest has dropped from .80 to .65, etc.
This effect was anticipated when the between-colleges contributions to the
covariances and variances were excluded from the present model, whereas
they had been included in the total covariances and variances model. The
present correlations represent, however, relations between differences on the



30 FORMAL MODELS FOI~ A CENTRAL PREDICTION SYSTEM

predictor variables and differences in grades within the colleges. In this
context, the correlations are quite high for the present model.

A point to note is that there are only six canonical variates for the illus-
trative study. This result is associated with the reduction of rank of the
criterion basis matrix ~c due to the vanishing of the additive constant dummy
variables for the colleges, as noted following (79) at the end of the section
on Mathematical Constructions.

Table 8 presents the weights for the first three canonical variates for
the within-college covariances and variances model. This table is set up in
the separate variable form to facilitate inspection of the weights and additive
constants. Note for the first canonical variate that the weights for the grades
at every school except 16 are positive and that the additive constants for
every school are negative. This is a much more regular situation than was
true for any of the canonical variates for the total covariances and variances
model given in Table 5. The positive weights for the school grades should be
expected from the general positive correlation between school grades and
college grades. The negative additive constants are a reflection of the scaling
of the school grades such that the mean grade for all students in a class at a
school was zero, but, generally, only the students with higher school grades
entered the colleges in the study. The means of the school grades for the
students in the study generally are positive. In order to obtain deviation
composite scores for the students in the study, it is necessary to subtract
some constant from the school grades.

Note in the criterion variable section of Table 8 that for the first canonical
variate for every college the weights for the grades are positive. This reflects
the same observation as pointed out above that generally there is a positive
correlation between school grades and college grades. No entries are made
in the additive constant column for the colleges. This is a result of the scaling
of the college grades as standard scores for the group of students in the
study and in each college, separately by college, coupled with the use of within-
college deviation composite scores. Since the grades at each college were in
deviation form, no additive constant was necessary to obtain the deviation
composite scores.

The appearance of negative weights in Table 8 on the second and third
canonical variate for the grades at some schools and colleges is to be expected
from the property of the canonical model that the composite scores for each
variate are uncorrelated with the composite scores on the preceding variates.
This necessitates some changes in signs of the weights and additive constants.
There is no necessity, however, that the second and third canonical correla-
tions have high values. One possible explanation for the combination of results
obtained in the study might be that the canonical variates are rotations of
some other variates representing the two types of schools and colleges,
liberal arts and technical. More data on this possibility will be presented
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TABLE 8
Weights of Variables, Separate Variable Form

(Canonical Correlation Model II: Within-College Co~ariances and Variances)
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Predictor Variable Weights

Canonical Variate
1 2 3

School Grade Constant Grade Constant Grade Constant

1 2.50 --1.02 4.49 --2,51 --8.77 2.67
2 .78 --1.23 .57 --.93 2.11 --3.62
3 .56 --.68 ,48 --.76 1.21 --1.67
4 .54 --.83 --.07 .14 .44 --.60
5 .82 --1.85 .95 --2.03 .01 --.99
6 1.75 --4.31 --.53 1.06 --.24 --.15
7 ,73 --.92 .37 --,42 1.21 --1.70
8 .48 --.11 .97 --.32 --.42 --.04
9 .90 --.91 .74 --.99 1.92 --1.78

10 .44 --.31 .52 --.64 .58 .03
11 .52 --2.17 --.87 1.14 --.54 --.34
12 1.71 --.21 --1.29 --.94 --.83 --1.42
13 .97 --1.02 --.91 .09 --.50 --.73
14 1.75 --4.04 --1.35 2.55 --.67 .73
15 1.15 --1.10 1.27 --1.11 1.25 --1.70
16 --.09 --.10 .14 --.41 .24 --.57
17 .56 --.21 .97 --.62 --.24 .48
18 .58 --1.06 2.57 --2.83 --2.48 i.79
19 .48 --.25 1.13 --.74 --.18 .49

SAT Scores
Verb. .25 -.08 .12
Math. .20 .32 .08
Const. -.12 .00 -.12

Criterion Variable Weights

College

Canonical Variate
1 2 3

Grade Constant Grade Constant Grade Constant

1 .68 1.85 -1.36
2 1.93 -1.37 -.83
3 .16 .13 .36
4 .59 .38 .28
5 1.08 .72 1.67
6 .95 .47 1.27
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later. A second possibility is that there are some remnant effects of the uneven
pattern of number of students for the school-college combinations. This
seems, to be borne out in that college 2 is the only college to have a negative
weight on the second canonical variate and the schools from which college 2
receives its students have the more negative weights for grades.

The differences in level between colleges is of interest to many people;
objective evidence on the magnitude of these differences would be important
to them. By working with within-college deviation composite scores, the
present model appears to exclude the possibility of evidence as to differences
between colleges. As a consequence, an initial preference might be given to
the total covariances and variances canonical model which, explicitly, in-
cludes the differences between colleges. A possibility exists, however, for
obtaining information from the within-college covariances and variances
canonical model as to the differences between colleges.

.. For each canonical variate, a vector of predictor weights A~ is determined
by this latter model. The weights for three such vectors are given in Table 8.
Using this weight vector and the original predictor scattered data matrix X,
thevector of predictor composite scores F~ may be determined from (12)
(for a single vector of weights this equation is XA~ = F~). These predictor
composite scores are not deviation scores from the means of the colleges,
and the means for the colleges are not zero. Table 9 presents the mean for

TABLE 9
Means of Predictor Composite Scores for Canonical Varia~es

¯ ’ for Group of Students at Each College
(Canonical Correlation Model II: Within-College Covariances and Variances)

Canonical College
Variate 1 2 3 4 5 6

1 -.34 -1.17 .45 .32 .34 .29
2 -1.10 .17 .30 .19 .16 .32
3 .74 -.88 .11 -.27 .18 .25

each college on each of the three first canonical variates from the within-
college covariances and variances canonical model for the illustrative study.
Thus, the use of within-college deviation composite scores to determine the
vectors of weights does not preclude using these weights to determine com-
posite scores that are not deviation scores from the college means.

The mean scores for the colleges on the predictor composite scores in
the vectors F~ provide, in a sense, evidence concerning differences in level
between the colleges. The mean predictor composite score for the students
going to a college indicates the general level of these students in whatever
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function is reflected by the predictor composite score. For example, insofar
as the first canonical variate for the present model is a measure of general

’ academic aptitude (so interpreted because of the general positive weights
for the grades), the mean composite scores given in Table 9 for each college
for the first canonical variate is an indication of the general level of the
students going to that college as to general academic ability. In this sense,
college 2 appears to attract the least able group of students of any of the
colleges in the study, and college 3 appears to attract the most able group
of students of any of the colleges in the study. Only small differences occur,
however, between the positive means. This type of data appears to have
promise for interpretations relevant to the differences in levels of the colleges.

In order to investigate the relations of the predictor composite scores
on the canonical variates for the within-college model with the college grades
of the students at each college, the correlations given in Table 10 were com-

TABLE 10
Correlations of Predictor Composite Scores on Canonical Variates

With Grades at Each College
(Canonical Correlation Model II: Within-College Covariances and Variances)

Canonical College
Variate 1 2 3 4 5 6

1 .69 .79 .25 .55 .82 .72
2 .72 -.73 .16 .33 .70 .45
3 -.59 -.66 .24 .22 .82 .71

puted. This table is analogous to Table 6 for the total covariances and vari-
ances model. Note that the correlations in the first row of Table 10 are higher
than those in the first row of Table 6. The higher correlations for each college
with the within-college model occur even though the first canonical correla-
tion for this model is lower than the first canonical correlation for the total
covariances and variances model. The correlations in the other rows also
appear to be higher in absolute value in Table 10 than in Table 6. Thus, as
anticipated, the within-college covariances and variances model provides
predictor composite scores that correlated more highly with the grades at
the colleges.

Comparisons between the weights for the college grades as given in
Table 8 and the correlations given in Table 10 indicate good agreement
between these two types of coefficients. In particular, wherever there is a
negative weight for a college for one of the canonical variates, the corre-
sponding correlation is negative. These negative weights and correlations
produce problems in the interpretation of the second and later canonical
variates.
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One possible interpretation of the second and third canonical variates
for the within-college model must be discarded in light of the correlations in
Table 10. These variates are not associated with differential correlations for
the liberal arts colleges, 1, 2, and 5, as compared with the technical colleges,
3, 4, and 6. The relatively low correlations on all three variates for colleges
3 and 4 (especially for 3) are quite disappointing. A problem remains whether
either of the canonical models can determine composite scores appropriate
to the variety of schools and colleges.

Predictive Model

A reformulation of the mathematical treatment of the criterion side of
the system is involved in the predictive model as compared with the treatment
of the criteria in the canonical models. Instead of attempting to establish
criterion composite scores which correlate highly with the predictor composite
scores, as in the canonical models, an attempt will be made to predict the
college grades from the predictor composite scores. This treatment appears
to be a more accurate translation of an important aim of a central prediction
system, that of providing predictions of students’ performances in college
from available information such as the school grades and test scores.

The predictor variable constructions previously described will be em-
ployed in the predictive.model, including the scattered data matrix X defined
in (9), the weight matrix A of (10), and the matrix of composite scores 
of (11), these matrices being related as in (12). In contrast to the use 
column vectors A~ and F~ in the canonical models, A and F will be con-
sidered to have several columns, the number of columns being n~. Extensive
use will be made of the basic matrix ~, defined in (63), for within-college
deviation composite scores. The several column vectors of within-college
deviation composite scores, F~, corresponding to the columns of the matrix A
will be collected into a matrix F°. For convenience, the superscript c will
not be used in the following equations, being left as implied wherever ap-
propriate. The only possibility of confusion exists between the two matrices
of composite scores and this may be eliminated by using F" to designate the
matrix of raw composite scores of (11). With these changes, (64) becomes

(82) F = ~A.

This equation may be written in summation notation

(83) ~ ~,o~ai~ = l,o~ .

The tag second subscript c is used with the index i for subsequent.convenience.
On the criterion side, regression equations will be used for predicting the

grades at each college from the predictor composite scores. Let the regression
coefficient of predictive composite p for predicting grade category gc at
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college c be w, ao. The regression equation is

where ~o,o is the predicted value of the observed grade y,oo . Note that the
additive constant dummy variables, Go , are not included in the criterion
variables. Substitution for f,, from (83) yields

The error of estimate is the difference between y~o~o and 9~oo. and is denoted
by e,~°.

(86) e,o,o --- y,o,. -- 9,°,°.

The coefficient E2is defined as the sum of squares of all errors of estimate.

(87) 2= EE E

Both the weights ai, for determining the predictive composites and the
regression weights W,ao are considered as unknown parameters in the predictive
model and are to be established so that E~ is a minimum. The number of
predictive composites, n,, is also unknown. A solution for the a;~ and
for any fixed value of n, is given in Appendix B. Numerical solution for any
particular data involves a series of successive approximations. An unsolved
mathematical problem is the uniqueness of the solution for any fixed value
of n~. However, the least minimum E~ for each value of n~ decreases or does
not increase as the value of n~ is increased. This is true since the system for
any given value of n, includes, as special cases, all systems having a smaller
value of n,. An upper bound for n~ is no , the number of colleges, in which
case there would be a separate predictive composite for each college de-
termined entirely by the students who go to that college. A reasonable hope
is that the number of predictive composites could be much smaller than no .
A desirable solution might be to use as small a value of n~ as possible for
which there would be little further reduction in E~ for an increased value of n~..

The weighting of the squared errors in E~ presents an unsolved problem,
also. Mechanically, the weight of the errors for any category of grades at
college can be controlled by the scaling of the college grades. All errors for
a category of grades at a college can be multiplied by a constant by mul-
tiplying the grades in this category by the constant. This will result~ through
the solution of the normal equations for the regression weights, in the mul-
tiplication of the regression weights by this constant, and, thus, the multi-
plication of the predicted grades by the constant. Since the errors of estimate
by (86) are the differences between the observed grades and the predicted
grades, and since both of the types of quantities were multiplied by the
constant, the errors would be multiplied by the constant. Such an operation
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could affect the a~’s however. It may be that the data are so structured that
the solution will be relatively insensitive to changes in the weights for the
various categories of grades at the various colleges. This is a point that
warrants further investigation.

A feature of the predictive model may be developed by translating (84)
into matrix form.

(88) FW = I~,

where W is a matrix of the w~o, and Y is a matrix of the predicted grades

9,°°. ¯ Parallel to the development of (85), substitution is made for F from (82).

(89) SAW = ~’.

Let F be a square, nonsingular matrix of order n~ and let the matrices
and Wr be defined so that

(90) A =

(91) w = rwr.
Substitution in (89) for A and W yields

(92) ~A,W,

which returns to the form of (89). Consequently, the matrices A and W may
be transformed by any square matrix 1~ which satisfies the restriction as to
being of order n~ and being nonsingular. This indeterminacy of the weight
matrices is analogous to the rotation of axes problem in factor analysis. The
analogy of the transformation problem to the rotation of axes problem in
factor analysis suggests a solution, that of applying the principle of simple
utructure. In case a transformation were possible so that the regression weights
,exhibited a simple structure, each predictive composite might be interpreted
in terms of a limited type of category of grades or college for which this
,composite had nonzero regression weights. Such a result would be very in-
teresting and could be of considerable practical importance. It would aid in
the interpretation of predictive composite scores for individuals and in guiding
.students on choices of college and of major field of study.

The formal aspects of the foregoing analogy may be completed by
identifying W
:as analogous to Thurstone’s matrix T of primary trait vectors. The rotation
.of the W~ matrix may be investigated by any of the rotation of axes procedures
:and will result in Thurstone’s matrix h. Then, by Thurstone’s equation (7)
in Chapter 15 (1947, p. 351)

,(93) P’= -1,

-where D is a diagonal matrix such that row vectors F~ are of unit length. If
-.the unrotated predictive composites have standard scores and are uncor-
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related, the correlations between the rotated predictive composites are the
entries in the matrix product r’r.

Results for the illustrative study are given in Tables 11-13 and Fig. 1.
Only the case for two predictive composites was considered in the numerical
solution and the iterations were stopped after five trials. Only small changes
appeared in the weights from trial 4 to trial 5, but complete convergence was
not achieved. The first trial weights in the matrix A were the first and fourth
within-college covariances and variances canonical variates, these two being
selected because of their representation of the liberal arts colleges in the
first variate and the technical colleges in the fourth variate as judged by the
college canonical weights. The weights in A were refined by the computing
system derived in Appendix B and described in Appendix C. No investigation
was made as to the uniqueness of the solution given. Such an investigation
might involve trying several different pairs of starting vectors of weights in
the matrix A and seeing whether each pair led to the same computed weights
upon convergence. The pair of starting vectors used were chosen (in ac-
cordance with the author’s iudgment) so as probably to lead to the least
minimum for two composites.

Table 11 gives the weights of the predictor variables for determining the
predictive composites. Weights for the unrotated composites are given in the
left half of the table, and weights for the rotated composites are given in the
right half of the table. The rotated composites will be discussed in subsequent
paragraphs. Table 12 gives the regression weights for predicting the grades
at the six colleges: Also given in Table 12 are the multiple correlations and
the additive constants for use with the raw scores on the predictive com-
posites computed from the scattered data matrix X. Several of these multiple
correlations appear to be rather high. Because of the small sample and large
number of degrees of freedom utilized by the model, there may have been
considerable capitalization on chance and there would be considerable shrink-
age in the correlations if the weights were applied to a new sample. One
gratifying result of the present solution is the multiple correlation of .49 for
college 3. The correlations with the grades at this college for the composites
determined by the canonical models were markedly below this value.

The additive constants for the college regression equations can be inter-
preted in terms of differences between the grade scales of the colleges. To
accomplish this interpretation most reasonably the signs of the additive
constants should be reversed. As the signs stand in Table 12, for example,
a positive amount is added to the weighted sum of the predictive composite
scores for college 1 and a negative amount is added to the weighted sum of
the composite scores for college 5 (.66 is the difference between .40 and -.26).
The regression weights for these two colleges are very similar. These additive
constants indicate that the predicted grade at college 1 would be .66 higher
than at college 5. Usual interpretation would say that .66 would have to be
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TABLE II
Weights of Predictor Variables, Separate Variable Form

(Predictive Model)

Unrotated Predictive Composites Rotated Predictive Composites
I II A B

,School Grade Constant Grade Constant Grade Constant Grade Constant

1 4.95 --1.70 23.68 --2.74 --1.87 --.86 18.17 --3.00
2 .73 --1.14 --1.72 4.28 1.18 --2.29 --.45 1.66
3 .69 --.86 .44 --.06 .54 --.81 .81 --.73
4 .43 --.74 .17 --.68 .36 --.52 .44 --.99
5 1.07 --2.29 1.74 --3.31 .54 --1.27 1.90 --3.82
6 1.80 --4.23 1.90 --3.20 1.20 --3.17 2.58 --5.30
7 .79 --.98 1.68 --1.83 .29 --.43 1.64 --1.88
8 .78 --.29 1.95 --.29 .20 --.19 1.79 --.40
9 .95 --.97 .ii .54 .88 --1.08 .83 --.45

dO .48 --.39 .03 .35 .45 --.47 .40 --.10
11 .46 --1.89 .72 .43 .24 --1.94 .80 --1.26
12 1.66 --.09 --.01 .54 1.60 --.24 1.32 .26
13 .87 --.85 --.01 .27 .84 --.89 .69 --.52
14 1.64 --3.65 --.16 .90 1.62 --3.76 1.22 --2.37
15 .60 --.96 --2.83 1.07 1.37 --1.23 --1.21 --.13
16 .01 --.19 1.72 --1.49 --.47 .23 1.04 --1.05
17 .81 --.26 .95 .84 .51 --.49 1.22 .29
18 .65 --1.15 --1.94 .76 1.17 --1.32 --.64 --.46
19 .58 --.38 .35 .88 .46 --.61 .67 .23

SAT Scores
Verb. .24 --. 22 .29 .06
Math. .23 - .10 .25 .13
Const. -.18 -.36 -.06 -.35

TABLE 12
Regression Systems for Predicting College Grades for Predictive Composites

(Predictive Model)

Regression Weights for
Predictive Composites

Unrotated Rotated Additive Multiple
College I II A B Constant Correlation

1 .87 --.18 .83 .09 .40 .74
2 .47 .03 .32 .20 .49 .79
3 .58 .35 .09 .62 --.35 .49
4 .46 .43 --.09 .68 .00 .69
5 .81 --.32 .92 --.10 --.26 .86
6 .78 --.02 .60 .25 --.24 .74
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added to the grades at college 5 for the grades at the two colleges to be
comparable. Thus, in a sense, the additive constants give the amounts that
should be subtracted from the observed grades at the colleges to obtain com-
parable grades from college to college.
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UNROTATED PREDICTIVE COMPOSITE
Fmt~l~ 1. Plot of College Regression Weights on Unrotated Predictive Composites

A graph as for rotation of axes was made for the unrotated regression
weights at the left of Table 12. This graph is presented in Fig. 1. The abscissa
represents the regression weights on the first unrotated composite, and the
ordinate represents the regression weights on the second unrotated composite.
The regression weights of each college are represented by a numbered point,
the number being that of the college. The configuration of points has an
interesting structure in that the points for the two technical colleges, 3 and 4,
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separate from the points for the definitely liberal arts colleges, 1 and 5. It
is of interest that the point, 6, for the students at the same college as 5 but
who plan to enter engineering tends toward the technical schools. The loca-
tion of the point for college 2 suggests that a number of the students at this
university are concentrating in science and technical areas.

The two vectors drawn in Fig. 1 and labeled F~ and F~ were chosen so
that one rotated composite would be effective for the liberal arts colleges and
the other rotated composite would be effective for the technical colleges.
These vectors are of unit length and the coordinates of their termini are
recorded in the appropriate columns of the matrix r given at the left in
Table 13. The inverse of this matrix is given at the right of Table 13. The

TABLE 13
Matrices for Rotating Predictive Composites

(Predictive Model)

Matrix M~trix F-x

Rotated
Unrotated Predictive
Predictive Composites
Composites A B

Unrotated
Rotated Predictive

Predictive Composites
Composites I II

I .96 .80 A .75 --1.00
II --.28 .60 B .35 1.20

Correlation Between Rotated Predictive Composites = . 60

correlation between the two rotated composites is .60 as found by obtaining
the sum of products between the two columns of F. This is also the cosine
of the angle between the two F vectors in Fig. 1. The matrix A of predictor
variable weights for the unrotated predictive composites at the left in Table 11
was postmultiplied by the matrix r as per equation (90) to obtain the matrix
A, of rotated weights at the right in Table 11. The matrix W of unrotated re-
gression weights in Table 12 was premultiplied by F-1 as per (91) to obtain
the matrix Wr of rotated regression weights. This transformation had no
effect on the additive constants nor on the multiple correlations given in
Table 12.

It is of interest that most of the predictor variable weights given in
Table 11 for the rotated predictive composites are positive for the school
grades and negative for the school additive constants. These weights, how-
ever, probably are somewhat unstable due to the small sample of students
used in the study. Very little confidence should be placed, in particular, on
the weights for school 1 since the study included only 6 students from this
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school, as given in Table 1. The sample size of 8 students for school 15 also
is very small. Before this system is used in practice, the weights should
be determined in a study using many more cases than was used in the present
study.

The weights for the test scores for the rotated predictive composites
are small, but positive, while the additive constants for the test are negative.

The regression weights in Table 12 for the rotated predictive composites
are as anticipated from the graph of Fig. 1. Colleges 1 and 5 have high weights
for composite A and near zero weights for composite B, while colleges 3 and 4
have high weights for composite B and near zero weights for composite A.
From these results composite A might be called a liberal arts college pre-
dictor, and composite B might be called a technical college predictor. These
interpretations could be very helpful in interpreting scores of individual
students on the two predictive composites. While each college could set up
its own regression equation for predicting grades at that college from the
predictive composite scores, many colleges could use the scores, directly,
on one composite or the other according to the type of college or for each
student according to the field of interest of the student. Scores on the pre-
dictive composites might furnish the secondary school counselor with valuable
information with which to guide students as to choice of major field and of
colleges to which to apply.

Discussion

In the preceding sections a mathematical construction has been presented
within which various quantitative models for a central prediction system
could be investigated. Three such models have been discussed: canonical
correlation model I for total convariances and variances, canonical corre-
lation model II for within-college covariances and variances, and a predictive
model. Properties of these models were illustrated with results from a small
study.

The varying numbers of students for the various school-college com-
binations produced considerable effects in the canonical correlation models,
especially in model I for the total variances and covariances. No such effect
was observed for the predictive model.

While previous formulations of possible solutions for developing a uni-
versal grading scale have been limited to univariate models, the models
discussed in this report are not so limited but may involve several adjusted
grades or composite scores. The possible extension of the "internal method"
by Bloom and Peters (1961) to several scales of adiusted grades was pointed
out. These multiple solutions could have considerable importance, both in
the general consideration of the problems involved in school and college
grades and in the counseling of students by secondary schools and colleges
as well as in the admission procedures of the colleges.
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Of the three models discussed, the predictive model appears to provide
the soundest basis for practical actions, both by the student counselors and
the college admission officers. Both of these groups are interested in predictions
of the performances of students in case given actions are taken. The pre-
dictive model is formulated to provide such predictions. Both canonical models
are formulated to obtain pairs of variates, one from the predictor variables
and one from the criterion variables, which correlated maximally. Prediction
of student performances on specific criteria would be a secondary step and
might not be accomplished effectively. For the predictive model, the predictor
composites are derived so as to predict most effectively student performances
in the specific criteria.

In future applications of the models for a central prediction system,
serious consideration should be given to the possibility of using more categories
of grades than a single average grade for each student in secondary school
and, possibly, a single average grade for each student in college. Such dif-
ferentiation of the input data coupled with the multivariate capabilities of
the models could lead to substantial differentiations between several lines
of study and furnish improved bases for practical actions such as are involved
in counseling and admission.

Both extensive empirical studies and conceptual considerations of the
models are indicated for future developments. Knowledge is needed on the
stability of parameters of the models when estimated from various samples
of individuals, schools, and colleges. This knowledge might be developed in
part by mathematical statistical techniques and in part by empirical in-
vestigations. The latter would be required especially for changes that are
associated in time with changes in the educational systems. It may be easier
to obtain knowledge on stability under random sampling with empirical
studies, both with actual data and with data derived from random numbers.
There is a need, also, for the development of more effective computing systems.
Knowledge is needed, too, on the useful dimensionality of the predictive
situation, especially for the predictive model. This knowledge can come only
from extensive empirical studies.

APPENDIX A
Solution ]or Canonical Correlation Models

The following procedure is appropriate for determining the canonical
correlations and associated weights when the data matrices have ranks less
than their orders. Equations (A.1) and (A.2) present the definitions of 
column vectors of deviation composite scores F~ and Z~ as dependent on the
basis matrices ~ and ~’, and on the column vectors of weights A~ and B~ .
A slight shift in notation from that used in the body of the monograph has
been introduced by the dropping of the superscripts to the matrices $ and ~"
as well as to the vectors of composite scores F~ and-Z~. The solution given
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here pertains to either the deviation composite scores from the means for
all individuals or the within-college deviation composite scores and the
appropriate superscripts may be added to particularize the material in this
appendix to one or the other types of scores. If the superscript t were used
with ~, F~ , i’, and Z~ , (A.1) and (A.2) would become (50) and (75) 
body of the monograph; if the superscript c were used with these matrices,
(A.1) and (A.2) would become (64) and 

(A.1) SA~ = F~,

(A.2) tB~ -- Z~.

In the canonical correlation model, the weight vectors are established
so as to maximize the correlation r, between the composite score vectors
F~ and Z~ . A series of solutions are found for which the F~ and the Z~ for
each solution are uncorrelated with the composite score vectors for the
preceding solutions. These solutions can be arranged in descending order of
the correlation r~ . The usual method of solution (see Kendall, 1951, Vol. 2,
pp. 348-358) involves the inverses of the intercorrelation matrices from the
basis matrices. As noted from (54) and (70), the basis matrices $ and ~- 
ranks less than their orders; consequently, the matrices of intercorrelations
computed from these bases would be singular and would not possess inverses.
The following procedure is appropriate for this case.

If all entries in AT were multiplied by a constant, then all entries in F~
given in (A.1) would be multiplied by the same constant. The correlation 
between F~ and Z. would not be affected, however, by this rescaling of the
weights A, and composite scores F~. Similarly, the weights B~ and composite
scores Z~ may be rescaled without affecting the correlation r~. It is possible,
and desirable, to define the scale for the weights such that the sum of squares
of the composite scores over individuals equals the number of individuals.
Thus,

(A.3) F’~F~ = Z’~Z~ = g.. .

Since the bases ~ and t were established so that the composite scores F~ and
Z~ would be deviation scores, the correlation between them is

1(A.4) r~ = ~ F’~Z, .

The regression equation for predicting Z~ from F~ is

(A.5) F~r~ = ,~ ,

where 2~ is the predicted Z~. Similarly, the regression equation for predicting
F~ from Z~ is

(A.6) Z~r~ = ~,

where ~ is the predicted F~.
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Substituting for Fs in (A.5) from (A.1)

(A.7) ~Asrs =

and substituting for Zs in (A.6) from (A.2)

(A.8) ~B~rs --

Consider, temporarily, that the weights Bs and the composite scores
are known. The 2~ would be the multiple regression predictions of Z~ from
the basis matrix ~ with the regression weights being the entries in Asrs ¯
The correlation rs would be the multiple correlation. This relation to the
multiple regression model occurs in order for rs to be a maximum and provides
a solution for the weights As ̄  The multiple regression normaI equations
may be written as

(A.9) (~’~)( A~rs) 

Substitution for Zs from (A.2) and rearranging parentheses yields

(A.10) (i’~)A~rs = (~’r)Bs.

Similar reasoning considering the weights As and the composite scores F~
as known yields

(A.11) (~’~)(B~rs) -~ (~’F~),

(A.12) (~’~)Bsr~ = (~’~)A~.

Equations (A.10) and (A.12) provide tWO sets of equations in the weights
As and B~ and are to be solved simultaneously for the weights.

The usual solution involves the inverses of the matrices (~’~) and
In the present case these inverses do not exist, and another mechanism is
required to obtain the desired solution. Let the matrix (~t~) be factored 
obtain a matrix G such that

(A.13)
and

There

(~r~) = GG’,

IG’GI ~ O.

are several methods for accomplishing this step, one of which is to
obtain the characteristic roots and vectors of ~r~. The zero roots are dis-
carded so that

(A.15) (~’~) = WDW’,

where D is a diagonal matrix containing the nonzero characteristic roots and
W is a portion of an orthogonal matrix containing, as columns, the corre-
sponding characteristic vectors. Thus

(A.16) [DI ~ 0,
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(A.17)

Then

(A.lS)
(A.19)
(A.20)

W’W = I.

G -- WD~/~,

GG’ = WD~/~D~/~W’ = WDW" = (~’$),

G’G = D~/~W’WD~/~ = D.

The matrix G as defined in (A.18) satisfies (A.13) as shown in (A.19) 
satisfies (A.14) as shown in (A.20) and (A.16).

In a similar manner, the matrix (¢’~) is factored to obtain the matrix 

(A.21) (U~’) HH’,

(A.22) IH’HI ~ O.

The problem when the rank of a matrix is not equal to its order, such
as is true for } and ~, is that the vectors of the matrix do not span the entire
space possible as implied by the dimensions of the matrix. The vectors A~
and B~ may be restricted to the spaces spanned by the column vectors of }
and ~ by defining these weight matrices as follows.

(A.23) A~ = G(G’G)-’U~ 

(A.24) B~ = H(H’H)-IV~,

where U~ is a column vector of order equal to the rank of }, and V~ is a column
vector of order equal to the rank of ~. The only restrictions on these vectors
are that their lengths be such as to satisfy (A.3).

Substitution in (A.10) for (~’~) from (A.13), for A~ from (A.23), 
B~ from (A.24) yields

(A.25) GG’G(G’G)-I U~r~ = (~’ r)H(H’H)-I V~ ,

(h.26) GU~r~ = (}’~)H(H’H)-I 

Premultiplication of (A.26) by (G’G)-IG’ yields

(A.27) U~r~ = (G’G)-IG’(~’~)H(H’H)-’ 

Similar substitutions into (A.12) from (A.21), (A.23), and (A.24) and 
ulations as the preceding yield

(A.28) V~r~ -- (H’H)-IH’(U~)G(G’G)-I 

Define a matrix M, not to be confused with the M of (29), 

(A.29) U = (G’G)-’G’(~’t)H(H’H)-~,

and substitute into (A.27) and (A.28),

(A.30) U~r, = MV~,
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(A.31) V,r~ = M’U~.

Multiplication of (A.31) by r~ and substitution for U~r~ from (A.30) yields

(A.32) (M’M) V~ = V~r~ 

This equation is in standard form for V, to be a characteristic vector of the
matrix (M’M) and % to be the corresponding characteristic root. As for the
usual canonical correlation solution there are multiple solutions for the
present case. The number of nonzero canonical correlations cannot exceed
the dimensionality of either of the basis matrices ~ or ~’.

APPENDIX B
Solution ]or Predictive Model

The basic equation for the solution f~r the predictive model is obtained
by substituting for e,go in (87) from (86).

(B.1) E~ = ~ ~ ~ (y,~,- ~ ~ ~,.~a~w~)~.
c i :c g :c

Conditions for a minimum solution are obt~ed by setting the p~rti~l deriw-
tires of E~ with respect to the parameters a~. and w~. equal to zero.

Consider, first, the partiul derivatives of E~ with respect to w~..

(B.2) OE~. = --2 ~ (y,~,,- ~ ~ ~,~a~w~) ~ ~a~

~ 0~

where k is used as an alte~ate subscript to j to designate predictor variable
and q is used as un alte~ute subscript to p to designate predictive composite.
Algebraic manipulation of (B.2) and substitution from (83) yields

Equation (~.~) ~s linear ~ ~he ~ ~nd m~y be solved when the a~,’~ are

for the s~udents ~t college c b~ de,ignited by ~ ~nd T, . Equation (~.3)
becomes, in m~r~ form,

~ Y~ = ~P~w~,
where W~ contains ~he ~ for college c. Since

~n inverse. Then,

= (~) ~T~.
A differen~ equ~o~ obtained from (~.2) by algebraic m~n~pul~ion will

be of ~etes~ ~n a ~ub~equent ,ect~on ~nd is g~en here fo~ convenience.
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Define the quantities (~oo~), and (¢k;)o 

(B.7) (ooo ) y,o o ,o ,

(B.8) = .

Equation (B.6) becomes, then,

i i a k

Consider ~he partial derivatives of ~ wi~h respee~ ~o ~.

~ O.

Algebraic ~anipulation of (BA0) and substitutions from (B.7) and (B.8)
~ield

k q c g :c c g :c

Equation (B.11) represents a group of simultaneous, linear equations in the
weights a~ ~nd might be solved for these weights. Thus, (B.5) ~nd (B.11)
form ~ b~se for ~ possible successive ~pprox~tion method for solv~g for
the two types of weights, a~, ~nd w,,~ . A tri~l group of weights w,,, might
be entered ~to (B.11) and the weights a~ determined. Use of these weights
to determine tri~l scores on the predictive composites would determ~e the
m~tr~ F which could be entered into (B.5) to obta~ a new group of weights
w,,,. Such cycles of computations could be continued until convergence was
obtained.

The number of unkno~s and of s~ult~neous linear equations repre-
sented by (B.11) is n~ ~ n, which might become prohibitively l~rge for 
extensive study. This product, 41 ~ 2, is 82 for the sm~ll i]lustmtiv~ study.
A second procedure is possible that does not involve such large m~trices.
Algebraic m~nipul~tion of (B.11) yields

c g :c c g :c q k

~ote the similarity between (B.9) and (B.12).
~ile the qu~n~i~ies (~)~ of (B.8) are defined for eve~ college,

quantities (e,,~)~ of (B.7) are defined for each g~ for the college c, ~he college
for which’g~ is ~ catego~ of grades. Let the quantities (#o,~)~ be defined
~ (B.13) when d # 
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(B.13) (~oo;)~ ~’ ~ w~o ~ a~(¢k~)~   (for d # 
k

An equation similar to (B.9) may be written by multiplying (B.13) by 
and summing over j.

(B.14) ~ a;,(~)~ = ~ a;, ~ w~. ~ a~(~)~ (for 
i i q k

S~ilarly, an equation s~ilar to (B.12) may be written

Define:

(B.16)

(B.17)

~go, = ~ (~,.;)~ + (0g. (for d ~ c),
d

~bk; = ~ (¢~)~ + (~)~ (for d # c).
d

Suing (B.14) over the colleges d, add~g (B.9), and substituting 
(B.16) and (B.17) yields

i i q k

Similarly, summ~g (B.15) over d, adding (B.12), und substituting 
(B.16) ~nd (B.17) yields

c g :c c g :c q k

By lett~g # and ~ be maCrices containing as elements ~,~ and ~ ,
~spect1~ely, (~.1~) ~n4 (~.19) c~n ~e written ~ ~tr~ form.

(B.2o) #A = W’A’~A,
(B.2~) W# = WW’A%
Because of the freedom of transformation outlined ~ equations (89) through
(92), the matrices may be de~ed, for the present purposes, so that

(B.22) A’~A = ~..[,

(~.2a) WW’ = ~.~,

where h is an un~o~ diagon~1 mutr~. Equations (B.20) and (B.21) become

(~.2;) #A = W’N..,

(n.2~) W~ = N~’.~A’~.

From the definition of the elements of ~, the ~, in (B.17) and of (~)~
in (B.8), the matr~ ~ may be identified with the matrix p~oduct ~ and 
series of steps identical with those of equations (A.13)-(A.20) and (A.23)
may be pegormed.
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(B.26) ¢ = ’ GG’,

(8.27) [G’GI ~ O,

(B.2S) A = G(G’G)-I 

where U is a matrix such as to satisfy (B.28) and have as many rows as the
rank of ¢ and as many columns as does the matrix A. Substitutions from
(B.26) and (B.28) into (B.24) and (B.25) 

(B.29) ~G(G’G)-I U = W’N.. 

(B.30) WO = N-.~AU’G’.

Postmultiplication of (B.30) by G(G’G)-1 gives

(B.31) WOG(G’G)-’ = N-.1.A ’.

Substitution from (B.31) into (B.29) gives

(B.32) ~G(G’G)-~G’ ~’W’ = W’ A.

This equation is in standard form for the diagonal elements of A to be the
characteristic roots of the matrix OG(G’G)-2G’~’ and the columns of W’
to be the corresponding characteristic vectors. The n~ largest characteristic
roots and vectors are to be used. Note that the columns of W’ are scaled in
accordance with (B.23). The matrix A can be found by substituting from
(B.31) into (B.28).

(B.33) A = G(G’G)-2G’ ~’W’A-’N..

The crux of the iterative procedure based on (B.32) and (B.33) is 
determination of the elements (~oo;)~ for c ~ d defined in (B.13) and 
subsequent elements ~,o; defined in (B.16). One possible iterative procedure
is to start with some estimates of the weights in the W and A matrices, use
these in obtaining estimates of the (~oo~-)~ for c ~ d in (B.13), and to continue
through to a solution for new matrices of weights W and A from (B.32)
and (B.33). The new weights could be used to start a new cycle. These cycles
could be repeated until convergence is obtained.

A variant to the foregoing procedure is to start with an estimate of the
matrix of predictor variable weights in matrix A, determine the corresponding
scores in matrix F for the predictive composites by (81), determine the entries
in regression weights matrix W by application of (B.5) for each college,
estimate the (~o~)~ for c ~ d by (B.13), and to continue through to determina-
tion of a new matrix A of predictor variable weights from (B.33). This new
matrix A could be used to start a new cycle. These cycles could be continued
until convergence is obtained. In the second procedure, determination of the
predictive composite scores for the individuals could be avoided by working
with matrices ¢~ of the (~b~;)o and 0~ of the (00°~)o , there being one of each 
these matrices for each college. From (B.7), (B.8), and (83):
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(B.34) F’~Fo -- A YpoA,

(B.35) F’o Yo = A ’ Oo .

An advantage of the second procedure is the precise determination of
the regression weights in matrix W for the given matrix A of predictor variable
weights so as to satisfy the partial derivative (B.2). The matrix W used 
the beginning of the cycles of the first procedure are determined toward the
end of the preceding trial and involve the previous estimates of the (0,o;)n.
As a consequence of the determination of new weights in W from (B.5) the
second procedure should converge in fewer trials.

Establishment of a first trial matrix A of predictor variable weights poses

a problem. In the illustrative problem the experimenter used his judgment
in selecting the A~ vectors for the first and fourth within-college canonical
variates. The B~ vectors for the first canonical variate gave high weights to
the liberal arts college, and the B~ vector for the fourth canonical variate
gave high weights to the technical colleges. An alternative procedure might
have been to establish a trial matrix W with one row having high weights
for the liberal arts colleges and a second row having high weights for the
technical colleges. A corresponding matrix A might have been obtained by
solving the simultaneous equations implied by (B.11). In other studies, the
colleges might be classified into groups in a similar manner dependent on the
judgment of the experimenter and corresponding matrices W might be
established. Dependence of the solution on the initial groupings of the
colleges could be investigated by using several different initial groupings for
several solutions. If the several different starting groups led to the same final
solution, this would yield strong evidence for the uniqueness of the solution.

Problems that remain to be discussed are the interpretations of the
characteristic roots of the matrix

~G(G,G)-~G,~,

and the convergence of the proposed procedures. Consider that a matrix Y
were available with each student having grades in every category of grades
at every college. Equation (B.1) could be rewritten without restricting the
individuals to those attending college c. Setting partial derivatives with respect
to the weights a;~ and w~o equal to zero would lead directly to (B.18) and
(B.19), and (B.32) and (B.33) would yield the solutions for the two 
of weights. For this case, the characteristic roots of the matrix

~G(G,G)-2G, ,

are an analysis of the variance of the predicted criterion scores into orthogonal
components such that the contribution of a predictive composite to the
variance of the predicted criterion scores is the corresponding characteristic
root. This statement is verified by writing the formula for the variance of
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the predicted scores 9,°. of (84) and using the restrictions of (B.22) and (B.23).
The variance of the predicted criterion scores, then, is the sum of the charac-
teristic roots for the predictive composites used. The error variance of pre-
diction is the difference between the variance of the original criterion scores
and the variance of the predicted criterion scores. As many predictive com-
posites could be used as there were substantially large characteristic roots.
The predictive composites with near-zero roots could be ignored.

The definition of the elements (~oo~’)d in (B.13) corresponds in essence
to defining the grade for each individual in each category of grades at colleges
he did not attend as the predicted grade for him in each of these categories
of grades. The approximations of the (~oo;)d in the two iterative procedures
correspond to approximating the predicted grades. The characteristic roots
are the contributions of the new predictive composites in predicting the
criterion score matrix including these approximations. The convergence
of the procedures can be argued as due to a reduction in the error of estimate
variance at every step. Given a matrix of criterion scores including approxi-
mations for grades at colleges not attended by students, the solution for
A and W by (B.32) and (B.33) yields a minimum error of estimate variance
for any given number of predictive composites. Replacement of the approxi-
mations to grades at colleges not attended by each student so that these
approximations conform to the just obtained predictive composites reduces
the corresponding errors of estimate and the error variance of estimate.
Re-solution for the predictive composites reduces the error variance further
until a minimum is obtained. At this time, the existing errors of estimate are
associated with the observed college grades and not with the inserted esti-
mates of grades at colleges the students did not attend.

As a consequence of the preceding propositions, the characteristic roots
of trial matrices

give some evidence as to the propriety of the number of predictive composites
being used. If the number of sizeable roots is less than the number of predictive
composites, the number of predictive composites could be reduced without
materially increasing the error of estimate variance. If the number of sizeable
roots is greater than the number of predictive composites, one or more ad-
ditional predictive composites are indicated. These can be obtained by using
more characteristic roots and vectors from (B.32). As the trials progress,
the roots corresponding to predictive composites being used should increase
in size and the other roots should reduce in size. One hope is that these other
roots would approach zero.

When a solution for the weights in A is obtained, a transformed matrix
of weights that yield the deviation composite scores from the total means,
when applied to the original scattered data matrix X, can be obtained from
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(44). Applications of these transformed weights to the column sums of the
¯ scattered data matrix X for the students at each college yields the sums of
the predictive composite scores for these students. The additive constants
for the regression equations for each college can be obtained in the usual
manner from the sums of the predictive composite scores, the sums of the
grades, and the number of students in the study at the college in combination
with the regression weights for that college in the matrix W. The square of
~he multiple correlation for predicting the grades in each category of grades at
each college is obtained by dividing the value of (WooF’~FoWoo) by the variance
~)f the grades in the category, where W~o is a column vector of regression
weights for category go of grades.

APPENDIX C
Computing Notes

These notes on computing procedures for the several models will be
organized around the computations for the illustrative study. The form of
most of the steps should not change for larger studies; however, increased
nllowances will be necessary for larger computed numbers, more schools,
more colleges, more tests, and more grades for each school and college as
appropriate. Insofar as these extensions involve only increased capacity for
~lata and can be planned in detail for particular studies, only the forms of
the extensions will be indicated for those few steps where the nature of the
extensions are not obvious.

For a majority of the steps for the illustrative study an IBM 650 was
found to be effective. In only two steps, the determination of characteristic
roots and vectors for two m~trices, each 41 X 41, was a more powerful
machine required. For a more extensive study, however, a more powerful
machine would be appropriate for much of the analysis.

In the present case, four special programs were written in ~ddition to
the several library programs already available for matrix manipulation. Two
of these programs concerned the original summarization of the data into
forms utilized in the analysis for the three models. The two other programs
were written for the predictive model. Solutions for the two canonical cor-
relation models used library matrix manipulation programs. The following
notes are organized into a section on the original summarization, a section
on the computations for the canonical correlation models, ~nd a section on
the computations for the predictive model.

Original Summarization o] Data

A punched card containing the following information was prepared for
each individual. All variables were scaled so that every grade ~nd score was
positive.
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Individual Number: i,
School Code: s,
College Code: c,
School Grade: x,o;. ,
Test Scores*

Verbal: x,o. ,
Mathematical: X,o~,
Dummy Variable: X,o~, ,

College Grade: y~oooo .

Two dummy variables, each having values of unity for each individual,
were left implied, one will be designated X,o~. for the school and the other
will be designated y~.oao for the college.

In extending this format for the data for a more extensive study, ad-
ditional card fields may be required for school grades, tests and test scores,
and college grades. One field was used for each variable listed above for the
illustrative study.

Assignment of index numbers during calculations involved, for the
predictor variables, giving numbers 1-19 to the dummy variable for the
schools, numbers 20-38 to the grades at the schools, numbers 39 and 40 to
the test scores, and 41 to the test dummy variable; for the criterion variables,
numbers 1-6 were given to the grades at the colleges and numbers 7-12 to
the college dummy variables.

Computer program 1 was used to obtain the sums of grades and scores,
sums of squares, and sums of cross-products for each college, separately.
The data cards were sorted by college and, within college, by school. The
resulting values were output on cards separately for each college as out-
lined below.

1. Two cards resulted for each school for the college, each card being
identified as to college, school, and card number. The information contained
in each card is shown in Table 14. Note that the last entry for each card is
identical with the first entry for that card due to the identity of the school
and college dummy variables. In practice, the last entry was not punched
into the cards, but the data were picked up from the first entry.

In more extensive studies than the present one, the inclusion of more
school grades per school would increase the number of cards similar to Card 2,
one card for each category of grades. Further, the mlmber of entries on each
card similar to the second entry would increase, correspondingly. Extensions
in the number of test variables and college grade variables would increase
the number of entries on each card.

2. Seven cards were produced for each test variable x,°. , x,o~ , and

*If observed scores were not available, zeros were punched into the card in the test
variable fields, including the dummy variable. When test scores were available, they were
punched into the score fields and unity was punched into the field for the dummy variable.
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TABLE 14
Information Contained in Each Card

x.o j, ; for the college grade variable y~ .... ; and for the college dummy variable

y.oao ̄  Let X.o designate any of the five preceding variables. The first three
cards for each variable contained the ~ X.o for the several schools.

Note that the entries for the college dummy variable y.oao are the N.o .
The next three cards for each variable contained the ~ X.oX~:oi. for

the several schools. Note that the entries for the college dummy variable
y~.o~o are the ~ x.~;.. The seventh card for each variable contained

"~ ~_. X~.oY~.o , where Y.° is used as an alternative designation to X~.o

for the five variables, and for each X.o , Y.o ranges over the five variables.
Note that when X.o represents the college dummy variable, y.~oo ,

Also note that when both X.o and Y~.o represent the college dummy variable

XXx,..Y,.. XX= Y.°oo = N.o .

Increases in the size of studies would involve systematic increases in
the number of cards of each type indicated in the preceding paragraph.

Computer program 2 developed the entries in the matrices ~, ~’~, and
~’~ separately for the basis matrices ~ and ~’* for deviation composite scores
:from the means for all individuals and for the basis matrices ~° and ~° for
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the within-college deviation composite scores. Let the entries in ~’~ be desig-
nated by ¢~ in conformity to the definitions in (B.8) and (B.17); let 
entries in ~’~ be designated ~g; in conformity to the definitions in (B.7) and
(B.16); and, by similarity, let ~bho designate the entries in ~’~. The super-
scripts t and c may be attached to these symbols to distinguish between coeffi-
cients for the deviation composite scores from the means for all individuals
and coefficients for the within-college deviation composite scores.

In the first step of program 2, the cards for the college dummy variable
were used as a source of the sums for each college of the scores on the variables.
The following coefficients were computed, saved in the machine memory,
and punched into output cards. The sums were also saved in the machine
memory.

1. For each college:

N-.lc Z Z X,o.i, and N-.lo E E Y,.~,

where j ranges over all predictor variables, including school dummy variables,
school grades, test scores, and test dummy variable; and g ranges over all
criterion variables, including college grades and college dummy variables.
Note that the second coefficients invoNing the y.,~ are zero when g refers
~o either the grades or the dummy variables for colleges other than the
reference college.

2. For sums over all colleges:

N: E E x.. N<’.
where i ranges over all predictor wriables and g ranges over all criterion
variables.

The cards output from program 1 were input for the second section of
program 2 after being sorted into the following order.

School Cards 1 in order by school and, within school, by college;
School C~rds 2 in order by school and, within school, by college;
Cards for test variables x..., x..., and x..~. in order by test variable

and, within test variable, by college;
Cards for college variables y~,~, and Y.~a. in order by variable and,

within variable, by college.
Note the second use of the cards for the college dummy variable y~,.q..
The pack of cards result~g from this sorting contained 53 groups of cards:
.a group of School Cards i for each of the 19 schools, a group of School Cards 2
for each of the 19 schools, a group for each of the 3 test variables, a group
for the college grades variable y.~, for each of the 6 colleges, and a group
for the college dummy variable y.~a, for each of the 6 colleges. Each of the
groups for the predictor variables (school variables and the test variables)
~ontained cards for all colleges. Each of the groups for the criterion variables
(college variables) contained cards for only one college.
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A unit of computations was performed for each group of cards, these
computations being similar for the various units. In the computation for
each unit a series of 53 memory locations was used to store the data from the
group of cards. Each of these locations corresponded to a predictor variable
or a criterio n variable, the first 19 corresponding to the school dummy vari-
ables, the next 19 corresponding to the school grades variables, the following 3
corresponding to the test variables, the following 6 to the college grades
variables, and the last 6 corresponding to the college dummy variables. At
the beginning Of the computations for a unit, each of the foregoing memory
locations was se~ at zero. As the cards in a group were read into the machine,
the data on the cards were added into the appropriate memory locations of
the series. Using the sums and coefficients stored in memory in the first
section of the program and the contents of the series of memory locations
after all cards in a group had been read the following values were computed.

1. For each group of cards for a predictor variable (let/~ designate the
predictor variable), the following values were computed.

,:, = Z E x,~x,,- (N:1. X E E x,..~)(Z Z 

= (., E E~,..~)(E

where ~ ~ x~,x. is the contents of the j~h loc~ion in the potion of the

series for the predictor variables, and ~’~ ~ x~,y~o, is the contents of the gth

location in the portion of the series for the criterion variables. The symbol 0r

is used to designate the entries in the transpose of the matrix containing the
entries O. Note that the 0",, are zero for g equal to the college dummy variables
G, . Punched cards are output with the results for each group of input cards
before the cards for a new group are read.

2. For each group of cards for a criterion variable (let h designate the
criterion variable), the following values were computed.

hl Y-1 ,0° = Z Z~,~,,- Z( .~ Z Z~,..~)(Z
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where ~ ~ y~, x, is the contents of the jth location in the portion of the

series for the predictor variables, and Y~ ~ y~ y~ is the contents of the

gth location in the portion of the series for the criterion variables. Note that
all values of 0~o and ~o are zero when either h or g equals a college dummy
variable Go . Also note that the ~b~ are zero when g does not equal h; thus,
the matrix ~b° of ~o is diagonal. Both the matrices 0° and ~ may be reduced
in size by eliminating the college dummy variables. Punched cards are output
with the results for each group of input cards before the cards for a new group
are read.

The remaining computations for original summarization of the data
were accomplished using library programs for matrix manipulations. The
matrices ~° and ~b~ output by program 2 were factored to the matrices G°

and G’ by determination of the characteristic roots and vectors as outlined
in (A.15)-(A.20) and the corresponding matrix products G(G’G)-~ were
obtained. An IBM 704 computer was used to determine the characteristic
roots and vectors of the ¢ matrices. All other computations were performed
with an IBM 650 computer.

The matrix ~b~ was factored to the matrix H~ by determination of its
characteristic roots ~nd vectors and subsequent calculations similar to those
for factoring the ~ matrices, and the matrix H’(H"Ht) -~ was obtained.
Since the matrix ~b° was diagonal, the matrix of characteristic vectors was
known to be an identity matrix and ~b° was known to contain the characteristic
roots. As a consequence

HO(H°,H~)-~ = (~b9-’ ~.

Computations/or the Canonical Correlation Models

Essentially parallel computations are involved for the two canonical
correlation models, and the general procedure will be outlined here. The
superscripts c and t, correspondingly, will be omitted. Each of the matrices
and coefficients can have the appropriate superscript attached to specialize
the procedure to one or the other canonical correlation models. Following
are the computational steps starting from the matrices determined in the
original summarization of the data.

1. Determine the matrix M of (A.29):

M = (G’G)-’G’O’H(H’H)-~.

2. Compute the matrix product M’M and determine the characteristic
roots and vectors of the product matrix. Each characteristic root is the
square of a canonical correlation, r~ , and the corresponding characteristic
vector is the vector V~, as per (A.32).
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3. Select the canonical variates to be employed in accordance. With the
sizes of the canonical correlations.

4. For each selected canonical, variate determine the weight vectors
A~ and B~ in accordance with (A.30), (A.23), and (A.24).

v~ = ~-MV,,
r~

A~ ~- G(G’G)-I U~ 

B~ ~ H(H’H)-1V~.

When the weight vectors have been determined, they may be trans-
formed by (44) to obtain weight vectors A*~ and B*~ which produce deviation
composite scores from the means for all individuals when these transformed
vectors are applied to the original scattered data matrices X and Y.

Computations ]or the Predictive Model

These notes will outline computing procedures for each trial of the
second iterative method discussed in Appendix B. The general strategy of
this method will be assumed as discussed in Appendix B, including the
establishment of an initial trial matrix A of predictor variable weights and
the extension or reduction of trial matrices A from the results of one trial
before the use of the new matrix A in the next trial.

Computer programs for the predictive model will be described in terms
of the computations for the illustrative problem. These computations involved
two predictive composites. For a more extensive study involving more schools,
and/or more colleges, and/or more predictive composites, the capacities of
the several steps will have to be adjusted accordingly. The following notes
include several modifications from the programs used. These changes provide
some improvements in the program plans as well as some simplification for
presentation. The modifications should not affect results obtained.

Input data for program 3 included a trial matrix A of predictor variable
weights and the output cards from program 1, these cards being sorted by
eollege, and, within college, into groups by predictor variables and criterion
variables. The order of these card groups was: School Cards 1 for the school
.dummy variables in order by school, School Cards 2 for the school grades
in order by school, test verbal score cards, test mathematical score cards,
test dummy variable cards, college grades cards, college dummy variable cards.

In program 3, after initialization and storage of the weights in the
matrix A in machine memory, the following computations were performed
separately for each college to determine ~hat college’s regression weights,
w .... and groups of coefficients used in the subsequent program 4.

1. Three series of 41 machine memory locations were utilized in the
first step. In each series there was a memory location for each predictor
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variable. For the first series, which was for temporary storage of data read
from input cards, the predictor variables corresponding to the memory
locations will be designated by h. Each of the remaining two series will be
for coefficients designated u~, which are sums of products between predictor
variable scores and predictive composite scores. Two predictive composites p
were used in the illustrative study. The predictor variables corresponding
to the memory locations will be designated by the letter j.

2. The memory locations in the temporary storage series were set to
zero, and the data on the group of cards for a predictor variable, designated
by the letter j, were stored in the appropriate locations in the series. These
data are the sums of products between the scores on the predictor variable
and scores on other predictor variables and the sum of squares of the scores
on the predictor variable. Two coefficients were computed for the predictor
variable j, one coefficient for p = 1 and the other coefficient for p -- 2:

h i :c

where (~ x~o~x,h) is the contents of the hth location in the temporary

storage series. The two coefficients were stored in the corresponding locations
of the two series of locations for the coefficients ~. This step was repeated
for each predictor variable in turn as variable j.

3. The group of cards for the college grades variable was read into the
temporary storage series and the following two coefficients were computed:

h i :c

where (~ Y,ooX,~) is the contents of the hth location of the tempora~

storage series and p takes on the values of 1 and 2. These coefficients were
stored ~ machine memory.

4. The group of cards for the college dummy variable was read into the
temporary storage series and the following two coefficients were computed:

h i :~

where (~ x,~) is the contents of the hth location of the temporary storage

series and p takes on the values 1 and 2. These coefficients were stored in
machine memo~. The values of ~ y~ and N.~ were read from the final

card for the college dummy variable and placed in machine memory.
5. A coefficient ~ was computed from each coefficient obtained in step 2:

where the contents in the temporary storage series are interpreted as the
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(~ x,i). Each of these coefficients was stored in the location from which

the ~ (~’~ x,oi~c,oh)ah, was obtained.
h i :c

6. A coefficient %°. was computed for each value of p (1 and 2).

%°° = ~ ( ~ y,,o,x,.h)a~, - N-.~ ( ~ y,~°o) ~ ( ~ x,.~)a~ 
h i :c i :c h i :c

7. A coefficient ~,~ was computed for each of the three combinations of
pq (11, 12, ~nd 22), q being an alternute index to p to designate predictive
composite:

h

8. The regression weights w~ were computed by the following formula:

where, when p = 1, q = 2, ~nd when p = 2, ~ = 1.
9. Compute for each predictor v~ri~ble j:

10. I~ormation output on punched cards from program 3 was the
coefficients u~ of step 5, the ~,. of step 6, the =~, of step 7, the w~, of step 8~
and the ~ ~ w,,. of step 9.

Program 4 computed the new matr~ A by the follow~g steps.
1. Compute the entries ~,,~ , defined in (B.16), of the matrix ~ by the

formula:

where (0~,~), are the entries in the ma~ 0¢ obtained ~ program 2,

was obtained ~ program 3 for college c, (~,)~ was obta~ed ~ program 
for college d (~ the present case, d ranges over all colleges ~clud~g college c).

2. Input the matr~ G(G~G)-~ for the with~-college deviation composite
scores and compute the mutrices:

OG(G’G)-~ = M,

MM’ = Q.

3. Determine the characteristic roots A and unit vectors V of Q, see
(B.32).

4. Compute the new matr~ A by the formulu:

A = G(G’~-~M’V’h-~/:NI/.~.
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This equation is obtained from (B.33) and the scaling requirement of (B.23).
Note that there are as many columns in the computed matrix A as there are
colleges in the study.

Output from this program were the roots A and vectors V of the matrix Q;
also output was the matrix A. The series of roots were inspected to determine
which columns of A should be used in the next trial. For the illustrative study,
the first and third roots were the largest on every trial so that the first and
third columns of the output A matrix were taken as the weights for the
principal predictive composites and were used in the subsequent trials. In
successive trials, the two largest roots increased in size while the other four
roots decreased in size. None of these four other roots was large enough to
indicate a need for an additional predictive composite.

When a final weights matrix A has been obtained, the column vectors
may be transformed by (44) to obtain weight vectors A*~ which produce devia-
tion composite scores from the means for all individuals when these trans-
formed weight vectors are applied to the original scattered data matrix X.
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