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Although the assignment was to write a note about the famous, highly cited Kruskal
1964 papers, it would hardly be fair if the topic wasn’t described in the context of two other
papers, being Shepard’s 1962 papers (with 2309 citations in Google Scholar as of 4/1/2016)
that started the development of what is called nonmetric multidimensional scaling. Before
getting into more detail, some of the earlier history of multidimensional scaling should be
addressed as well, to place the breakthrough from the early 1960s in a proper context.

Multidimensional scaling (MDS) is the generic name of a class of techniques that aim to
find a low-dimensional space, in which the distances between N points resemble as closely
as possible a given or derived set of dissimilarities between N objects. Multidimensional
scaling methods can be divided into two major approaches. Prior to the Shepard-Kruskal
approach, MDS was mostly associated with Torgerson (1958). As Shepard wrote in his
1980 paper in Science:

Proposals that stimuli be modeled by points in a space in such a way that perceived similarity
is represented by spatial proximity go back to the suggestions of Isaac Newton....However, little
progress was made toward the development of data-analytic methods for the construction of such
spatial representations on the basis of psychological data until the efforts of a group of psychome-
tricians, beginning in the late 1930’s at Chicago and subsequently moving to Princeton, culminated
in the 1952 development by Torgerson of the first fully workable method of metric multidimensional
scaling.

The prime incentive of the Shepard-Kruskal approach was the notion of nonmetricity.
The interest in nonmetricity was invoked by considerations from a number of perspectives,
the most important one it being viewed as a property that could be attributed to data,
especially psychological data like preference rankorders. The most important aspect of the
so-called nonmetric breakthrough is usually recognized as the accomplishment of obtaining
a metric representation, like a configuration of points, from essentially nonmetric infor-
mation, like rankorders for pairs of objects. Shepard describes his work as the merging
of what used to be two phases (i.e. first obtaining tentative distances from empirically
given data by some predetermined distance function, and then applying classical MDS to
obtain a configuration of points) into one phase. The innovating step was to state that no
assumptions were made about the form of the distance functions, except that its values
had to be monotonic with the data. Shepard observed that forces tending to flatten the
configuration were counteracted by forces tending to maintain monotonicity. He proposed
a procedure that seeks a low-dimensional configuration while working in an N − 1 dimen-
sional space, where monotonicity is exactly realized. In the final low-dimensional space,
however, departure from monotonicity could arise. To implement his ideas, Shepard devel-
oped a FORTRAN program to carry out an iterative process of embedding N objects into
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a space of minimum dimensionality that would have a satisfactory rank-order correspon-
dence between the proximities and the induced Euclidean distances. From the Shepard
(1980) Science paper:

At the Bell Telephone Laboratories, I began in 1960 to explore a new approach to multidimen-
sional scaling, called analysis of proximities, that proved capable of overcoming the limitations of
the earlier approaches. I used a one-stage iterative method (i) to adjust the positions of points in
a space until the rank order of the interpoint distances was as nearly as possible the inverse of the
rank order of the corresponding similarities, and (ii) to find the space of the smallest number of
dimensions for which the residual departure from a perfect inverse ranking was acceptably small...
Following a few adjustments, on 17 March 1961 the iterative process with which I had been exper-
imenting finally converged to its first stationary configuration (at just 2.33 p.m. EST, according to
the computer log). From then on, results of surprising precision were regularly obtained.

The fact that departure from monotonicity did not play a central part in Shepard’s
procedure, inspired Joe Kruskal, his colleague from Bell Labs, to display MDS as a problem
of statistical fitting, where dissimilarities are given and a configuration of points whose
distances fit them best is aimed at, which is described in full detail in the two highly-
cited 1964 Psychometrika papers. The genius of the two Kruskal papers is that they took
Shepard’s intuitive ideas and turned them into a reliable means of carrying out a nonmetric
multidimensional scaling. Kruskal began by defining an explicit least squares loss function
to minimize, called stress, proposed a gradient method to obtain successor configurations,
and introduced monotone regression of distances upon dissimilarities to obtain perfect
monotonicity.

As is often the case in major scientific developments, similar objectives were pursued
elsewhere, most notably by Guttman. Guttman’s important 1968 paper postulates the
rank-image principle as the fundamental mechanism guarding nonmetricity, while at the
same time introducing his correction-matrix method to obtain successor configurations. At
the risk of oversimplifying, disregarding the very interesting discussion on the differences
between the Kruskal and the Guttman approach, we could say that Guttman’s nonmetric
transformation involves the permutation of the distances such that they become monotonic
with the dissimilarities, while Kruskal’s transformation involves a monotone regression of
the distances upon the dissimilarities.

The major contribution by Kruskal and Shepard to the development of MDS, which
turned the technique into the elegant data analysis method as it is appreciated nowadays,
has been primarily recognized as transforming multidimensional scaling into a nonmetric
method. What is often not greatly acknowledged, is that both Kruskal and Guttman,
proposed at the same time an alternative procedure for the metric multidimensional scaling
problem, until then solved by the classical, metric, procedure mentioned in the beginning.
In Classical MDS, the approximation of dissimilarities by distances is channeled through
scalar products, and involves an eigenvalue decomposition of a matrix S ≡ −1

2J∆2J.
Here ∆ = {δij} is a matrix with given or derived dissimilarities δij between N objects,
and J is a centering operator that renders the resulting matrix S double-centered. From
the eigenvalue decomposition of S, with eigenvalues ordered from big to small, a low-
dimensional configuration X is derived by taking the first p eigenvectors and the square
root of the first p eigenvalues, with S approximated being by the scalar product matrix
XX′. This procedure is also known als the Young-Householder (1938) process. Since the
method was independently from Torgerson proposed by Gower (1966), Heiser came up with
the acronym YoHoToGo scaling. An important property of the scalar product approximation
approach is that the resulting distances dij(X) will always be smaller than their associated
dissimilarities δij .

By contrast, instead of using scalar products, Kruskal introduced a least squares loss
function defined on dissimilarities and distances directly; it can be written (in its raw,
squared, form) as
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STRESS = min
δijεΓ

N∑
i=1

N∑
j=1

(δij − dij(X))2

where Γ denotes the set of all monotone transformations of the original dissimilarites {δij}.
Finding the optimal transformations, usually called disparities and indicated by d̂ij , is done
by inner minimization while the outer minimization solves the metric scaling problem by
minimization over X for given dissimilarites δij . The first Kruskal FORTRAN program was
called MDSCAL, However, as Shepard (1980) writes:

A variety of computer programs of this general type have subsequently been developed... Perhaps

the currently most versatile such program is the one, available from the Bell Telephone Laboratories,

named KYST (after Kruskal, Young, Shepard, and Torgerson, from whose earlier programs it derives).

What is also noteworthy, is that the nonmetric breakthrough inspired a whole succession
of programs that applied the same idea of monotonic transformation to the variables in
multivariate data (instead of to the dissimilarities in proximity data). According to Doug
Carroll, at Shepard’s suggestion, Kruskal introduced his MFIT monotone regression algo-
rithm into the first procedure fitting a two-way ANOVA model with no interaction terms
but with optimal monotonic transformation of the dependent variable (Kruskal 1965). This
application was followed by Shepard (1966), Shepard & Kruskal (1966), and the Alternating
Least Squares-Optimal Scaling system by Young, De Leeuw and Takane (1980). Indepen-
dently, and outside the psychometric literature, this idea was applied in the Alternating
Conditional Expectations algorithm (ACE) by Breiman and Friedman (1985). Last, but
not least, we have to mention the Gifi system, developed by “the Dutch school of nonlinear
multivariate analysis” (Buja, 1990), and the very successful development of software for
nonlinear data analysis in the IBM/SPSS package CATEGORIES. The latter package also
includes very elaborate extensions of the original Kruskal et al. ideas for nonmetric multi-
dimensional scaling and unfolding, which shows that the influence of the 1960s nonmetric
breakthrough still carries on.
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Figure 1. An original KYST tape


