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THE  SCIENCE  OF  CAUSE 
AND  EFFECT 

Judea Pearl 
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1.  The causal revolution – from associations to 

intervention to counterfactuals  

2.  The two fundamental laws of causal inference 

3.  From counterfactuals to problem solving 

a)  policy evaluation  (ATE, ETT, …) 

b)  Mediation 

c)  transportability – external validity 

d)  missing data 

e)  [attribution, selection bias, heterogeneity] 

OUTLINE 

TRADITIONAL STATISTICAL 
INFERENCE PARADIGM 

Data 

Inference 

Q(P) 
(Aspects of P) 

P 
Joint 

Distribution 

e.g., 
Infer whether customers who bought product A 
would also buy product B. 
Q = P(B | A) 
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e.g., Estimate P′(sales) if we double the price. 
How does P change to P′?  New oracle 
e.g., Estimate P′(cancer) if we ban smoking.  

FROM  ASSOCIATION  TO  INTERVENTION 

Data 

Inference 

Q(P′) 
(Aspects of P′) 

P′ 
Joint  

Distribution 

P 
Joint 

Distribution 

change 

What happens when P changes? 
e.g., Estimate the probability that a customer who 
bought A would buy A if we were to double the price. 

FROM  ASSOCIATION  TO  
COUNTERFACTUALS: 

Probability and statistics deal with static relations 

Data 

Inference 

Q(P′) 
(Aspects of P′) 

P′ 
Joint  

Distribution 

P 
Joint 

Distribution 

change 

Data 

Inference 

Q(M) 
(Aspects of M) 

Data  
Generating 

Model 

M – Invariant strategy (mechanism, recipe, law, 
protocol) by which Nature assigns values to 
variables in the analysis. 

 

Joint 
Distribution 

  

THE STRUCTURAL MODEL 
PARADIGM 

M 

“A painful de-crowning of a beloved oracle!” •   
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FROM STATISTICAL TO CAUSAL ANALYSIS: 
THE  SHARP  BOUNDARY 

CAUSAL 
Spurious correlation 
Randomization / Intervention 
Confounding / Effect 
Instrumental variable 
Ignorability / Exogeneity 
Explanatory variables 

ASSOCIATIONAL 
Regression 
Association / Independence 
“Controlling for” / Conditioning 
Odds and risk ratios 
Collapsibility / Granger causality 
Propensity score 

1.  Causal and associational concepts do not mix. 

2.    

3.    

4.    

4.  Non-standard mathematics: 
a)  Structural equation models (Wright, 1920; Simon, 1960) 
b)  Counterfactuals (Neyman-Rubin (Yx), Lewis (x        Y)) 

CAUSAL 
Spurious correlation 
Randomization / Intervention  
Confounding / Effect 
Instrumental variable  
Ignorability / Exogeneity 
Explanatory variables 

ASSOCIATIONAL 
Regression 
Association / Independence 
“Controlling for” / Conditioning 
Odds and risk ratios 
Collapsibility / Granger causality 
Propensity score 

1.  Causal and associational concepts do not mix. 

3.  Causal assumptions cannot be expressed in the mathematical 
language of standard statistics. 

FROM STATISTICAL TO CAUSAL ANALYSIS: 
3.  THE MENTAL BARRIERS 

2.  No causes in – no causes out (Cartwright, 1989) 

causal conclusions ⇒  } data 
causal assumptions  
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THE  NEW  ORACLE:   
STRUCTURAL  CAUSAL  MODELS:  THE  

WORLD  AS  A  COLLECTION  OF  SPRINGS 

Definition: A structural causal model is a 4-tuple 
<V,U, F, P(u)>, where 
•    V = {V1,...,Vn} are endogenous variables 
•    U = {U1,...,Um} are background variables 
•    F = {f1,..., fn} are functions determining V, 

vi = fi(v, u) 
•    P(u) is a distribution over U 
P(u) and F induce a distribution P(v) over 
observable variables 

y = α +βx + uYe.g., Not regression!!!! 

Definition:    
Yx (u): What Y would be had X been x. 
Yx (u) = the solution for Y in a mutilated model Mx, in which  
the equation for X is replaced by X = x. 

The Fundamental Equation of Counterfactuals: 

COUNTERFACTUALS  ARE   
EMBARRASSINGLY  SIMPLE 

U 

X (u) Y (u) 

M U 

X = x Yx (u) 

Mx 

Yx (u) Δ= YMx (u)

Definition:    
The effect of setting X to x, P(Y = y | do (X=x)), is equal to the  
probability of Y = y in a mutilated model Mx, in which the  
equation for X is replaced by X = x. 

The Fundamental Equation of Interventions: 

EFFECTS  OF  INTERVENTIONS  ARE   
EMBARRASSINGLY  SIMPLE 

U 

X (u) Y (u) 

M U 

X = x Yx (u) 

Mx 

P(Y = y | do(X = x)) Δ= PMx (Y = y) = P(Yx = y)



5 

P(x, y,u) = P(u)P(x | u)P(y | x,u)

The Fundamental Equation of Interventions: 

ESTIMATING  THE  EFFECTS   
OF  INTERVENTIONS  WITHOUT  EQUATIONS 

U 

X (u) Y (u) 

M U 

X = x Yx (u) 

Mx 

P(Y = y | do(X = x)) Δ= PMx (Y = y)

P(y,u | do(x)) = P(u)P(y | x,u)

P(y | do(x)) = P(y | x,u)P(u)
u
∑

Truncated product 

Adjustment formula 

Z	



x = ε1
z = βx + ε2
y = αx + γz + ε3

READING  COUNTERFACTUALS 
FROM  SEM 

Data shows: α = 0.7, β = 0.5, γ  = 0.4 
A student named Joe, measured X = 0.5, Z = 1.0, Y = 1.9 
Q1: What would Joe’s score be had he doubled his study time? 
Answer:  YZ=2 = 0.7 0.5 + 0.4 2.0 + ε3 = 2.30 

Z

z = 2.0

ε2

ε1 ε3

 

X =  Treatment
Z = Study Time
Y = Score

X Y	



ε3

ε2

ε1

X Y	

α = 0.7α

β = 0.5β
= 2.0Z	


γ = 0.4γ

= 2.3

THE  TWO  FUNDAMENTAL  LAWS 
OF  CAUSAL  INFERENCE 

1.  The Law of Counterfactuals (and Interventions) 
 
 
 
      (M generates and evaluates all counterfactuals.) 

2.  The Law of Conditional Independence (d-separation) 
 
 
 
      (Separation in the model ⇒ independence in the  
      distribution.) 
 

Yx (u) = YMx (u)

 (X  sep Y | Z )G(M )⇒ (X ⊥⊥ Y | Z )P(v)
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Gift of the Gods 
  

If the U 's are independent, the observed distribution 
P(C,R,S,W) satisfies constraints that are: 
   (1)   independent of the f 's and of P(U), 
   (2)   readable from the graph. 

C (Climate) 

R  
(Rain) 

                S  
(Sprinkler) 

W (Wetness) 

THE  LAW  OF 
CONDITIONAL  INDEPENDENCE 

 

C = fC (UC )
S = fS (C,US )
R = fR(C,UR )
W = fW (S,R,UW )

Graph (G) Model (M) 

D-SEPARATION:  NATURE’S  LANGUAGE  
FOR  COMMUNICATING  ITS  STRUCTURE 

C (Climate) 

R  
(Rain) 

                S  
(Sprinkler) 

W (Wetness) 
Every missing arrow advertises an independency, conditional 
on a separating set. 

Applications: 
1.  Model testing   
2.  Structure learning 
3.  Reducing "what if I do" questions to symbolic calculus 
4.  Answering scientific questions from the graph 

 

C = fC (UC )
S = fS (C,US )
R = fR(C,UR )
W = fW (S,R,UW )

 e.g., C ⊥⊥ W | (S,R) S ⊥⊥ R |C

Graph (G) Model (M) 

No, no! 

ATE =  ✔ 
ETT = ✔ 
PNC = ✔ 

WHAT  IF  VARIABLES  ARE  UNOBSERVED? 
EFFECT  OF  WARM-UP  ON  INJURY  

(Shrier & Platt, 2008) 
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MATHEMATICAL  RESULT  #1: 
(Intervention is a solved problem) 

•  The estimability of any expression of the form 
 
 

Can be determined in polynomial time, given any causal  
graph G with both measured and unmeasured variables. 
 

•   If Q is estimable, then its estimand can be derived in  
polynomial time 
 

 

•  The algorithm is complete 
 

Q = P(y1, y2, y3,..., ym | do(x1, x2,..., xn ),Z1,Z2,...,Zk )

1.  The causal revolution – from associations to 

intervention to counterfactuals  

2.  The two fundamental laws of causal inference 

3.  From counterfactuals to problem solving 

a)  policy evaluation  (ATE, ETT, …) 

b)  Mediation 

c)  transportability – external validity 

d)  missing data 

e)  [attribution, selection bias, heterogeneity] 

OUTLINE 

21 

MEDIATION:   
A  COUNTERFACTUAL  TRIUMPH 
1.  Why decompose effects? 

2.  What is the definition of direct and indirect 
effects? 

3.  What are the policy implications of direct and 
indirect effects? 

4.  When can direct and indirect effect be estimated 
consistently from experimental and 
nonexperimental data? 
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WHY  DECOMPOSE  EFFECTS? 

1.  To understand how Nature works 

 

2.  To comply with legal requirements  

3.  To predict the effects of new type of interventions:  

Signal re-routing and mechanism deactivating,  

rather than variable fixing 

23 

X Z 

Y 

LEGAL  IMPLICATIONS 
OF  DIRECT  EFFECT 

What is the direct effect of X on Y ? 
 
 
(z-dependent) 

(Qualifications) 

(Hiring) 

(Gender) 

Can data prove an employer guilty of hiring discrimination? 

Adjust for Z?  No! No! 

 E(Y |do(x1),do(z))− E(Y |do(x0 ),do(z))

Identification is completely solved (Tian & Shpiser, 2006) 

(CDE) 

1.  To prevent M from varying, control for M, the resulting 
partial regression would be the direct effect. 

2.  Wrong!  “Controlling” does not prevent M from varying. 
3.  Example: 

TRADITIONAL  MEDIATION  ANALYSIS   
A  CURABLE  BAD  HABIT 

X	



M	



Y	



L	



X	



M	



Y	


M = X + L, Y = L	


controlling for M = 0  
yields Y = -X	



"The best way to discuss moderation or mediation is to set 
aside the entire literature on these topics and start from 
scratch." (Rod McDonald, 2001) 

T	



M	



Y	



L	



Fixing M = 0 	


yields Y = L	


independent of X	



fix (M = 0)	

disabled 

dis
ab

led
 

a	

 b	


c	



1	


1	



1	

 1	
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z = f (x, u) 
y = g (x, z, u) 

X Z 

Y 

NATURAL  INTERPRETATION  OF 
AVERAGE  DIRECT  EFFECTS 

Natural Direct Effect of X on Y: 
The expected change in Y, when we change X from x0 to 
x1 and, for each u, we keep Z constant at whatever value 
it attained before the change. 
 
 
In linear models, DE = Controlled Direct Effect 

Robins and Greenland (1992), Pearl (2001) 

DE(x0, x1;Y )

= β(x1 − x0 )
E[Yx1Zx0

−Yx0 ]

26 

z = f (x, u) 
y = g (x, z, u) 

X Z 

Y 

DEFINITION  OF 
INDIRECT  EFFECTS 

Indirect Effect of X on Y: 
The expected change in Y when we keep X constant, say 
at x0, and let Z change to whatever value it would have 
attained had X changed to x1.  
 
 
In linear models, IE = TE - DE 	



IE(x0, x1;Y )

No controlled indirect effect 

E[Yx0Zx1
−Yx0 ]

27 

POLICY  IMPLICATIONS   
OF  INDIRECT  EFFECTS 

    f     

GENDER QUALIFICATION 

HIRING 

What is the indirect effect of X on Y? 

The effect of Gender on Hiring if sex discrimination 
is eliminated. 

X	

 Z	



Y	



IGNORE 

Deactivating a link – a new type of intervention 
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THE  MEDIATION  FORMULAS 
IN  UNCONFOUNDED  MODELS   

DE = [E(Y | x1, z)− E(Y | x0, z)]P(z | x0 )
z
∑

IE = [E(Y | x0, z)[P(z | x1)− P(z | x0 )
z
∑ ]

TE = E(Y | x1)− E(Y | x0 )
Fraction of responses explained by mediation 
(sufficient) 

Fraction of responses owed to mediation 
(necessary) 

TE ≠ DE + IE

TE − DE =

IE =
Complete identification conditions for confounded models 
with multiple mediators (Pearl 2001; Shpitser 2013). 

X 

Z 

Y 

z = f (x, u1) 
y = g (x, z, u2) 
u1 independent of u2 

y = β1m +β2x +β3xm +β4w + u1
m = γ1x + γ2w + u2
w = αx + u3

β3

β4
γ 2α

γ1
β2

β1

W 

X Y 

M 

WHAT  CAN  MEDIATION  FORMULA 
DO  FOR  PARAMETRIC  ANALYSTS?  

What combination of parameters gives the effect 
mediated by M? 
 
  

What combination of parameters gives the effect 
owed to M? 
 
 

IE(M ) = β1(γ1 +αγ 2)

TE −DE(M ) = (β1 +β3)(γ1 +αγ 2)

Multi-mediators non-linear models 

M	



Y	


W2	



T	


W3	



M	


W2	



Y	

T	


W3	



M	



Y	



W2	



T	


W3	



M	



Y	


W2	



T	


W3	



(b) 
M	



Y	



W2	



T	


W3	



(a) 
M	



Y	



W2	



T	


W3	



(c) 

(e) (d) (f) 

WHEN  CAN  WE  IDENTIFY 
MEDIATED  EFFECTS? 
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M	



Y	


W2	



T	


W3	



M	


W2	



Y	

T	


W3	



M	



Y	



W2	



T	


W3	



M	



Y	


W2	



T	


W3	



(b) 
M	



Y	



W2	



T	


W3	



(a) 
M	



Y	



W2	



T	


W3	



(c) 

(e) (d) (f) 

WHEN  CAN  WE  IDENTIFY 
MEDIATED  EFFECTS? 

W1	



MATHEMATICAL  RESULT  #2: 
(Natural mediation is a solved problem) 

•  Ignorability is not required for identifying natural effects 

•  The nonparametric estimability of natural (and 
controlled) direct and indirect effects can be determined 
mechanically given any causal graph G with both 
measured and unmeasured variables. 

•  If NDE (or NIE) is estimable, then its estimand can be 
derived mechanically in polynomial time. 

•  The algorithm is complete and was extended to any 
path-specific effect by Shpitser (2013). 

1.  The causal revolution – from associations to 

intervention to counterfactuals  

2.  The two fundamental laws of causal inference 

3.  From counterfactuals to problem solving 

a)  policy evaluation  (ATE, ETT, …) 

b)  Mediation 

c)  transportability – external validity 

d)  missing data 

e)  [attribution, selection bias, heterogeneity] 

OUTLINE 
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TRANSPORTABILITY  OF  KNOWLEDGE 
ACROSS  DOMAINS 
(with E. Bareinboim) 

   
A Theory of Causal Transportability 

When can causal relations learned from experiments 
be transferred to another environment, different from 
the first, in which no experiment can be conducted. 
 

External Validity – Decades of Literature  
Cox (1958) 
Campbell and Stanley (1963) 
Manski (2007) 

  
 

MOVING  FROM  THE  LAB  TO  THE  
REAL  WORLD . . .  

Real world 

Everything is assumed  
to be the same,  
trivially transportable! 

Everything is assumed  
to be the different,  
not transportable! 

X Y 

Z 

W 

X Y 

Z 

W 

X Y 

Z 

W Lab 
H1 

H2 

U 

W 

RESULT:  ALGORITHM  TO  DETERMINE 
IF  AN  EFFECT  IS  TRANSPORTABLE 

X Y Z 

V 

S 
T 

INPUT:  Annotated Causal Graph 
 
   
OUTPUT: 
1.  Transportable or not? 
2.  Measurements to be taken in the 

experimental study 
3.  Measurements to be taken in the 

target population 
4.  A transport formula 
5.  Completeness (Bareinboim, 2012) 

S        Factors creating differences 

P*(y | do(x)) =
P(y | do(x), z) P *(z |w)

w
∑

z
∑ P(w | do(w),t)P *(t)

t
∑

S '
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META-SYNTHESIS  AT  WORK 

X Y 

(f) Z 

W 

X Y 

(b) Z 

W X Y 

(c) Z 
S 

W X Y 

(a) Z 

W 

X Y 

(g) Z 

W 

X Y 

(e) Z 

W 

S S 

Target population                 R = P*(y | do(x)) 

X Y 

(h) Z 

W X Y 

(i) Z 
S 

W 

S 

X Y 

(d) Z 

W 

∏*

MATHEMATICAL  RESULT  #3: 
(Transportability and meta-transportability are solved) 

•  Nonparametric transportability of experimental results 
from multiple environments can be decided in 
polynomial time, provided commonalities and 
differences are encoded in selection diagrams. 

•  When transportability is feasible, the transport formula 
can be derived in polynomial time, which specifies the 
information needed to be extracted from each 
environment to synthesize a consistent estimate for the 
target environment. 

•  The algorithm is complete. 

1.  The causal revolution – from associations to 

intervention to counterfactuals  

2.  The two fundamental laws of causal inference 

3.  From counterfactuals to problem solving 

a)  policy evaluation  (ATE, ETT, …) 

b)  Mediation 

c)  transportability – external validity 

d)  missing data 

e)  [attribution, selection bias, heterogeneity] 

OUTLINE 
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MISSING  DATA:  FROM  A  CAUSAL  
INFERENCE  PERSPECTIVE   

(Mohan, Pearl & Tian 2013) 

•  Pervasive in every experimental science. 
   

•  Huge literature, powerful software industry, 
deeply entrenched culture. 

 

•  Current practices are based on statistical 
characterization (Rubin, 1976) of a problem 
that is inherently causal. 

 

•  Needed:  (1) theoretical guidance,                 
(2) performance guarantees, and (3) tests of 
assumptions. 

Graphical Models for Inference With Missing Data 
Karthika Mohan, Judea Pearl and Jin Tian 

Distribution  with missing values 

Graph depicting the missingness process 

Observed proxy of Z 
 Z* 

Treatment 

Discomfort 
      

Outcome 

Cause of missingness 
in Z 

 Z 

 X 
 

Y 

RZ 

X Y Z* RZ P(Z*,X,Y,RZ) 

0 0 0 0 0.01 

0 0 1 0 0.21 

0 1 0 0 0.01 

0 1 1 0 0.04 

1 0 0 0 0.02 

1 0 1 0 0.20 

1 1 0 0 0.05 

1 1 1 0 0.08 

0 0 m 1 0.01 

0 1 m 1 0.02 

1 0 m 1 0.30 

1 1 m 1 0.05 

GRAPHICAL  MODELS  FOR   
MISSING  DATA 

WHAT  CAN  CAUSAL  THEORY 
DO  FOR  MISSING  DATA? 

 
Q-1. What should the world be like, for a given 
statistical procedure to produce the expected result? 
  

Q-2. Can we tell from the postulated world whether any 
method can produce a bias-free result?  How? 
  

Q-3. Can we tell from data if the world does not 
work as postulated? 
 

•  To answer these questions, we need models of the 
world,  i.e., process models. 

•  Statistical characterization of the problem is too 
crude, e.g., MCAR, MAR, MNAR. 

recoverable non-recoverable 

testable 
untestable 
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Recoverability 
Given a missingness model G and data D, when is a 
quantity Q estimable from D without bias?  
  

Non-recoverability 
Theoretical impediment to any estimation strategy 
 

Testability 
Given a model G, when does it have testable implications 
(refutable by some partially-observed data D' )?   
   

What is known about Recoverability and Testability? 

 RECOVERABILITY  AND  TESTABILITY 

MCAR	

 recoverable almost testable 
MAR	

 recoverable uncharted 
MNAR	

 uncharted uncharted 

Y	

X	



RX	

 RY	



Z	

 Y	


X	



RZ	

 RY	



(a) 

(g) 

RX	



(d) 

Y	

X	



RX	

 RY	


P(X)

IS  P(X,Y)  RECOVERABLE? 

Y	

X	



RX	

 RY	



Y	

X	



RX	

 RY	



Z	

 Y	


X	



RY	

 RX	

RZ	



X	

 Y	


Z	



RX	

 RY	

RZ	



Y	

X	



RX	

 RY	


Z	



Y	

X	



RX	


(b) (c) 

(e) (f) 

(h) (i) 

  

  

  

  

RY	


P(X |Y )

P(X,Y ,Z )

P(X,Y ,Z )

THE  RECOVERABILITY  PIE 
(and what’s in it for the user) 

•  Recoverability in MAR and MCAR models can be achieved by 
model-blind estimators (e.g., MI or EM). 

•  In areas (M) and (S), recoverability requires model-smart 
estimators. 

•  Testability – charted over the entire terrain. 

(N)	

MAR	



MCAR	


Markovian* 

Sequential-MAR	



Non-recoverable 
(provable) 

Others      {∅}  ?=
(S)	



(M)	
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•  Not all that looks testable is testable: 
•  Some testable implications of fully recovered distributions are 

not testable from missing data. 
Example: 
 
 
  

THE  PECULIAR  CHARACTER  OF 
TESTABILITY  IN  MISSING  DATA 

⊥⊥•  Yet  X      Y | Z is not falsifiable by any data in which Z is 
partially missing. 	



•  Any such data, even when generated by a model in which  
X      Y | Z  is false, may be construed as if generated by the 
model above, in which X      Y | Z is true. 
⊥⊥

⊥⊥

⊥⊥
•  P(X, Y, Z) is recoverable, and advertises the conditional 

independence X      Y | Z, which is falsifiable, hence testable. 

X	



Z	



Y	



Rz	



(treatment) 

(outcome) 

(masking Z) 

(discomfort) 

⊥⊥Now X      Y | Z  is testable 

•  Two statistically indistinguishable models, yet 
P(X,Y) is recoverable in (a) and not in (b).       

   

•  No universal algorithm exists that decides 
recoverability (or guarantees unbiased 
results) without looking at the model. 

AN  IMPOSSIBILITY  THEOREM 
FOR  MISSING  DATA 

Rx X Y 

(a) 

 
 

(b) 

Rx Y X 

Accident Injury Injury Treatment 

Missing (X)	



Education 
       (latent) 

Missing (X)	



•  Two statistically indistinguishable models, P(X) is 
recoverable in both, but through two different methods: 

•  No universal algorithm exists that produces an unbiased 
estimate whenever such exists. 

A  STRONGER  IMPOSSIBILITY  
THEOREM 

Rx X Y 

(a) (b) 

 
 

Rx Y X 

 

In (a):  P(X) = P(Y )P(X |Y ,Rx = 0),   whiley∑
in (b):  P(X) = P(X | Rx = 0)
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49 

THE  PROBLEM  OF 
SELECTION  BIAS 

•  Systematic exclusion of samples from the data is 
a major obstacle to valid causal and statistical 
inferences;  

 

•  In general, it cannot be removed by randomized 
experiments and can hardly be detected in either 
experimental or passive observations. 

 
 

  Goal: Provide methods capable of mitigating  
   and sometimes eliminating this bias.  
 
(Joint work with Bareinboim & Tian) 

50 

X 

S 

UY 

Y 
c0 

β1 β2 

SAMPLE  SELECTION  IN  THE  
LANGUAGE  OF  GRAPHS 

UX 

Augmented graph 

S = 1:  Included in the sample 
S = 0:  Excluded from the sample 

51 

X 

S 

UY 

Y 
c0 

β1 β2 

•  Cannot be eliminated by adjustment or by randomization 

TWO  SOURCES  OF 
SELECTION  BIAS: 

UX 

X → S ← Y  Collider 
X →Y ← UY  Virtual collider 



18 

CONFOUNDING BIAS vs  
SELECTION BIAS 

52 
G1 G2 

•  Unblockable “flow” of information between 
treatment and outcome — spurious correlation. 

X  Y 

Z  
X  Y 

S  

 
 
 
 
 
 
  
 
 
 
  
 
 
  

• Under what conditions can we estimate the query 
(e.g., P(y | x)) from P(v | S = 1)).  

THE  GENERAL  SELECTION 
BIAS  PROBLEM 

Input:  An augmented causal graph, describing a 
hypothesized selection process 
  

53 

Z2 

W2 

W3 

X 

Y 

Z3 

Z1 

T1 

S 

Z2 

W2 

W3 

X 

Y 

Z3 

Z1 

T1 

S 

THE  SELECTION  BIAS  PROBLEM 
•  Selection bias, caused by preferential exclusion 

of samples from the data, is a major obstacle to 
valid causal and statistical inferences;  

  

 
 
 
 
 
  

5
4 

Z2 

W2 

W3 

X 

Y 

Z3 

Z1 

T1 

S 

Z2 

W2 

W3 

X 

Y 

Z3 

Z1 

T1 

S 

 
 
 
 
 
 
  
 
 
 
  
 
 
  

• Under what conditions can we estimate the query 
(e.g., P(y | x)) from P(v | S = 1).  
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55 

RECOVERING  FROM   
SELECTION  BIAS  

Theorem: Q = P(y | x) is recoverable from selection  
biased data if and only if (S ⫫ Y | X)G. 

P(y | x) is not recoverable. P(y | x) is recoverable. 

X  Y X  Y 

S  S  

Question: Under what conditions can we estimate the 
distribution P(y | x) from P(v | S =1).  

56 

Z1 

W1 

T1 

X 
W3 

W2 

Z3 

Z2 

Y 

S 

Estimate Q = P(y | x) from selection biased data 

Q is not recoverable by the previous theorem… 
      but what if P(W1, W2) is available? 

SELECTION  WITH 
EXTERNAL  INFORMATION 

               yes 
                  no 

Theorem. P(y | x) is recoverable if there is a set C such 
that  (Y ⫫ S | C, X) holds in G and P(C, X) is estimable.  

  

Moreover,     

57 

RECOVERABILITY  
WITH  EXTERNAL  INFORMATION 

C = {W1, W2}?	


   = {W2, Z1, Z2}? 
   = {W2,  Z3}? 	



 P(y | x) = ∑ P(y | x, c, S = 1) P(c | x) 	


c	



Z1 

W1 

T1 

X 
W3 

W2 

Z3 

Z2 

Y 

S 

yes 
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SUMMARY  OF  
SELECTION  BIAS  RESULTS 

•  Nonparametric recoverability from selection bias can be 
decided provided that an augmented causal graph is available.  

   

•  When recoverability is feasible, the estimand can be derived in 
polynomial time.   

   

•  The result is complete for pure recoverability and sufficient for 
recoverability with external information. 

  
•  The back-door criterion can be generalized to handle 

selection bias.   
  
•  Stronger results can be obtained for the OR recoverability.  

CONCLUSIONS CONCLUSIONS 

 
1.  Think nature, not data, not even experiment. 

2.  Think hard, but only once – the rest is mechanizable. 

3.  Speak a language in which the veracity of each 
assumption can be judged by users, and which tells 
you whether any of those assumptions can be refuted 
by data. 

4.  Proceed in a language in which your research 
question can be answered from the assumptions plus 
the data. 

Thank you 
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TRANSPORTABILITY  OF  KNOWLEDGE 
ACROSS  DOMAINS 
(with E. Bareinboim) 

   
1.  A Theory of causal transportability 

When can causal relations learned from experiments 
be transferred to a different environment in which no  
experiment can be conducted? 
  

2.  A Theory of statistical transportability 
When can statistical information learned in one domain 
be transferred to a different domain in which 

  

a.  only a subset of variables can be observed? Or, 
 

b.  only a few samples are available? 
  

 

MOVING  FROM  THE  LAB  TO  THE  
REAL  WORLD . . .  

Real world 

Everything is assumed  
to be the same,  
trivially transportable! 

Everything is assumed  
to be the different,  
not transportable! 

X Y 

Z 

W 

X Y 

Z 

W 

X Y 

Z 

W Lab 
H1 

H2 

MOTIVATION  
WHAT CAN EXPERIMENTS IN LA TELL ABOUT NYC? 

Experimental study in LA 
Measured: 
 
     
  

Needed: 

P(x, y, z)
P(y | do(x), z)

P*(y | do(x)) =   ?

Observational study in NYC 
Measured: P*(x, y, z)

P*(z) ≠ P(z)

X  
(Intervention) 

Y 
 (Outcome) 

Z  (Age) 

X 
(Observation) 

Y 
(Outcome) 

Z  (Age) 

= P(y | do(x), z)P*(z)
z
∑

Transport Formula (calibration): 

∏ *∏

F(P,Pdo,P*)
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TRANSPORT  FORMULAS  DEPEND   
ON  THE  STORY 

a)  Z represents age 
 
     

b)  Z represents language skill 
 

     

 
 

P*(y | do(x)) = P(y | do(x), z)P*(z)
z
∑

P*(y | do(x)) =

X Y 
Z 

(b) 

S 

X Y 

Z 

(a) 

S 

P(y | do(x))?

S 

S           Factors 
producing differences 

X 

TRANSPORT  FORMULAS  DEPEND   
ON  THE  STORY 

a)  Z represents age 
 
     

b)  Z represents language skill 
 

     

c)  Z represents a bio-marker  
 

P*(y | do(x)) = P(y | do(x), z)P*(z)
z
∑

P*(y | do(x)) =

X Y 
Z 

(b) 

S 

(a) 
X Y 

(c) 
Z 

S 

P(y | do(x))

P(y | do(x), z)P*(z | x )
z
∑P*(y | do(x)) = ?

Y 

Z S 

U 

W 

GOAL:  ALGORITHM  TO  DETERMINE 
IF  AN  EFFECT  IS  TRANSPORTABLE 

X Y Z 

V 

S 
T 

INPUT:  Annotated Causal Graph 
 
   
OUTPUT: 
1.  Transportable or not? 
2.  Measurements to be taken in the 

experimental study 
3.  Measurements to be taken in the 

target population 
4.  A transport formula 

S        Factors creating differences 

P*(y | do(x)) =
P *(y,v, z,w,t,u)]f [P(y,v, z,w,t,u | do(x));

S '
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= P(y | do(x),w)P(w | s)
w
∑

= P(y | do(x),w)P*(w)
w
∑

= P(y | do(x), s,w)P(w | do(x), s)
w
∑

R *∏( )= P*(y | do(x)) = P(y | do(x), s)

TRANSPORTABILITY 
REDUCED  TO  CALCULUS 

Theorem 
A causal relation R is transportable from ∏ to ∏* if  and  
only if it is reducible, using the rules of do-calculus,  
to an expression in which S is separated from do( ).  

X Y 

Z 

S 

W 

U 

W 

RESULT:  ALGORITHM  TO  DETERMINE 
IF  AN  EFFECT  IS  TRANSPORTABLE 

X Y Z 

V 

S 
T 

INPUT:  Annotated Causal Graph 
 
   
OUTPUT: 
1.  Transportable or not? 
2.  Measurements to be taken in the 

experimental study 
3.  Measurements to be taken in the 

target population 
4.  A transport formula 
5.  Completeness (Bareinboim, 2012) 

S        Factors creating differences 

P*(y | do(x)) =
P(y | do(x), z) P *(z |w)

w
∑

z
∑ P(w | do(w),t)P *(t)

t
∑

S '

FROM  META-ANALYSIS 
TO  META-SYNTHESIS 

The problem  
How to combine results of several experimental 
and observational studies, each conducted on a 
different population and under a different set of 
conditions, so as to construct an aggregate 
measure of effect size that is "better" than any 
one study in isolation.  
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META-SYNTHESIS  AT  WORK 

X Y 

(f) Z 

W 

X Y 

(b) Z 

W X Y 

(c) Z 
S 

W X Y 

(a) Z 

W 

X Y 

(g) Z 

W 

X Y 

(e) Z 

W 

S S 

Target population                 R = P*(y | do(x)) 

X Y 

(h) Z 

W X Y 

(i) Z 
S 

W 

S 

X Y 

(d) Z 

W 

∏*

META-SYNTHESIS  REDUCED   
TO  CALCULUS 

Theorem  
{∏1, ∏2,…,∏K} – a set of studies.  
{D1, D2,…, DK} – selection diagrams (relative to ∏*).  
A relation R(∏*) is "meta estimable" if it can be 
decomposed into terms of the form: 
 
 
such that each Qk is transportable from Dk. 

Qk = P(Vk | do(Wk ),Zk )

MATHEMATICAL  RESULT  #3: 
(Transportability and meta-transportability are solved) 

•  Nonparametric transportability of experimental results 
from multiple environments can be decided in 
polynomial time, provided commonalities and 
differences are encoded in selection diagrams. 

•  When transportability is feasible, the transport formula 
can be derived in polynomial time, which specifies the 
information needed to be extracted from each 
environment to synthesize a consistent estimate for the 
target environment. 

•  The algorithm is complete. 
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DETERMINING  CAUSES  OF  EFFECTS 
A  COUNTERFACTUAL  VICTORY 

•  Your Honor! My client (Mr. A) died BECAUSE  
he used that drug. 

•   Court to decide if it is MORE PROBABLE THAN 
NOT that A would be alive BUT FOR the drug!  

    P(? | A is dead, took the drug) > 0.50 PN = 

THE  ATTRIBUTION  PROBLEM 

Definition: 
 
1.  What is the meaning of PN(x,y): 

 “Probability that event y would not have occurred if 
it were not for event x, given that x and y did in fact 
occur.” 

 
Answer: 
 
 
Computable from M 
 

PN(x, y) = P(Yx ' = y ' | x, y)

THE  ATTRIBUTION  PROBLEM 

Definition: 
 
1.  What is the meaning of PN(x,y): 

 “Probability that event y would not have occurred if 
it were not for event x, given that x and y did in fact 
occur.” 

2.  Under what condition can PN(x,y) be learned from 
statistical data, i.e., observational, experimental 
and combined. 

Identification: 
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ATTRIBUTION  MATHEMATIZED 
(Tian and Pearl, 2000) 

•  Bounds given combined nonexperimental and 
experimental data (P(y,x), P(yx), for all y and x) 

max

0
P(y)− P(yx' )

P(x,y)

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

  ≤ PN ≤min

1
P(y'x' )

P(x,y)

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

PN = P(y | x)− P(y | x')
P(y | x)

+ P(y | x')− P(yx' )
P(x,y)

•     Identifiability under monotonicity (Combined data) 

CAN FREQUENCY DATA DECIDE 
LEGAL RESPONSIBILITY? 

•  Nonexperimental data: drug usage predicts longer life 
•  Experimental data: drug has negligible effect on survival 

   Experimental   Nonexperimental 
    do(x)   do(x′)          x       x′     

Deaths (y)        16       14          2      28 
Survivals (y′)      984     986      998    972   

   1,000  1,000   1,000  1,000 

1.  He actually died 

2.  He used the drug by choice 

 
PN Δ=  P(Yx ' = y ' | x, y) > 0.50

•     Court to decide (given both data):  
Is it more probable than not that A would be alive  
but for the drug? 

•     Plaintiff: Mr. A is special. 

SOLUTION TO THE  
ATTRIBUTION PROBLEM 

   

•  WITH PROBABILITY ONE  1 ≤ P(y′x′ | x,y) ≤ 1  

•    Combined data tell more that each study alone 



27 


