Carroll, J.D. & Chang, J.-J. (1970). Analysis ofdindual differences in
multidimensional scaling via ai-way generalization of “Eckart-Young”
decomposition. Psychometrika, 35, 283-319 (3320 citations in Google
Scholar as of 4/1/2016).

No doubt this paper was Doug Carroll's most infliencontribution. It intro-
duced a method for estimating all parameters ofabighted Euclidean model for
multidimensional scaling, in which the weights pd®/a simple way to describe
individual differences in similarity data. That neddhad been originally proposed
by Horan (1969), but after publication of the Cdremd Chang paper it became
widely known as the INDSCAL model Their method for finding parameter
estimates for the weighted Euclidean model reliedtile new CANDECOMP
model and algorithm, which stands for CANonical DBE@Position of N-way
tables. Jih-Jie Chang had done all the programming.

It is important to appreciate the distinction betwenodel and algorithm, both
carrying the same name here, because they browghdlistinct innovations. The
CANDECOMP model is a generalization of the Eckaod¥g decomposition
mentioned in the title which was published in tirstfvolume ofPsychometrika
(Eckart and Young, 1936), while the CANDECOMP aitjon is an extension of
the iterative estimation scheme for principal congrds analysis, proposed by the
econometrician Herman Wold (1966) under the namaeliNear Iterative Least
Squares (NILES). These novel ideas were presentddlli generality, and they
energized the emerging field of three-way analy$isat is why the Carroll and
Chang paper is not only cited by quantitative psjaists, but also by a much
larger three-way community.

In multidimensional scaling (MDS), the interestts analyze the mutual
similarity among stimuli in terms of a few basicnm#insions; if we haven
individuals, each judging the similarity of pairsrined out ofn stimuli, the data
can be collected in an x n x m three-way array. In earlier approaches such
three-way similarity data were usually averagessxindividuals, on the assump-

! The Horan paper was submitted to Psychometrika in September 1964, but because the author was killed in a
road accident before the completion of his PhD work, his supervisor John Ross took care of finalizing its publication.
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tion that the same basic dimensions would be operat each of them, and that
individual differences would be merely random viwia, which could be ignored.
One notable exception had been the approach progmsducker and Messick
(1963), which first factor-analyzed thm similarity matrices (strung out into
vectors) to formp factors of individuals called “Points of View” (N, and then
performedp separate multidimensional scaling (MDS) analyseshe weighted
average similarities (with the factor loadings asights and the mean similarities
reassembled into a matrix for each PoV).

Carroll and Chang started by clearly voicing earl@iticisms of PoV
analysis: “Perhaps the most cogent criticism id tihe method is little more
powerful than doing separate scalings on the idd&i subjects—and it makes no
explicit assumptions about possible or probable mamality of the dimensional
structures for different real or idealized indivadist It would be very surprising if
the various configurations had no structure in cami(C&C, p. 284). Then they
assumed again that one common setdimensions would bpotentially operative
in each individual, but now each dimension may hawkfferent relativesalience,
or importance, for different people. Supposg denotes the coordinate value of the
jth stimulus on thé&h dimension of the common spag¢e=(1, ...,nandt=1,...,r).
Then the “modified” Euclidean distance for file individual was defined as

ik :\/ilvvit(xjt _th)z- (1)

Here, the weights/, represent the salience of dimensidar individuali (with i =
1,...,m). Itis easily seen that if we define

Yiit = W&/Zth’ (2)

then the ordinary Euclidean distances based og-tfadues defined in (2) produce
the individual distances defined in (1). So eadahvidual is assumed to perceive
distances in a space where the common dimensions been (differentially)
expanded or contracted, and ignoregif= 0.

The next step was to apply the classic Young-Hanldeh-Torgerson
transformation (Young and Householder, 1938; Tager 1952) to the distances
defined in (1); that is, for each individual sepgaly the row- and column means of
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the matrix with elements Vzdijzk are subtracted friisnentries (calleddouble
centering). This transformation givesy matrices of scalar products with elements
bij« related to the parameters of the model as

b = Z Yiit Yike = ZWiththt , (3)
t=1 t=1

by using (1) and substituting (2). It is worth mgtithat Horan (1969) had already
obtained result (3), and that he had used it fguiag that the average of the scalar
products across individuals would result in mrnx n matrix B, of which the
eigenvector-eigenvalue decomposition could be usedtstimate the stimulus
coordinatesx;, .

It was here that Carroll and Chang proceeded @éifiily, using a clever
maneuver. Instead of (3), they considered the meneral model

Zj = Zaitbjtckt , (4)
t=1

which is the CANDECOMP model already mentioned. Amgthod to estimate the
parameters of the model (4) could be used to deh@®s of the parameters of the
INDSCAL model, by just identifyin@y; = wi, bj; = X, andcy = X Presumably, the
symmetry of the data would carry over to the fitexpected values having the
property z, =%, for alli, j andk, and that in turn would guarantee that the
estimates of the matricesf } and { ¢, } coincide to yield one estimate ofq }.

To switch from (3) to (4) was a stroke of geniuad @&he most original
contribution of the paper. Note that in (3) there germs that are quadratic in the
X's forj =k, while all terms in (4) are trilinear, implyingahequation (4) is a linear
model in thea’'s when theb’s andc's are fixed, linear in thb’'s when the other two
sets of parameters are fixed, and likewise forctheGiven some initial estimates
of the three sets of parameters, the CANDECOMPr#lgo iteratively solves for
the parameters of one set given temporarily fixatles of the other two sets by
linear regression, and continues with partial sohg until the process stabilizes.
Then the INDSCAL algorithm is just the CANDECOMPgatithm with the
identification stated before, with certain normatian constraints.

About the origin of the idea of the CANDECOMP modaid algorithm,
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Carroll and Chang gave the following credits: “Thisethod of “canonical

decomposition” was suggested to us by a paper ynate Wold (1966) [...], in

which a related method of decomposition of two-wagles was discussed [...],
involving what Wold calls a NILES (for “Nonlineartérative Least Squares”)
procedure. In the same paper [...] Wold suggestedntbee general three-way
model discussed here, but did not describe a catpoal scheme for this model
(except for the special case of one dimension)”QCg&. 312).

It may have occurred to the reader that in the dimensional case, least
squares estimation under model (4) of #Hie when theb's and c’'s are fixed
amounts to a series gfnple linear regressions, while in the more-dimensiaaasie
one needs a series mwilltiple linear regressions — not quite a big conceptus,le
| would say. In addition, Carroll and Chang appdamebe unaware of other work
that Wold and his co-workers had done, reporteilVold and Lyttkens (1969).
They considered a whole range of estimation proe=dwunder the new name
NIPALS (Nonlinear Iterative Partial Least Squared#)jch was later abbreviated to
PLS. Among these procedures, the full-blown CANDBR@O algorithm was
described by Alf Israelson in a section called ‘éwway (or second order)
component analysis” (0.c., pp. 32-33)lt also became soon apparent that the
CANDECOMP model had been conceived independenthRlphard Harshman
(1970) under the name PARAFAC (fparalld factors), for which Bob Jennrich
had developed an algorithm that was identical ttNOECOMP (o.c., p. 32).

The larger part of the Carroll and Chang paper istssf:

» Extensive descriptions of two illustrative datasetdlected by their
colleagues Sandy Pruzansky and Mike Wish from Batlls;

» Persistent discussions of the strong points of INMBSCAL model
(unigue and meaningful orientation of the axes,sthlviating the
rotational problem; easier interpretation of indival differences);

» Detailed comparisons with other work in three-walp$and three-way
component analysis, and several possible modidicatiof INDSCAL
and CANDECOMP to accommodate these.

? | am indebted to Pieter Kroonenberg for pointing out this reference to me.



This emphasis on strong properties and flexibiifythe methods, as well as on
new perspectives that three-way data may bring ewer above two-way data
makes it a prototypicgtrogrammatic paper. It generated a lot of follow-up work
about theoretical and technical aspects of threeswadels and their extensions.
But the high citation count is especially due te tact that INDSCAL and
CANDECOMP became the methods of choice in a wideiaof applications, not
only in the behavioral sciences and psychomettics, notably also in chemo-
metrics and signal processird. (Kroonenberg, 2014).

Willem Heiser, July 2016
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