
1 

 

Carroll, J.D. & Chang, J.-J. (1970). Analysis of individual differences in 
multidimensional scaling via an N-way generalization of “Eckart-Young” 
decomposition. Psychometrika, 35, 283–319 (3320 citations in Google 
Scholar as of 4/1/2016).  

 
No doubt this paper was Doug Carroll’s most influential contribution. It intro- 
duced a method for estimating all parameters of the weighted Euclidean model for 
multidimensional scaling, in which the weights provide a simple way to describe 
individual differences in similarity data. That model had been originally proposed 
by Horan (1969), but after publication of the Carroll and Chang paper it became 
widely known as the INDSCAL model1 . Their method for finding parameter 
estimates for the weighted Euclidean model relied on the new CANDECOMP 
model and algorithm, which stands for CANonical DECOMPosition of N-way 
tables. Jih-Jie Chang had done all the programming. 

It is important to appreciate the distinction between model and algorithm, both 
carrying the same name here, because they brought two distinct innovations. The 
CANDECOMP model is a generalization of the Eckart-Young decomposition 
mentioned in the title which was published in the first volume of Psychometrika 
(Eckart and Young, 1936), while the CANDECOMP algorithm is an extension of 
the iterative estimation scheme for principal components analysis, proposed by the 
econometrician Herman Wold (1966) under the name Nonlinear Iterative Least 
Squares (NILES). These novel ideas were presented in full generality, and they 
energized the emerging field of three-way analysis. That is why the Carroll and 
Chang paper is not only cited by quantitative psychologists, but also by a much 
larger three-way community. 

In multidimensional scaling (MDS), the interest is to analyze the mutual 
similarity among stimuli in terms of a few basic dimensions; if we have m 
individuals, each judging the similarity of pairs formed out of n stimuli, the data 

can be collected in an n × n × m three-way array. In earlier approaches such 
three-way similarity data were usually averaged across individuals, on the assump- 

                                                           
1
 The Horan paper was submitted to Psychometrika in September 1964, but because the author was killed in a 

road accident before the completion of his PhD work, his supervisor John Ross took care of finalizing its publication. 
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tion that the same basic dimensions would be operative in each of them, and that 
individual differences would be merely random variation, which could be ignored. 
One notable exception had been the approach proposed by Tucker and Messick 
(1963), which first factor-analyzed the m similarity matrices (strung out into 
vectors) to form p factors of individuals called “Points of View” (PoV), and then 
performed p separate multidimensional scaling (MDS) analyses on the weighted 
average similarities (with the factor loadings as weights and the mean similarities 
reassembled into a matrix for each PoV). 

Carroll and Chang started by clearly voicing earlier criticisms of PoV 
analysis: “Perhaps the most cogent criticism is that the method is little more 
powerful than doing separate scalings on the individual subjects—and it makes no 
explicit assumptions about possible or probable communality of the dimensional 
structures for different real or idealized individuals. It would be very surprising if 
the various configurations had no structure in common” (C&C, p. 284). Then they 
assumed again that one common set of r dimensions would be potentially operative 
in each individual, but now each dimension may have a different relative salience, 
or importance, for different people. Suppose xjt denotes the coordinate value of the 
jth stimulus on the tth dimension of the common space (j = 1, …, n and t = 1, …, r). 
Then the “modified” Euclidean distance for the ith individual was defined as 
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Here, the weights wit represent the salience of dimension t for individual i (with i = 

1, …, m). It is easily seen that if we define 

 ,2/1
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then the ordinary Euclidean distances based on the y-values defined in (2) produce 
the individual distances defined in (1). So each individual is assumed to perceive 
distances in a space where the common dimensions have been (differentially) 
expanded or contracted, and ignored if wit = 0. 

The next step was to apply the classic Young-Householder-Torgerson 
transformation (Young and Householder, 1938; Torgerson, 1952) to the distances 
defined in (1); that is, for each individual separately, the row- and column means of 
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the matrix with elements       are subtracted from its entries (called double 
centering). This transformation gives m matrices of scalar products with elements 
bijk related to the parameters of the model as 
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by using (1) and substituting (2). It is worth noting that Horan (1969) had already 
obtained result (3), and that he had used it for arguing that the average of the scalar 

products across individuals would result in an n × n matrix B, of which the 
eigenvector-eigenvalue decomposition could be used to estimate the stimulus 
coordinates jtx . 

It was here that Carroll and Chang proceeded differently, using a clever 
maneuver. Instead of (3), they considered the more general model 
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which is the CANDECOMP model already mentioned. Any method to estimate the 
parameters of the model (4) could be used to get estimates of the parameters of the 
INDSCAL model, by just identifying ait = wit, bjt = xjt, and ckt = xkt. Presumably, the 
symmetry of the data would carry over to the fitted expected values having the 
property         for all i, j and k, and that in turn would guarantee that the 
estimates of the matrices { bjt } and { ckt } coincide to yield one estimate of { xjt }. 

To switch from (3) to (4) was a stroke of genius, and the most original 
contribution of the paper. Note that in (3) there are terms that are quadratic in the 
x’s for j = k, while all terms in (4) are trilinear, implying that equation (4) is a linear 
model in the a’s when the b’s and c’s are fixed, linear in the b’s when the other two 
sets of parameters are fixed, and likewise for the c’s. Given some initial estimates 
of the three sets of parameters, the CANDECOMP algorithm iteratively solves for 
the parameters of one set given temporarily fixed values of the other two sets by 
linear regression, and continues with partial solutions until the process stabilizes. 
Then the INDSCAL algorithm is just the CANDECOMP algorithm with the 
identification stated before, with certain normalization constraints. 

About the origin of the idea of the CANDECOMP model and algorithm, 
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Carroll and Chang gave the following credits: “This method of “canonical 
decomposition” was suggested to us by a paper by Herman Wold (1966) […], in 
which a related method of decomposition of two-way tables was discussed […], 
involving what Wold calls a NILES (for “Nonlinear Iterative Least Squares”) 
procedure. In the same paper […] Wold suggested the more general three-way 
model discussed here, but did not describe a computational scheme for this model 
(except for the special case of one dimension)” (C&C, p. 312). 

It may have occurred to the reader that in the one-dimensional case, least 
squares estimation under model (4) of the a’s when the b’s and c’s are fixed 
amounts to a series of simple linear regressions, while in the more-dimensional case 
one needs a series of multiple linear regressions — not quite a big conceptual leap, 
I would say. In addition, Carroll and Chang appeared to be unaware of other work 
that Wold and his co-workers had done, reported in Wold and Lyttkens (1969). 
They considered a whole range of estimation procedures under the new name 
NIPALS (Nonlinear Iterative Partial Least Squares), which was later abbreviated to 
PLS. Among these procedures, the full-blown CANDECOMP algorithm was 
described by Alf Israelson in a section called “Three-way (or second order) 
component analysis” (o.c., pp. 32-33)2. It also became soon apparent that the 
CANDECOMP model had been conceived independently by Richard Harshman 
(1970) under the name PARAFAC (for parallel factors), for which Bob Jennrich 
had developed an algorithm that was identical to CANDECOMP (o.c., p. 32). 

The larger part of the Carroll and Chang paper consists of: 

• Extensive descriptions of two illustrative datasets collected by their 
colleagues Sandy Pruzansky and Mike Wish from Bell Labs; 

• Persistent discussions of the strong points of the INDSCAL model 
(unique and meaningful orientation of the axes, thus obviating the 
rotational problem; easier interpretation of individual differences); 

• Detailed comparisons with other work in three-way MDS and three-way 
component analysis, and several possible modifications of INDSCAL 
and CANDECOMP to accommodate these. 

                                                           
2
 I am indebted to Pieter Kroonenberg for pointing out this reference to me. 
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This emphasis on strong properties and flexibility of the methods, as well as on 
new perspectives that three-way data may bring over and above two-way data 
makes it a prototypical programmatic paper. It generated a lot of follow-up work 
about theoretical and technical aspects of three-way models and their extensions. 
But the high citation count is especially due to the fact that INDSCAL and 
CANDECOMP became the methods of choice in a wide variety of applications, not 
only in the behavioral sciences and psychometrics, but notably also in chemo- 
metrics and signal processing (cf. Kroonenberg, 2014). 

Willem Heiser, July 2016 
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