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The paper surveys 15 years of progress in three psychometric research areas: latent dimensionality
structure, test fairness, and skills diagnosis of educational tests. It is proposed that one effective model for
selecting and carrying out research is to chose one’s research questions from practical challenges facing
educational testing, then bring to bear sophisticated probability modeling and statistical analyses to solve
these questions, and finally to make effectiveness of the research answers in meeting the educational
testing challenges be the ultimate criterion for judging the value of the research. The problem-solving
power and the joy of working with a dedicated, focused, and collegial group of colleagues is emphasized.
Finally, it is suggested that the summative assessment testing paradigm that has driven test measurement
research for over half a century is giving way to a new paradigm that in addition embraces skills level
formative assessment, opening up a plethora of challenging, exciting, and societally important research
problems for psychometricians.
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1. Introduction

As previous presidents of the Psychometric Society have emphasized, a presidential address
is an occasion where one has a duty to present one’s personal perspective about the past and
future of psychometrics. In this tradition I participate enthusiastically. This paper is about my
efforts and those of a large group of colleagues to individually and collectively address three
core issues confronting educational and psychological testing. Most of these colleagues got their
Ph.D.’s under my direction and, as such, have been members of the Statistical Laboratory for
Educational and Psychological Measurement (the “Lab”), which I founded in the Department of
Statistics at the University of Illinois in the late 1980s and which is currently co-directed by Jeff
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Douglas and Louis Roussos, former Ph.D. student Lab members and now faculty members at the
University of Illinois.

During the first half of my research career, spent as a mathematics professor at the Univer-
sity of Illinois, I solved mathematics problems, motivated by their intrinsic intellectual appeal.
In short, I was acting as artist rather than engineer. This pure-research-driven aesthetic motiva-
tion, which works so well for many, had in fact been increasingly sapping my research drive.
My response was to switch fields from pure mathematics (probability theory, actually) to psy-
chometrics. I was determined to do research that, in addition to being intrinsically intellectually
interesting, would bear fruit that could be effectively applied to important societal problems.

Thus, my personal, belated, and enthusiastic entry into the field of psychometrics in the
1980s, after I had already become a full professor of mathematics, was my personal resolution of
my professional “midlife crisis.” In resolving this crisis, I discovered two important things about
the process of doing psychometric research that are worth stressing. First, issues and problems
arising out of the actual practice of educational testing provide fertile ground for the generation
of excellent research problems, for which a deeply theoretical approach often produces effective
and important solutions from the applications perspective. Second, enormous excitement and
intellectual power can flow forth when a carefully selected group of researchers dedicates itself
to collaboratively solving important and interesting psychometric research problems. In fact,
after switching fields I was determined to intensify the collaborative research style I had learned
while doing mathematical research, especially while working jointly and extensively with my
mathematical colleague and friend Walter Philipp (see, e.g., Philipp & Stout, 1975).

Psychometrics at its best is a field that is both intellectually interesting and deeply relevant
for a global society in which effective education and training are central prerequisites to progress.
Indeed, psychometrics’ intellectual appeal and great societal importance were what most moti-
vated my choosing it over other applied fields like biostatistics. Interestingly, my aggressive
shifting of research focus is strikingly congruent with Robert Sternberg’s (1985; see especially
pp. 50–51) discussion on the role of “selection” in his contextual theory of intelligence. Sternberg
speaks of finding what one is “interested in,” and pursuing it “relentlessly.”

I decided the best way to maximize the likelihood that the Lab’s psychometric research
would be usefully applied to societally important “real-world” measurement problems (my per-
sonal goal) was to choose research problems wisely from the vast hurly-burly of practical prob-
lems and issues flowing out of actual measurement practice as conducted by testing compa-
nies and other practitioners of the testing art. From this applications perspective, “choosing
wisely” meant choosing research problems for which successful solutions would clearly have
a widespread impact on bringing about improved educational testing and assessment.

In the case of the Lab, this principle of choosing wisely translated into the Lab focusing,
over the decade and a half of its existence, on three core applied issues growing out of the practice
of standardized testing: assessing the multidimensional structure of the latent ability space that
stochastically drives test performance, assessing test fairness, and diagnosing examinee skills as
a means of accomplishing formative assessment. By formative assessment, I mean the assess-
ment of students while they are still learning, with the purpose of facilitating both teaching and
learning.

In order to be effective at carrying out the research goals stated above and to provide a
quality environment for Ph.D. study and research, from its inception the Lab has been managed
according to certain principles: At any given time, it always had several Ph.D. students with
research assistantship support. Funding from major testing companies was eagerly sought, as a
source not merely of funding, but also of applied problems whose solution would be important.
Students were encouraged to work cooperatively with each other and with outside researchers
(including former Lab members). The Lab was, and is, viewed as part of the wider research
community. It has always been organized around well-defined and evolving research goals.

Because my field of research had been probability theory, my tendency has always been
to stress the importance of sophisticated probability modeling in addressing psychometric re-
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search. Thus, in each of the three identified research areas—latent structure, fairness, and skills
diagnosis—the challenge of developing appropriate probability models, as well as theoretically
deriving important implications of these developed models, became very important. Because I
reside in a statistics department, another tendency has been to stress the importance of bring-
ing modern statistical thought and methodologies to bear on psychometric research problems.
This has also had a major influence on our progress in the three research areas and in addition
has from time to time drawn research statisticians to the field of psychometrics. In this regard, I
strongly believe, and have seen first hand, that psychometrics can powerfully appeal to research
statisticians casting about for interesting areas of research and applications to ply their trade.

Subsequent to probability modeling and associated foundational analyses, the development
of specialized and sometimes innovative statistical procedures, influenced by the statistics en-
vironment I reside in as just remarked, was required. Finally (the “back again” of the title), it
was always judged vital to close the loop back to the applied setting that had precipitated the
research problem by providing a practical and easy-to-implement solution to the practitioner’s
problem. That is, the goal has never been just the published papers we all cherish; rather, it has
been to produce deeply successful applications played out in actual educational measurement
practice. Moreover, if the research is to have an important impact on educational measurement, it
must have easy and wide transferability to similar measurement settings. This transferability has
been facilitated by making methodological software available to practitioners and researchers, as
discussed below.

The remainder of this paper describes progress in the three applied research areas the Lab
has focused on, with occasional suggested directions for future research given.

2. Nonparametric Latent Structure Assessment

We first consider the assessment of latent structure unidimensionality. Then more generally
we consider the assessment of multidimensional latent structure.

2.1. Unidimensionality from the Weak LI Conditional Covariance Perspective

In his influential monograph Applications of Item Response Theory to Practical Testing
Problems (Lord, 1980), Fred Lord stated, “There is a great need for a statistical significance test
for the unidimensionality of a set of items.” This strong statement, made when practical applica-
tions of unidimensional IRT modeling to testing was in its relative infancy, reminded the testing
community of the great need to have a reliable statistical test of unidimensionality. Hypothesis
test acceptance of unidimensionality would help to legitimize applying unidimensional logistic
IRT-based calibration and prediction methodologies such as LOGIST and BILOG. Further, one
important way to address the issue of whether it is appropriate to summarize examinee test per-
formance with a single scale is by asking the psychometric question of whether the test data is
unidimensional. Thus, the Lab’s 15-year odyssey into nonparametric latent structure assessment
began by addressing the question of how to statistically assess departures from latent unidimen-
sionality.

The unidimensionality question is a prime example of sound theory being a prerequisite for
good psychometric practice. My approach was both simple and nonparametric (Stout, 1987). By
taking a nonparametric approach, one does not confound lack of model fit by a particular unidi-
mensional parametric family of models with the data having been generated by an intrinsically
multidimensional latent-trait model.

Conceptualizing latent unidimensionality, as must be done, requires one to step back and
ask the foundational question of how best to define latent unidimensionality. The primary insight
is that the issue of unidimensionality must be framed as whether the inferred manifest test distri-
bution can be represented as a unidimensional, locally independent, monotone latent trait model.
(In principle, by observing enough examinees, the manifest distribution can be statistically in-
ferred from test data with any desired accuracy and hence becomes “manifest.” In this sense, the
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unidimensionality problem is posed by presuming that a specific manifest test distribution has
been specified.) It is interesting and important to note that being able to exhibit a two-dimensional
locally independent, monotone latent-trait model that fits the given manifest distribution does not
prove that unidimensionality fails for the given manifest distribution. By contrast, exhibiting a
parametric unidimensional model fitting the manifest distribution does prove unidimensionality
holds for the manifest distribution. In summary, the issue of unidimensionality is not addressed
by showing the lack of fit of a particular unidimensional parametric family of IRT models to the
given manifest distribution. Rather, the issue is whether any unidimensional IRT model exists
that fits the manifest test distribution.

For simplicity, throughout the discussion of dimensionality we assume dichotomous item
responses, although most of the procedures described and their associated theoretical underpin-
nings have polytomous versions too. Even though it is the test that is said to be unidimensional,
as MIRT (M=multidimensional) developers Mark Reckase and Terry Ackerman have stressed,
the dimensionality lies in the interaction between the test structure (given by the item response
functions; i.e., IRFs) and the latent ability structure (given by the latent ability examinee popu-
lation distribution). In fact, the same test could be unidimensional for one examinee population
and not for another.

We now define test unidimensionality. To avoid unneeded probabilistic and notational com-
plexity, we make the easily removable assumption that all latent variables are random variables
of continuous type.

Definition 1. A test U′ = (U1, U2, . . . , Un) with specified manifest distribution P(U = u)

is said to be unidimensional if there exists a unidimensional random variable � with density
denoted by f (θ) such that for all possible response patterns u,

P(U = u) =
∞∫

−∞
P(U = u|� = θ) f (θ) dθ (1)

for which local independence (LI) and IRF monotonicity (M) relative to θ holds. Any IRT model
satisfying LI and M for a unidimensional latent trait � is called a monotone locally independent
unidimensional model and herein is denoted by MLI1.

The widely investigated MLI1 model goes back in IRT research at least to Mokken (1971).
What is being denoted in this paper as a MLI1 model has many names in the literature includ-
ing “monotone unidimensional latent trait model,” “monotone homogeneity model,” “monotone
latent variable model,” and “monotone IRT model.” Thus, care is required in reading and inter-
preting the literature concerning the concept of a unidimensional latent model.

It is worth noting that if one drops M as a requirement, the conceptual idea behind the
fact that one can always exhibit a unidimensional LI latent model for any given manifest test
distribution can be easily explained, this result shown by Suppes and Zanotti (1981): Adopting
Paul Holland’s deterministically-responding but random-sampled examinee perspective (Hol-
land, 1990a), the basic idea of the proof of unidimensionality is to assign to each examinee, as
the value of his or her unidimensional latent variable, the binary expansion corresponding to his
or her true deterministic knowledge state for all of the items (1 in i-th place of the binary ex-
pansion if item i answer “known” by the examinee, 0 if not known). The probability assigned to
each such binary-expansion-represented latent state is the probability assigned by the manifest
test distribution to the corresponding examinee item response pattern producing the “latent” bi-
nary expansion. It is then easy to see that LI holds and M fails for the resulting unidimensional
model.

Generalizations of Definition 1 are possible by sensible weakening of either the concept of
local independence or of monotonicity. One weakening, important from the practitioner perspec-
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tive, is to replace the traditional definition of local independence with pairwise local indepen-
dence or what is termed weak local independence (see McDonald, 1994).

Definition 2. A test U is said to be (strongly) locally independent (denoted LI, or SLI when
it is necessary to contrast LI of this definition with weak LI of Definition 3 below) with respect
to a latent variable� if for all u and θ ,

P(U = u|� = θ) =
n∏

i=1

P(Ui = ui |� = θ). (2)

Definition 3. A test is said to be weakly locally independent (WLI) with respect to a latent
variable � if for all item pairs i, i ′and all θ ,

Cov(Ui , U ′
i |� = θ) = 0. (3)

In the dichotomous item-scoring case, it is trivial that WLI is equivalent to pairwise LI. That
is, WLI holds if and only if pairwise LI holds for all item pairs i, i ′. Namely, for all θ WLI is
equivalent to

P(Ui = ui , U ′
i = u′

i |� = θ) = P(Ui = ui |� = θ)P(U ′
i = u′

i |� = θ). (4)

Clearly, from the practitioner’s perspective a test could be viewed as unidimensional, or a
latent model viewed as MLI1, if Definition 1 holds with local independence replaced by weak
local independence. The careful reader will note that by making this replacement an empiri-
cal assumption has (sneakily) inserted itself: If a test is declared unidimensional according to
Definition 1 with WLI (equivalently, pairwise LI) used as the definition of local independence,
then such a declaration presumes it is also unidimensional (it supports a MLI1 IRT model) with
SLI replacing pairwise LI. I agree with the assumption from the empirical viewpoint: From the
measurement practitioner’s perspective, WLI seems for practical purposes empirically equiva-
lent (trivially, WLI and SLI are not mathematically equivalent) to the more complex (and much
harder to verify statistically) reality of SLI.

In this regard it is useful to quote McDonald (1994), as he argues that this insertion of WLI
in place of SLI amounts to “not changing our definition or our substantive conceptualization of
latent traits” (p. 67). McDonald goes on to state that it is

unlikely that investigators seriously imagine that the conditional covariances of the
items vanish while they still possess higher order dependencies in probability. That is,
we are unlikely to suppose that while every pair of items gives statistically independent
responses [conditional on a latent variable], responses to some items [conditional on
the latent variable] are dependent on responses to two or more other items. (p. 67)

Our acceptance of this practical equivalence of WLI and SLI undergirds our statistical ap-
proach to latent dimensionality assessment. That is, in order to study and statistically assess latent
dimensional structure, we statistically investigate conditional covariances given an appropriately
chosen latent trait θ , thereby investigating WLI instead of investigating the full SLI.

Thus, the practitioner-driven need for a useful statistical test of the unidimensionality of an
educational test led me to formulate a theory of latent space dimensionality structure assessment
based on conditional covariances. This, as will be discussed below, in turn led us to theoretically-
defensible statistical procedures such as DIMTEST, DETECT, and HCA/CCPROX, which are
justified empirically via large-scale simulations and real-data-based standardized test applica-
tions.

In addition to a focus on conditional covariances as a basic dimensionality assessment tool,
our efforts had refocused us on the importance of the fundamental MLI1 model that underlies
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the recent emphasis on foundational and applied nonparametric item response theory (NIRT) re-
search on both sides of the Atlantic Ocean, with much cross-Atlantic cooperation (see especially
Junker & Sijtsma, 2001). Indeed, our conditional covariance approach to latent dimensionality
assessment has meshed nicely with this resurgence of interest in NIRT, propelled in part on the
European side of the Atlantic by a long-standing focus on Mokken. The interested reader is in
particular referred to the September 2001 Applied Psychological Measurement “Special Issue
on NIRT”—edited by Brian Junker and Klaas Sijtsma—for a superb survey of modern NIRT
research, and to a slightly earlier methodological NIRT survey paper by Sijtsma (1998).

2.2. Foundational Issues Facilitated by Infinite Test Length Unidimensional MLI1 Modeling

A flurry of foundational Lab-based work on NIRT emanated from the original DIMTEST
paper (Stout, 1987), all of this work aimed at developing a clear foundational understanding of
multidimensional latent trait modeling, especially as based on conditional covariances. Much of
this work then formed the basis for further conditional-covariance-based statistical tools devel-
oped for practitioners in order to estimate important characteristics of a multidimensional latent
space, especially HCA/CCPROX and DETECT.

Motivated by ideas of Lloyd Humphreys (expressed in, but transcending, the metaphor of
classical factor analysis), early on I had been struck by the notion that unidimensionality, with
either WLI or SLI as its underpinning, was too stringent a concept from the practical perspective
of wanting to model and count only the important latent dimensions and in particular wanting
to theoretically characterize a test consisting of only one important dimension. In particular,
from the practitioner perspective, it is useful to dichotomize all the latent dimensions into the
important (called “essential,” “dominant,” “major,” etc.) dimensions and the unimportant (called
“inessential,” “weak,” “nuisance,” “minor,” etc.) dimensions.

Thus, there was a need for a theoretical conception that would appropriately separate es-
sential from inessential dimensions, counting only the number of essential dimensions and,
in particular, defining in what sense a test can have just one “essential” dimension with pos-
sibly numerous inessential dimensions. This idea certainly has factor analytic roots: see, for
example, Tucker, Koopman, and Linn (1969) for a factor analytic model distinguishing be-
tween minor (and hence inessential) factors and major factors. The resulting formal definition
of essential unidimensionality (Stout, 1990) with respect to a latent variable θ uses conditional
covariances and is based on the notion of modeling the dimensionality properties of a finite-
length test U′

n = (U1, U2, . . . , Un) by representing U′
n as embedded in an infinite length test

U′∞ = (U1, U2, . . . , Un, . . .) = (U′
n, Un+1, . . .).

A philosophical remark is in order about this substitution of an infinite-length test. The
notion of sampling examinees from a large finite population idealized as an infinite population
of examinees is an almost universally accepted modeling device (for example, assuming that the
latent distribution is standard normal and embracing the random sampling examinee perspective
presumes such). What is slightly less universally accepted is that there is another asymptotic
aspect, that of a long test, or more abstractly and realistically, that of a long-test manufacturing
process (as introduced in Stout, 1990; and nicely articulated in Douglas, 1997). Indeed, ability
estimation asymptotics is impossible without it. In summary, one derives properties of a virtual
test U∞ of length ∞ in order to understand properties of a real length n test Un (n large enough
to be thought as a “long” test and hence well represented by U∞).

This shift to studying U∞ allows us to discuss the asymptotic consistency of ability estima-
tion procedures. It also allows us to easily define the notion of a test being essentially unidimen-
sional when the length n test is not strictly unidimensional. The point is that this infinite-length
test abstraction, which in fact is just as valid as the infinite-population abstraction, permits a
practically useful conception of a test having one dominant or essential dimension.

Of particular importance, consider the case of long test and large examinee sample joint
asymptotics. A number of important parametric logistic IRF and nonparametric IRF results es-
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tablishing joint consistency of item structure and examinee latent ability joint estimation require
both examinee sample size and test length to cooperatively go to ∞ (see Douglas, 1997; Haber-
man, 1977; Trachtenberg & He, 2002). Indeed, joint examinee and item asymptotics is a powerful
foundational modeling device, as discussed further below.

If one accepts the justification of an infinite length test formulation, a rigorous definition of
when a test U∞ is essentially unidimensional with respect to a latent variable θ can be given.

Definition 4. A test U∞is essentially unidimensional with respect to the unidimensional
latent random variable � if for all θ ,

�1≤i<i ′≤n|Cov(Ui , U ′
i |� = θ)|(

n

2

) → 0 (5)

as n → ∞.

Here θ is conceptualized as the dominant dimension intended to be measured. In general,
other existing (though asymptotically vanishing) dimensions force the conditional covariances
to be nonzero with respect to θ . An excellent example is provided by the content dimensions of
paragraphs upon which paragraph-based testlets are based in a reading comprehension test.

From Definition 4 flows the satisfying theoretical fact that total test score, appropriately
rescaled, consistently estimates the unique essential latent dimension θ as test length n → ∞,
or, equivalently, that the number correct score consistently estimates ability on the latent true
score scale (Stout, 1990). This mathematically proved uniqueness (modulo the equivalence class
of monotone increasing transformations of θ of course) of the latent ability scale is philosophi-
cally and practically important because it justifies the notion that a unidimensional test measures
a specific latent ability. This result, of course, does not imply any kind of asymptotic estimation
efficiency of number correct (rescaled) for parametric models like 2PL and 3PL (such a claim
being false). But, it is certainly important from the foundational perspective and useful from the
NIRT modeling perspective, where the absence of a parametric model precludes using paramet-
rically efficient estimators such as a maximum likelihood estimator (MLE).

A delicate foundational issue cannot be bypassed. It is the identifiability question for a uni-
dimensional latent model, presuming that the latent distribution of � is specified in order to rule
out trivial causes of nonidentifiablity. One realizes that some nonidentifiability for the IRFs of
a MLI1 model of a finite-length test must exist when the family of permissible IRFs is allowed
to be fully nonparametric. That is, different sets of IRFs for a MLI1 model with specified la-
tent ability distribution can produce the given manifest distribution for Un . By contrast, for the
infinite-test-length MLI1 U∞ formulation, it is reassuring from the foundational NIRT perspec-
tive to learn that we have identifiability asymptotically for the infinite set of model-fitting IRFs.
For a careful formulation and proof of this result, see Douglas (2001).

Jeff Douglas’ result legitimizes, for a test of adequate length, the search for a statistical
procedure to jointly estimate IRFs nonparametrically together with the estimation of examinee
abilities (a sort of nonparametric LOGIST). In Douglas (1997), joint ability and IRF uniform
asymptotic consistency is proved for a unidimensional class of kernel-smoothing-based NIRT
IRF estimation procedures as test length and examinee sample size jointly and cooperatively
approach infinity. Interestingly and predictably, this result holds in spite of the finite test length
nonidentifiability of IRFs, a barrier removed by letting test length approach infinity.

The Douglas and Cohen (2001) paper presents a nonparametric IRF estimation procedure
growing out of this joint estimation consistency result. This paper provides a kernel smoothing
approach, inspired by Jim Ramsay’s TESTGRAF (see Ramsay, 2000) is used together with a
nonparametric hypothesis testing approach to assess lack of fit for parametric IRT models such
as 1,2,3PL models. A NIRT model is fit using kernel smoothing, and its lack of fit to the closest-
fitting logistic model is assessed. Implicit in this, I would propose, is a hybrid unidimensional
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statistical model-fitting approach: fit IRFs parametrically when the fit is sufficiently good and
otherwise fit the IRFs nonparametrically, using the Douglas and Cohen approach or, using Jim
Ramsay’s functional data analysis approach (see Rossi, Wang, & Ramsay, 2002) to carry out the
details.

Another foundational asymptotic result, an answer to a question posed by Paul Holland
(1990b), is the establishment of the asymptotic posterior normality of � given examinee re-
sponse pattern Un = un under any of a very large class of parameterized (that is, the IRFs are
specified known parametric functions of θ ) MLI1 IRT models, as defined by a broad and unre-
strictive class of regularity assumptions (Chang & Stout, 1993). This result is both parametric
and nonparametric. It is parametric because computation of the maximum likelihood estimator
of θ , which requires knowledge of the parametric IRFs, is needed for practical applications of
the result, and it is nonparametric in that its conclusion of asymptotic normally holds for a very
broad class of MLI1 IRT models.

Brian Junker had been interested starting with his thesis in finding an empirical characteri-
zation (that is, determined by the “manifest” examinee response distribution as test length goes
to infinity) of when a MLI1 IRT model is possible (see Junker, 1993, in particular). Brian Junker
and Jules Ellis (Junker & Ellis, 1997; also Ellis & Junker, 1997) in one of several cross-Atlantic
NIRT cooperations, used the concept of conditional association, due to Holland and Rosenbaum
(1986), to produce an empirical characterization of when a MLI1 model is possible, namely that
U∞ must be conditionally associated and satisfy “vanishing conditional dependence” (see the
Ellis & Junker papers for details).

Of particular modeling interest in the Junker and Ellis work is that their approach required
use of theoretical constructs from advanced mathematical probability (in particular the concept
of a tail σ -field) that in turn illuminate the foundational modeling issue of the stochastic-subject
(within subject sampling) versus the random-sampling (of examinees) formulation for IRT mod-
eling (see Holland, 1990a, for a thorough discussion of the sampling foundations of IRT).

More specifically, out of Ellis and Junker’s sophisticated long test asymptotic approach
comes a proposed new foundational paradigm uniting the stochastic subject versus randomly
sampled subject latent trait modeling dichotomy posed by Holland. In particular, Ellis and Junker
create the stochastic meta-subject. The intriguing idea is to create equivalence classes of subjects,
where class membership is defined by members of the same class being indistinguishable with
respect to their long-run test behavior. Each such equivalence class becomes by definition an
indivisible (atomic) stochastic meta-subject. One is then free to interpret each such meta-subject
conceptually either from the examinee random sampling perspective as a collection of many
indistinguishable subjects to be sampled repeatedly or as a single stochastic subject to be sam-
pled repeatedly (via the “washing the brain clean” virtual experiment imagined by the stochas-
tic subject interpretation). Also foundationally intriguing is the briefly introduced construct of
asymptotic specific objectivity.

2.3. Interpreting Conditional Covariances Geometrically
to Assess Latent Multidimensional Structure

The weakening of strict unidimensionality (our version being the existence of a unidimen-
sional WLI M IRT model, recall) to essential unidimensionality (the existence of a M IRT model
with (5) holding) uses item pair conditional covariances in its formulation. In addition to help-
ing answer issues of unidimensionality, one can legitimately ask how useful such conditional
covariances can be for assessing the multidimensional structure when many dominant latent di-
mensions maybe present. That is, can we use these conditional covariances to infer important
aspects about the multidimensional latent structure that is generating the data?

Zhang (see Zhang & Stout, 1999a) gives a strongly affirmative answer, powerfully show-
ing that such conditional covariances do indeed provide important information about the latent
multidimensional structure. Zhang adopts a semiparametric model formation that encompasses
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a broad class of parametric IRF models in forming the class of generalized compensatory mod-
els. The major assumptions that define this class of models are latent trait multinormality (one
natural way to specify the multidimensional latent distributions), compensatory modeling in the
sense that each item’s monotone IRF is a linking function of a linear combination of the latent
traits of the latent space (thus parameterizing the relative contribution of each latent dimension)
to the probability of correct item responding, and monotone IRFs. Indeed, foundationally, the as-
sessment of the multidimensional latent structure is a mathematically well-defined problem only
when certain assumptions, such as requiring generalized compensatory IRFs, are made.

Definition 5. An MLI1 IRT model is generalized compensatory provided

Pi (θ) = Hi (�
d
j=1ai jθ j − bi ), Hi (−∞) ≥ 0, Hi (∞) = 1 (6)

where each linking function Hi (·) is required only to be monotone increasing, a′
i = (ai1, ai2,

. . . aid ) is the item’s discrimination vector with respect to the d-dimensional latent space indexed
by θ′

d = (θ1, θ2, . . . , θd), and bi is a centering parameter associated with item difficulty.

Zhang views generalized compensatory models geometrically, each item being represented
using its item discrimination vector a as having a direction in the latent space indexed by θ as
shown in Figure 1.

The notion of the direction of best measurement θT of the test score X = �n
i=iUi , or

more generally of a subtest score Y , in the multidimensional latent space indexed by θ is key to
Zhang’s development. In practice, a statistical procedure based on the conditional covariance per-
spective must estimate item pair conditional covariances given a direction of best measurement
θY for a specified subscore Y . The prototypical way to estimate such conditional covariances is to
condition on the subtest score Y (possibly the test score) of a carefully selected subtest, and par-
tition examinees based on the score. Then one can estimate the expected conditional covariance
E[Cov(Ui , U ′

i |�Y )] by first estimating the covariance for examinees within each partitioning
interval (intervals determined by a lattice of y values of Y ), namely Cov(Ui , U ′

i |Y ≈ y), in

FIGURE 1.
Geometric representation of a four item two-dimensional test.
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FIGURE 2.
A three dimensional test with projections of item discrimination vectors onto VθT hyperplane.

the ordinary way and then taking the weighted average of these estimated conditional covari-
ances using the empirical distribution of the partitioning score Y over the partitioning intervals
to determine the weights.

The Zhang and Stout paper then studies how such expected conditional covariances given a
direction of best measurement θT of the test score illuminate our understanding of the multidi-
mensional latent structure of the test. In a set of theoretical results, striking both for their intrinsic
simplicity and their practical usefulness, it is shown that the angles between the various item pair
discrimination vectors for an item pair as projected on the hyperplane VθT , defined as the hyper-
plane perpendicular to the direction of best measurement θT , actually reveal much information
about the multidimensional latent structure.

That is, conditional covariances are useful in informing the practitioner about the latent
multidimensional structure. In particular, when an item pair has a projected angle of less than 90
degrees, the items tend to combine to form the same dimension, and when the projected angle
is greater than 90 degrees they tend to separate to form distinct dimensions. This flows nicely
into a practical, geometrically-based definition of approximate simple structure (see Definition
2 of Zhang & Stout, 1999b) such that when the definition holds, items can be partitioned into
dimensionally distinct but approximately unidimensional clusters. For example, the six items of
Figure 3, as shown by their projection onto VθT , form a three-dimensional approximate simple
structure.

Interesting research questions remain to further develop this powerful geometric generalized
compensatory approach of Jinming Zhang.

2.4. NIRT-Based Statistical Procedures, Emphasizing Conditional Covariances

Out of section 2.3’s conditional-covariance-based semiparametric compensatory IRT mod-
eling foundation, four useful statistical procedures have flowed. Together, they constitute a coor-
dinated statistical thrust to assess when unidimensionality holds and, when it is shown to fail, to
assess important characteristics of the multidimensional latent trait structure.
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FIGURE 3.
Projection of item discrimination vectors onto VθT hyperplance for a six item three-dimensional approximate sample
structure.

DIMTEST, a conditional covariance based nonparametric statistical test of unidimensional-
ity, was formulated by Stout (1987) and refined by Nandakumar and Stout (1993). Its statistical
power depends on effective user selection (proceeding substantively or using exploratory sta-
tistical tools) of a set of items called the assessment subtest (AT1) that has been chosen to be
dimensionally homogeneous and dimensionally distinct from the remaining items, referred to as
the partitioning subtest (PT). This PT subtest’s score is used as the conditioning subscore in the
DIMTEST required conditional covariances. When unidimensionality holds, the approximate
unbiasedness of the DIMTEST hypothesis testing statistic depends on the effective selection
of a second bias correcting set of assessment subtest items, denoted AT2. The modern era of
DIMTEST, fueled by work of Furong Gao and Amy Froelich (Stout, Froelich, & Gao,2001)
replaces having to choose actual AT2 items, which sharply limits the range of applicability of
DIMTEST, by estimating the needed AT2 based bias correction by means of a resampling scheme
using nonparametric kernel smoothed estimation of AT1 IRFs to create a virtual AT2. The latest
and by far most statistically effective methods for the choice of AT items (there now being only
one assessment subtest) use variations of our various conditional covariance based procedures
to replace the linear factor analysis exploratory procedure for choosing AT1 originally used in
DIMTEST (Froelich & Habing, 2002).

In Zhang and Stout (1999a), Zhang rigorously defends the capability of DIMTEST to have
the statistical power to detect multidimensionality when there may be three or more dimensions
(Stout’s, 1987, theoretical defense of DIMTEST’s statistical power was more informal and its
consideration of statistical power was limited to there being two dimensions).

In his thesis, Louis Roussos developed a conditional-covariance-based hierarchical clus-
ter analysis approach (its proximity measure uses conditional covariances), HCA/CCPROX,
to sort items into relatively dimensionally homogeneous clusters (Roussos, Stout, & Marden,
1998). This approach can play a valuable exploratory role in discovering the tendency of items
to form dimensionally distinct clusters that are internally dimensionally homogeneous, that is,
approximate simple structure. Even when approximate simple structure fails, HCA/CCPROX is
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useful. In fact, the Zhang conditional covariance geometry provides a theoretical justification
for HCA/CCPROX’s capability to identify relatively dimensionally homogeneous item clusters,
whether they are sufficiently dimensionally distinct to produce an approximate simple structure
or not.

In her thesis, Hae Rim Kim (see Stout, Habing, Douglas, Kim, Roussos, & Zhang, 1996)
developed the conditional-covariance-based DETECT procedure. In his thesis, Jimning Zhang
refined DETECT and developed a theoretical defense of it (see Zhang & Stout, 1999b). DE-
TECT counts the number of latent dimensions, provides an index that measures the strength of
the departure from unidimensionality, and, when appropriate, partitions items into approximate
simple structure item clusters. The concept of the strength of the departure from unidimension-
ally is distinct from the number of dimensions: For instance, a two-dimensional structure can
strongly depart from unidimensionally, while a 10-dimensional structure can weakly depart from
unidimensionality.

In his thesis, Brian Habing (Douglas, Kim, Habing, & Gao, 1998; and Habing, 2001) devel-
oped a local estimate of the conditional covariance function given θ . All the previously discussed
conditional-covariance-based procedures are global in that they estimate the expected value of
conditional covariances, or use other global averaging over θ . The resulting estimation procedure
is called CONCOV. Some test phenomena, such as end-of-test speededness, can be investigated
using Habing’s estimated conditional covariances (see Douglas et al.).

The three global conditional covariance-based procedures are applied to real data in an in-
tegrated manner in Stout, Habing, Douglas, Kim, Roussos, and Zhang (1996), with a high point
being the dimensional analyses of the analytical reasoning and reading comprehension sections
of the LSAT. In these analyses, paragraphs strongly displayed themselves as contributing dis-
tinct testlet-based latent dimensions. In one of my favorite applied findings, DETECT combines
two paragraphs as producing a single dimension, an apparent error until one discovers that both
paragraphs are science-based (which may or may not be the true explanation, but, it is certainly
suggestive). The Stout et al. paper is one of the best places to read about the three global condi-
tional covariance procedures (DIMTEST, HCA/CCPROX, and DETECT).

Section 2 has summarized the 15-year research effort of the Lab to develop the IRT non-
parametric assessment of the multidimensional latent structure that underlies any educational
test. Philosophically, the substantive specifications of what a test measures and the statistical
description of the resulting latent IRT structure of the test should be consistent and should en-
hance and inform each other from the test construction and test scoring perspectives. It has been
shown how foundational work, which draws heavily on the infinite-item test formulation, and
a constellation of conditional-covariance-based nonparametric latent dimensionality assessment
procedures, which are defended by theory—especially the geometrically based theory for condi-
tional covariances, combine to provide a flexible, theoretically and empirically well supported,
informative, and easy to apply set of nonparametric multidimensional latent structure assess-
ment tools. As reported above, a mixture of large-scale simulations and real data analyses has
been presented in the psychometric literature to demonstrate and justify the effectiveness of these
conditional-covariance-based dimensionality procedures. In addition to the work reported upon
above, much interesting, challenging, and, from the applied measurement perspective, important,
work remains concerning conditional-covariance-based approaches to IRT multidimensional la-
tent structure modeling and statistical analyses. One long-term research goal is to develop an
effective and relatively complete NIRT item-level factor analysis methodology.

3. Test Fairness

High stakes testing is increasingly used worldwide to inform educational admissions, place-
ment, and honors/awards decision-making processes. Moreover, the level of ethnic and cultural
diversity in most countries that rely heavily on high stakes testing continues to increase. Thus,
issues of test fairness are of vital and ever-increasing importance. The statistical analysis of
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item-level test fairness is universally called Differential Item Functioning (DIF). The role of
psychometrics in informing our understanding of test fairness and in improving test fairness is
often inappropriately compartmentalized, minimized, or even bypassed entirely. The test fairness
challenge to psychometrics has been, and still is, to change this unfortunate state of affairs!

One of the subtle ways that DIF has been compartmentalized is the almost total disconnect
that has evolved between substantive (content-based) and DIF (statistical) approaches to the un-
derstanding and practice of test fairness. For example, Paul Ramsey (1993), in a review of what
was then the ETS sensitivity review process, states, “. . . there is no consistent effort to inform
sensitivity reviewers what we are learning from DIF” (p. 385). Reacting to this reality, Robert
Linn (1993) recommends “taking into account not only what has been learned from DIF analy-
ses but [also] what has been learned from sensitivity reviews” when standardized tests are being
designed (p. 364).

The applied DIF literature is strewn with examples of the failure to explain substantively
why certain items display DIF and why certain items don’t display DIF when substantive anal-
yses suggest likely unfairness. Addressing this very point, William Angoff (1993), in his intro-
ductory article to the Differential Item Functioning monograph, states, “It has been reported by
test developers that they are often confronted by DIF results that they cannot understand; and
no amount of deliberation seems to help explain why some perfectly reasonable items [from the
substantive perspective] have large DIF values” (p. 19).

In reacting to these enervating problems, the first of the Lab’s central research goals was
to facilitate the effective, and we believe necessary, integration of statistical and substantive ap-
proaches to test fairness. This was distilled into the psychometrically expressed goal of develop-
ing a theoretical multidimensional IRT model that rigorously captures and explicates the intuitive
notion that the cause of DIF in singly-scored tests is the presence of secondary dimensions, de-
noted by η’s, other than the primary or essential dimension intended to be measured and denoted
throughout by θ .

Thus, a second central DIF goal of the Lab was to use this model is to shift the psychometric
DIF paradigm from a totally reactive (removing unfair items after they have been constructed
and pretested) and single-item-based approach to a partially proactive (that is, also applied at the
test design stage) and item-bundle-based approach to DIF. This approach stresses substantively
interpreted latent-dimensionality-based explanations of causes of DIF that then can contribute to
feedback loops for improving future test design specifications. In this manner, substantive and
psychometric approaches to test fairness can be unified. For example, if reading-comprehension
test items of paragraphs that discuss the physical sciences are discovered to display DIF against
women, then the test specifications for future versions of such a reading comprehension test
might exclude physical-science-based paragraphs.

Following in the tradition of Holland and Thayer’s (1988) theoretically-defended Mantel-
Haenszel IRT DIF approach (a foundational and practically important milestone, marking the
beginning of the modern era of DIF from the psychometric perspective), a third DIF goal of the
Lab was to embark on a lengthy effort to produce a constellation of nonparametric IRT DIF pro-
cedures to address various issues in conducting DIF analyses that were judged important and re-
mained unsolved. These included crossing DIF, DIF for polytomously scored items, developing
statistically robust DIF procedures, DIF for intentionally multidimensional tests, item-bundle-
based DIF, DIF in CAT settings where examinees must be matched using IRT estimated θ , ap-
propriately defining and estimating model-based theoretical DIF parameters for scaling various
kinds of DIF in various settings, and local (in latent ability θ ) DIF.

3.1. Multidimensional Model for DIF (MMD)

As is traditional, DIF is herein considered a phenomenon experienced by a targeted focal
group (F), such as African Americans, when compared with a nontargeted reference group (R),
such as Caucasians. Typically used focal groups include those defined by race, gender, ethnicity,
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disability, first language, and so forth. DIF for an item is defined to occur when the probability of
a correct item response, for examinees with the same intended-to-be-measured ability θ , differs
because of group membership. It is important to note that, as is appropriate, this definition has
nothing to do with whether the focal and reference group distributions of � are identical or are
stochastically ordered.

In two papers (Shealy & Stout, 1993a, 1993b; our MMD model was first discussed in
Shealy, 1989), Robin Shealy and I laid out our multidimensional model for DIF, abbreviated
MMD. The 1993b reference provides a detailed in-depth theoretical description of the model. It
carefully derives various interesting consequences of a foundational nature that mathematically
follow from the model. The 1993a reference provides a more brief and informal description of
the aspects of the model needed to understand the SIBTEST DIF procedure. The most complete
description of the MMD model from the applications perspective occurs in Roussos and Stout
(1996a). It should be noted that Kok (1988) independently and concurrently to Robin Shealy and
me developed a similar multidimensional modeling approach to DIF. The Shealy/Stout MMD
model calls for a new focus on DIF based on three related principles.

First, consistent with the test validity perspective of testing, and noting that educational
and training decisions involving examinees are made on the basis of test scores rather than item
scores, the assessment of test fairness should occur at the test score level rather than the item
level. This insight led to the closely related modeling concepts of differential bundle function-
ing (DBF) and differential test functioning (DTF). DBF (analogously, DTF) is defined to occur
for examinees of the same intended-to-be-measured ability θ when the expected item bundle
subscore (analogously, test score) given θ for a carefully selected, and likely substantively and
dimensionally homogeneous, bundle of items differs across group. DBF measures the combined
amount of DIF at the item bundle score level experienced by examinees from different focal and
reference groups. Of course, single-item DIF must always be a vital component of assessing test
fairness; our approach has been to augment and embed such DIF considerations by including a
needed additional focus on DBF and DTF.

Second, the explicitly multidimensional nature of the model allows, and exhorts, us to rigor-
ously study and understand the necessary role of secondary dimensions in causing DIF, DBF, or
DTF. In particular, when several items (perhaps forming a dimensionally homogeneous and sub-
stantively interpretable bundle, such as a set of items on a geography test that each require map-
reading skills) each depend on the same secondary dimension, the possibility of a large amount
of DBF experienced by the focal group at the bundle subtest score level caused by individual
item DIF amplification (see Nandakumar, 1993) becomes an issue. Or, when the influences of
multiple secondary dimensions interact, the possibility of DIF cancellation (see Nandakumar,
1993, again) of the influence of DBF-producing bundles at the test score level (such as a reading
comprehension test where the paragraphs are carefully balanced by content, based on explicit
consideration of gender) or cancellation of the influence of DIF-producing items at the bundle
score level, becomes important. Since people are cognitively heterogeneous and since items can-
not, and should not, be context-free, the notion of DIF cancellation and DBF cancellation is
perhaps more important than casual thought first suggests.

Third, DIF is explicitly and correctly conceptualized by the MMD model to occur locally
in θ . This incontrovertible and seemingly innocuous fact has important implications. It naturally
leads us to the possibility of “crossing DIF” occurring, where, for example, an item could display
DIF against low-scoring focal-group examinees while it also displays DIF against high-scoring
reference group examinees. Further, local DIF at θ is caused by differing conditional distributions
of a secondary dimension (for simplicity, we only consider the case of one secondary dimension)
H given θ across the focal versus reference group (here H is the upper case version of η). This is
counter to the widely and uncritically accepted informal model for what causes DIF, which pre-
sumes, usually implicitly, that differences in the marginal H distributions across the two groups
are what causes DIF. Naive trust in this seductively intuitive, but sometimes inaccurate, informal
model creates some striking paradoxes as discussed below.
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In explaining the MMD of Shealy and Stout, for simplicity, we only consider the two-
dimensional case, with θ denoting the dimension intended to be measured and the random vari-
able H (taking on values η) denoting an additionally measured secondary dimension. H is often
but not always thought of as a “nuisance dimension” being outside the intended-to-be-measured
construct. Indeed, a subtle, interesting, and important issue arises when H seems, or clearly is,
part of the construct intended to be measured. IRF invariance is assumed to hold for all items
with respect to the complete latent (θ , η) space. That is, for all items, the IRFs Pi (θ, η)are the
same for the focal and reference groups. Thus, when the latent space is completely specified, all
group differences in item performances must, by definition, disappear.

In general, the focal and reference group �F and �R distributions will be different and
often stochastically ordered. The possibly differing �F and �R distributions are not the source
of DIF, DBF, or DTF, although such a difference in distributions clearly can contribute to group
differences in test score distributions, along with the group differences in score distributions that
are caused by the presence of DIF.

For the interested reader, I now briefly review the essence of the MMD model. The potential
for DIF occurring at θ for an item with (group invariant) IRF P(θ, η) is caused by the conditional
distribution of Hg given �g = θ differing for g = R versus g = F . To see this, compute the
group dependent marginal IRF with respect to θ ;

Pg(θ) =
∫ ∞

−∞
P(θ, η) fg(η|θ)dη, (7)

where g = R or F and fg(η|θ) is the density of Hg given �g = θ . Then the amount of DIF
against F locally at θ is given by

B(θ) = PR(θ) − PF (θ). (8)

Further, the average amount of unidirectional DIF against F is given by

βUNI =
∫ ∞

−∞
B(θ) fF (θ)dθ (9)

where fF (θ) denotes the density of �F . βUNI is the fundamental DIF index of MMD. It is what
the SIBTEST DIF procedure estimates and about which it tests hypotheses. βUNI for an item
bundle is defined analogously with B(θ ) denoting the difference of reference and focal expected
item bundle scores at θ .

The fact that DIF is due to a difference in the conditional distributions of Hg given θ across
group rather than to differences in the marginal Hg distributions across group can be the source of
paradoxical situations where differing marginal Hg distributions across group fail to translate into
DIF and where nondiffering marginal distributions of Hg nonetheless end up being accompanied
by DIF (as discovered and explained by Louis Roussos; see Roussos & Stout, 1996a). This
just-referenced paper gives a plausible example of this latter and most paradoxical case, using
some seemingly contradictory findings of O’Neill and McPeek (1993) and Douglas, Roussos, and
Stout (1996): O’Neill and McPeek found that some types of items, intended to measure verbal
reasoning (θ ), tended to exhibit DIF in favor of males (R) versus females (F) when the items
concerned “practical affairs,” (H), for which money is mentioned as a typical component. The
finding of DIF in favor of males on these items thus indicates that µHR > µHF must hold by the
informal DIF model perspective that differing across-group marginal distributions for Hg cause
DIF, where H denotes familiarity or knowledge of money and other practical affairs. By contrast,
and paradoxically, Douglas et al. (1998) reported that, contrary to what the informal model for
DIF predicts, items intended to measure logical reasoning (θ ) where the context is money or
finances (H), showed little DIF against either males or females even though µHR > µHF is
believed to hold.
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We resort to the MMD model to explain this apparent paradox. Now, if (�g, Hg) are bi-
variate normal for each group g (a reasonably innocuous assumption), we have for both tests
that

E(HR |�R = θ) − E(HF |�F = θ) = (µHR − µHF ) − ρ(µ�R − µ�F ) (10)

for all θ . A close examination of (10) reveals a possible explanation for the apparent contradiction
between observed DIF behavior for the verbal reasoning items and the logical reasoning items.
As already stated, for both the logical reasoning items and the verbal reasoning items the first
term on the right hand side of (10) resulting from the nuisance dimension H is positive. It is in
fact the second term that explains the paradox. In the case of the verbal reasoning items, because
females are as proficient or more proficient in verbal reasoning (θ ) on average, the second term
on the right hand side of (10) (including its minus sign) is positive as well, almost ensuring
DIF in favor of males. However, in the case of the logical reasoning (θ ) items, in which males
seem to have a higher mean proficiency, the now negative second term on the right hand side of
(10) tends to cancel the influence of the positive first term. Thus, the genuinely paradoxical, but
logically correct, conclusion is that DIF against F can be reduced, at least to some extent, if the
ability distribution on the primary (intended-to-be-measured) dimension θ also favors R. Note,
however, that this is a delicate matter depending on the size of ρ.

3.2. Model-Based Parameterization of the amount of DIF in Various Settings

One important advantage of having a believable and realistic mathematical model for a
complex real world phenomenon is that important and sometimes subtle aspects are quantified
within the model and hence can be better understood and inferred from data. In the case of the
MMD model, model-based scaling of various kinds of DIF, as the character of the DIF varies,
the number of items involved varies, the number of dimensions intended to be measure by the
test varies, and so forth, becomes possible.

The fundamental parameter βUNI of the MMD model measures the amount of unidirectional
DIF against F averaged over all levels of θ . Similarly, within the framework of MMD, as already
remarked, an analogous parameter measuring unidirectional DBF is easily defined (see Shealy &
Stout, 1993a). Parameters measuring the amount of crossing DIF for an item and for a bundle of
items are defined by Li and Stout (1996). The polytomous case is handled by using the expected
item score given θ as the parameter providing the DIF metric (Chang, Mazzeo, & Roussos,
1996). In Stout, Li, Nandakumar, and Bolt (1997), the parameter measuring the amount of DIF
when the test is designed to measure two dimensions is defined carefully by modifying the basic
formulation by replacing the unidimensional θ by a two-dimensional (θ1, θ2). For example, the
test might be a mathematics test designed to measure geometry, θ1, and algebra, θ2.

Finally, in an important foundational paper with important implications for certain test fair-
ness applications, Roussos, Schnipke, and Pashley (1999) develop (from first principles and a
heuristic asymptotic argument) the DIF parameter measuring the amount of DIF that is in effect
estimated by the widely used Mantel-Haenszel (MH) odds ratio DIF estimator. One practical
consequence based on the findings of the Roussos et al. paper is that significant caution should
accompany the use of the MH odds ratio as an index of DIF when the 3PL model is used.

3.3. MMD- Inspired DIF Statistical Procedures

The initial methodological challenge for the Lab was to develop a nonparametric estima-
tion and hypothesis-testing procedure to assess item DIF and bundle DBF. After having “re-
discovered” the Dorans and Kulick (1986) standardization metric for DIF together with being
impressed with the power of the theoretical rationale used to justify the MH procedure, as articu-
lated by Holland and Thayer (1988), the Lab had the task of producing a robust and theoretically
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defensible standardization-based metric for DIF by modifying and augmenting the standard-
ization statistic as needed. The resulting SIBTEST procedure is described in Shealy and Stout
(l993a).

Recall that, by definition, DIF occurs when examinees, matched on the latent variable θ

that the test is intended to measure, perform differentially depending on their group member-
ship. Hence, the SIBTEST strategy was, as best as one could, to match examinees on a valid
subtest whose score measures θ without serious contamination from secondary η1, η2, . . ., di-
mensions. Here, the MMD model helps us see that the contamination issue is at the matching
subtest score level rather than the individual item level. Hence, although the ideal is to have only
items measuring θ alone in the valid subtest, having items present that are influenced by sec-
ondary dimensions is also an option as long as their influence approximately cancels out at the
valid subtest score level.

We chose the terminology of “valid subtest” carefully, intending to stress that the matching
criterion used by SIBTEST, MH, and other procedures should be selected with validity-based
care, rather than automatically using total test score (perhaps with the studied item removed).
Potential SIBTEST users sometimes misunderstand this terminology and think that SIBTEST, in
contrast to other DIF procedures, cannot be used without its having a truly valid subtest. Rather,
the point is that SIBTEST,in common with all other DIF procedures as well, is only as effective
as the matching subtest is in matching examinees on the construct intended to be measured. In
this regard, serious contamination of the valid subtest caused by secondary, nuisance dimensions
must not occur. Indeed, our intent in introducing the “valid subtest” terminology was to stress
that practitioners’ efforts to achieve validity in matching examinees is a vital prerequisite to the
success of any DIF/DBF/DTF analysis. That is, at its heart, a test fairness analysis requires a
prerequisite validity analysis.

How practical it is to find valid subtests is a partly experiential question. First, in the proto-
typical large standardized test setting where one wants to assess pretest items for possible DIF,
matching examinees on the score on operational items, which have previously undergone careful
test design and psychometric scrutiny, seems reasonable (as Paul Holland suggested in a private
communication). If reasonably done, attempts to purify an initially proposed matching subtest
by removing DIF items seem appropriate too. Regarding the choosing of the valid subtest, one
should note that the SIBTEST procedure invites the user to specify exactly which items constitute
the valid subtest.

Using the standardization metric of Dorans and Kulick (1986), the fundamental idea of
SIBTEST is simple and intuitive: Let XV be the score on the user-chosen valid subtest judged to
be measuring θ without serious contamination. (Borrowing from our NIRT work, one would hope
that θ lies close to Zhang’s direction of best measurement of XV .) Consider a preselected bundle
(could be a single item) of possible DIF items with bundle score denoted by Y . In particular,
let Ȳgkdenote the average bundle score of all Group g (either R or F) examinees having valid
subtest score XV = k. Then the proposed SIBTEST estimator of βUNI is given by

β̂UNI = �k(ȲRk − ȲFk) p̂Fk (11)

where p̂Fk denotes the proportion of focal group examinees for which XV = k. The most
common application is where the bundle consists of a single targeted possibly DIF item and
Ygk = 0 or 1 for each examinee.

In spite of the obvious intuitive appeal of the estimator in (11), it turns out to be seriously
statistically biased when the �R and �F distributions are stochastically ordered, as is often the
case. This is caused by the regression to the mean phenomenon: The conditional distribution
of �g given test score XV depends on the differing means of the �R and �F distributions, as
Figure 4 shows. Hence, because the distribution of Ȳgk depends on the conditional distribution of
�g given test score XV , statistical bias (ȲRk > ȲFk) is expected to occur when there is no DIF
at θ if the marginal distribution of �R is stochastically larger than that of �F .
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FIGURE 4.
Comparison of �F and �R distribution with �F |XV = k and �R |XV = k distributions.

Clearly the proposed SIBTEST statistic β̂UNI is biased unless test length is very large, when
in fact the matching (valid) subtest score becomes completely reliable and the regression to the
mean influence on ȲRk and ȲFk becomes negligible. The solution, as detailed in Shealy and Stout
(1993a), is to shift the Ȳgk’s for g = R and F according to a heuristically-justified regression
correction(to undo the regression to the mean influence). Dividing the regression-corrected β̂UNI

by an appropriate estimated standard error produces a hypothesis-testing statistic. When there
is no DIF, a heuristic argument shows this statistic to be standard normal asymptotically as ref-
erence and focal group sample sizes go to infinity. That the SIBTEST estimator β̂UNI and its
associated hypothesis testing statistic perform well, as predicted by the heuristic asymptotics,
is confirmed in Shealy and Stout (1993a) by a large-scale simulation study showing that the
SIBTEST estimator is relatively unbiased, and that the SIBTEST hypothesis testing procedure is
powerful and adheres well to the nominal level of significance in its simulated Type I error be-
havior over a wide range of realistic DIF models, including models allowing up to one standard
deviation of difference (d = (µ�R − µ�F )/σ�g ) in the �R and �F means, where it is assumed
σ�R = σ�F ≡ σ�g .

The large-scale SIBTEST simulation study included a study of bundle DBF as well as in-
dividual item DIF. This study showed, as expected, that the hypothesis-testing power is much
greater for a bundle of DIF items contrasted with DIF items analyzed singly. The SIBTEST
DIF/DBF simulation study also demonstrated valid-subtest robustness in the sense that minor
contamination of the valid subtest by DIF items measuring η in addition to as θ did not produce
serious deterioration of the SIBTEST performance (see Shealy & Stout, 1993a).

In Roussos and Stout (1996b), a large scale Type I error study was done using the linear re-
gression correction version of SIBTEST, demonstrating that SIBTEST with the linear regression
correction is more robust than the MH procedure in the presence of sizeable group differences
in the �gdistribution. However, even in the case of SIBTEST, some of the observed Type I er-
ror rates were unacceptably high (when group ability differences are large and an item is highly
discriminating, for example), thus motivating the Jiang and Stout nonlinear regression correction
version of SIBTEST: In Jiang and Stout (1999), the linear regression correction of Shealy and
Stout is replaced by a more effective nonlinear correction, as shown in the paper’s simulation
study.
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SIBTEST is based on a heuristically defended normal distribution large-sample theory. Un-
fortunately, in order to develop a variation of SIBTEST to detect crossing DIF, asymptotic nor-
mality fails and a randomization-test-based hypothesis testing approach was thus required. In Li
and Stout (1996), through a series of simulation studies, the “CrossingSIB” procedure is shown
to have good Type I error behavior and good power for detecting crossing DIF or DBF. Of some
methodological interest is the fact that the Type I error portion of the simulation study included
simulated examinee responses generated via nonlogistic IRFs obtained using nonparametric IRFs
estimated by TESTGRAF (Ramsay, 2000).

In Chang, Mazzeo, and Roussos (1996), a polytomous version of SIBTEST called “polySIB”
is developed and its performance studied. In Douglas, Stout, and DiBello(1996), the nonpara-
metric estimation of the amount of DIF locally in θ is considered. Being able to assess DIF/DBF
locally is important in situations where the test is targeted to measure ability accurately over a
limited ability range such as the PSAT when used in America to award National Merit Scholar-
ships to high ability examinees. Using nonparametric kernel smoothing estimation, the amount
of DIF/DBF, as given by the function B(θ ) defined above, is estimated in Douglas et al. (1998).

In Nandakumar and Roussos (2002), a version of SIBTEST is developed where matching
is on θ̂ , thus allowing SIBTEST to be applied in CAT settings. Finally, in Stout, Li, Nandaku-
mar, and Bolt (1997), a version of SIBTEST called “MultiSIB” is developed where the ability
intended to be measured is two-dimensional and hence two-dimensional matching is required so
that matching validity is maintained. Again, a thorough simulation study is done, which showed
that DIF/DBF estimator bias is low and that reasonable Type I error behavior and hypothesis-
testing power are observed in realistically simulated settings. This procedure is of special foun-
dational interest because it is a particularly compelling instance of the fundamental validity man-
date that the matching criterion has to be appropriately developed if the real purpose (achieving
test fairness) of the DIF/DBF analysis is to be achieved.

For example, if a test is designed to measure both algebra and geometry, then clearly large
DIF could occur if we match on total test score, even though the test is in fact measuring exactly
what it is supposed to—namely algebra and geometry. Of course, in the case of a test designed to
measure both algebra and geometry, a study where one matches on total score can be interesting
from the cognitive perspective; we are, however, not assessing test fairness in the process! Indeed,
in the simulation-based Type I error studies of DIF hypothesis testing with nominal level of
significance set at α = 0.05, the observed Type I error of 0.059 for two-dimensional matching
was increased to 0.39 when incorrect total score matching was substituted for the valid two-
dimensional matching on two subscores.

3.4. Implementation of DIF/DBF Procedures

The development of a DIF model, DIF parameters, and DIF statistics are all important DIF
analysis components, but it is still the full integration of these components that is required to
produce a fully developed implementation procedure for DIF analyses. Perhaps the most impor-
tant in this regard are the MMD paradigmatic implications and imperatives for conducting test
fairness research and practice. In summary, these include (i) integrating psychometric DIF/DBF
and substantive analyses of test bias—in particular addressing underlying substantive causes of
DIF/DBF; (ii) using feedback from DIF/DBF analyses to influence future test design and assem-
bly; (iii) matching examinees in DIF/DBF studies in ways that make the matching procedure
consistent with modern test validity considerations as espoused by Lee Crombach, William An-
goff, Sam Messick (see chapters 1–3 of the Wainer and Braun edited Test Validity, 1988), and
others; (iv) carrying out bundle DBF analyses where the bundles are selected to be homogeneous
based on statistical, substantive, or blended grounds; (v) recognizing that the practical test va-
lidity implications of DIF/DBF are expressed at the test score level even though the “atoms”
of DBF are of course the items causing DIF; (vi) addressing the potential for amplification and
cancellation of item DIF at the bundle score level and of bundle DBF at the test score level; and
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(vii) taking advantage of the potential for increased statistical DIF/DBF detection power when
one works at the item bundle level versus the individual item level.

From this test equity paradigm-changing perspective, five papers stand out. The first paper,
by Terry Ackerman (1992), expresses the Shealy and Stout MMD model for DIF geometrically
using the logistic multidimensional IRT model (MIRT) and studies various cases of DIF from
the perspective of studying the behavior of

E(HR |�R = θ) − E(HF |�F = θ) (12)

as a function of θ under the assumption of bivariate normality of (�g, Hg) for both groups.
Ackerman’s introduced concept of the validity sector is potentially useful. It is consistent

with the notion of essential unidimensionality presented in section 2 and can be thought of as a
hypercone in the (θ, η) space having a reasonably small vertex angle. It assumes that the valid
subset consists of items that are reasonably dimensionally homogeneous and reasonably close to
the θ axis. Figure 5 shows a validity sector for a two dimensional test.

Three other three papers are the Douglas, Roussos, and Stout (1996) methodological paper
on doing bundle DBF analyses, the Nandakumar (1993) paper on amplification and cancellation,
and the Bolt, Froelich, Habing, Hartz, Roussos, and Stout (2002) paper presenting an in-depth
application and further development of the bundle DBF SIBTEST methodology, applied to the
GRE-Q (quantitative) exam.

The fifth paper, Roussos and Stout (1996), is the clearest and most complete statement of
the MMD paradigm. It stresses that a standardized test given periodically can see its level of
fairness improved over time through a principled application of substantively and statistically
suggested DBF hypotheses that when affirmed (e.g., through a SIBTEST DBF analysis) can then
be incorporated into the test specifications of future versions of the test. There are at least two
distinct approaches to forming item bundles hypothesized to display DBF. First, as laid out in
Douglas, Roussos, and Stout (1996), one can take a confirmatory approach based on the opinion
of experts. In the paper, this approach is applied to male/female DBF for eight (expert chosen)
bundle-defining categories (items involving social issues, the military, technological sciences,
health sciences, and so forth). Figure 6 shows the high correlation between the SIBTEST DBF β̂

index and the panel of experts’ own combined substantive index of the bundle’s DBF.

FIGURE 5.
Item discrimination vectors of a 22 item validity sector.
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FIGURE 6.
Panel index versus bundle DBF β̂/item.

The second approach uses DIMTEST and HCA/CCPROX to identify “suspect” bundles to-
gether with a substantive refinement of these statistically identified bundles suspected of DBF. In
an example from the Douglas et al. paper, a bundle of six items on an NAEP history exam, which
all pertained to early American documents, is identified by this blended statistical/substantive
approach. Then, a SIBTEST bundle analysis of this six-item bundle produced an observed level
of significance of 0.002, strongly indicating DBF against women.

Ratna Nandakumar (1993) presents real-data examples of both cancellation and strong am-
plification. Amplification can be of real importance in that many items having slight DIF against
the same group can amplify to have a highly deleterious effect at the test score level: One ques-
tion on baseball may not matter much on a sixth grade math test taken by boys and girls, but ten
questions likely will.

The SIBTEST-based GRE bundle DBF analyses (Bolt, Froelich, Habing, Hartz, Roussos,
& Stout, 2002) are of particular interest because of the very careful and detailed use of the
bundle DBF approach as a possible aid to GRE test design from the test fairness perspective. The
GRE study is the most complete example of applying the MMD paradigm in real data settings.
For further interesting analyses of SIBTEST-based bundle DBF studies, the reader is referred to
Gierl, Bisanz, Bisanz, Boughton, and Khatiq (2001); Gierl and Khaliq (2001); and Gierl, Bisanz,
Bisanz, and Boughton (2002).

In my opinion, much remains to be done before proactive psychometric bundle-based ap-
proaches to DIF have been fully utilized in achieving test fairness. In fact, most of the components
of what we suggest above is a needed psychometrically driven paradigm shift in how to view and
practice test equity has not been implemented.

4. Formative Assessment Skills Diagnosis: A New Test Paradigm

Out of the usually staid psychometric world we inhabit, perhaps the most intellectually ex-
citing and practically important psychometric challenge since that of factor analyzing the intel-
lect (which many characterize as the defining problem of twentieth-century psychometrics), has
arisen largely unnoticed and certainly unheralded. The long dominant summative-assessment-
focused and single-score-based testing paradigm that unidimensional IRT modeling so effec-
tively addresses has begun to be challenged. Summative assessments focus on broad constructs
such as mathematics, reading, writing, or physics and typically assess individual educational
achievement as examinees exit one system and make the transition to another, such as from high
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school to college. Currently, the educational standards and instructional accountability driven
drumbeat outside the psychometric community intensifies for including formative assessment
testing, whose primary goal is assisting the teaching and learning process while it is occur-
ring.This creates the psychometric challenge of converting each examinee’s test response pattern
into a multidimensional student profile score report detailing the examinee’s skills learned and
skills needing study. The new testing paradigm calls for a blending of summative and formative
assessments, with sometimes the same test being used for both purposes and sometimes new tests
being developed for formative assessment purposes alone.

Examinee skills-based formative assessments, often aggregated over classroom, school,
school district, state, or other collective, as appropriate, can be used by students, teachers, cur-
riculum planners, government departments of education, and others involved in the educational
process, to facilitate teaching and learning. In particular, using feedback from a test-based for-
mative assessment, each student learns what skills he or she has mastered and what skills need
his or her further attention. For example, a student’s algebra test score is supplemented or re-
placed by a skills profile indicating mastery of linear equations, nonmastery of factoring, and so
forth, such information hopefully leading to informed remediation. At the classroom level, the
summative-assessment-based classroom test score average and standard deviation (or other mea-
sure of score variation) are supplemented or replaced by formative-assessment-based classroom
proportions of masters and nonmasters for each targeted skill. Used effectively, this can lead to
immediate test-driven changes in instruction for the just-tested classroom and future changes in
instruction for future classrooms in the same subject. Skills-level formative assessment can also
help students meet the state educational standards that are receiving so much current emphasis.
The notion of a “skill” as used here is generic from the cognitive psychology perspective; it refers
to any postulated mental quality whose possession improves cognitive functioning, especially in
a test setting.

There is currently an enormous push in American education to periodically conduct
standards-based skills diagnostic assessments of students from kindergarten to the end of high
school (K–12). The biggest push comes from the U.S. government’s recently passed “Leave No
Child Behind” legislation, mandating periodic standards-based testing for all American K-12
students. The emphasis on formative assessment skills diagnosis is emphasized in the U.S. De-
partment of Education’s widely referred-to regulations for this legislation: “A State’s academic
assessment system must produce individual student interpretive, descriptive, and diagnostic
reports that. . . allow parents, teachers, and principals to understand and address the specific
academic needs of students.”

It is interesting that many of the Web sites of large city and state education departments and
of test providers claim to be doing skills-level assessment. The statistical sophistication of exist-
ing psychometric approaches such as the Robert Mislevy, Russell Almond, and Linda Steinberg
Evidence Centered Design/Bayes Nets approach; the Lou DiBello, Sarah Hartz, Louis Roussos,
and William Stout Bayes Unified Model Markov Chain Monte Carlo (MCMC) approach; or the
Mark Wilson multidimensional graded-response Rasch Berkeley Evaluation and Assessment Re-
search System (BEAR) approach raises the question of how so many organizations responsible
for formative assessments can make the striking claim of their doing such assessments, given
that they have not employed such sophisticated techniques as mentioned above. The answer is
simple: Most are merely using skills based subscoring.

For example, let’s examine North Carolina’s end-of-grade test reporting for eighth grade
mathematics, shown in Figure 7. Each of the 80 math questions is categorized as measuring
one particular skill out of eight specified math skills, such as “word problems.” Thus, a subtest
of items is associated with each skill. A student’s reported skills-mastery profile consists of his
or her skill subscore on each of the eight targeted skills. Others (e.g., Missouri) avoid reporting
subscores altogether by use of proficiency scaling, where one’s overall test score is translated into
a skills-mastery profile, based on the (often controversial) notion that one’s unidimensional score
location can be used to effectively create a profile of skills mastered and skills nonmastered. From
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FIGURE 7.
North Carolina End-of-Grade Math Skills Test Subscores.

the psychometric perspective, it is clear that in most skills diagnostic settings, more sophisticated
approaches than skills-based subscoring or proficiency scaling are needed to avoid serious sub-
optimality in skills diagnostic accuracy.

4.1. A Brief Survey of Psychometric Skills Diagnostic Models

This new and evolving field had its early and important psychometric modeling pioneers,
including Gerhardt Fischer, Edward Haertel, Robert Mislevy, Susan Embretson, and Kikumi
Tatsuoka. I’d like to indicate a few milestones in the psychometric history of cognitive modeling.
The first skills-level (or “cognitive”) psychometric model seems to be Gerhardt Fischer’s (1973)
linear logistic trait model (LLTM). Although LLTM is a unidimensional Rasch IRT model and
as such is not designed to model, and hence support measurement of, multiple examinee skills,
it does factor item difficulties into skills-based components, thereby providing a skills-based
structural IRT model.

In an effort to develop a skills diagnosis modeling approach, which a fortiori postulates that
examinees possess a multidimensional latent structure, Susan Embretson developed a series of
multidimensional continuous trait (each such trait viewed as a skill) noncompensatory (in fact,
conjunctive) logistic IRT models (Whitely, 1980; Embretson, 1984, 1985). Susan Embretson’s
diagnostic models are probably the first models capable of undergirding multidimensionality-
based skills profiling using examinee test data.
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The important realization that the item/skill test structure (i.e., which items measure which
skills) is important and inferentially useful information that should be built into one’s skills
diagnostic model was fully exploited by Kikumi Tatsuoka (1990, 1995). Her Rule Space pattern
recognition approach dichotomizes skills as mastered (assigned a latent skill level of α = 1)
versus nonmastered (assigned a latent skill level α = 0), thus forming a latent skill vector α with
dichotomous components. The method requires a user-supplied list of skills judged to be needed
for performing well on the test being analyzed. This item/skill structure (usefully thought of as
the skills-level test design) is represented by a user-supplied item by skill Q matrix of 0’s and
1’s, where the 1’s in the i-th row identify which of the user-provided list of skills are needed
for solving the i-th item. The underlying cognitive processing assumption of the Rule Space
and certain other diagnostic models using the Q matrix approach (such as the Unified Model
discussed below) is that correct examinee responding is conjunctive but random: The examinee
noisily tends to get an item right if he or she has mastered all the skills identified by the Q
matrix as required for the item and otherwise noisily tends to get the item wrong. Although it
is a point of research contention whether conjunctive modeling is universally appropriate for
cognitive processing, it seems appropriate for many, perhaps most, skills-level test settings.

The most basic conjunctive modeling approach using such item/skill structural information
is Edward Haertel’s (1989) restricted latent class model, which assumes local independence,
conditional upon an examinee’s discrete latent class, and dichotomizes each examinee relative to
each item by assigning two probabilities of correct item response, namely gi < 1 − si , where
gi is the probability for an examinee who is a nonmaster of at least one of the required skills for
item i and 1 − si is the probability for an examinee who has mastered all the required skills for
the item. Here g is often called a guessing probability and s a slip probability.

The Rule Space model uses a continuous two-dimensional (θ , ζ ) representation to facilitate
inference about the examinee’s latent skill vector α. Rule Space data fitting is accomplished by
augmenting a standard unidimensional IRT statistical approach. In fact, inference about exam-
inee skill mastery/nonmastery profiles are reduced to inferences based on an examinee’s stan-
dardly estimated latent logistic model-based θ̂ and a closely related, continuous “caution index”
ζ̂ , which measures how Guttman-response atypical (overly inconsistent or overly consistent) the
examinee response pattern is for an examinee of estimated ability θ̂ . The basic assumption is
that these two continuous indices can be used to estimate an examinee’s latent skill vector α
effectively.

A version of the Rule Space approach developed by ETS scientists, especially Lou DiBello
and Kikumi Tatsuoka, is in current operational use on the PSAT and as such seems to be the
first psychometrically sophisticated large-scale standardized-test-based skills diagnostic applica-
tion, a major pioneering milestone, both from the psychometric and the formative assessment
perspectives.

For example (see Figure 8), an examinee taking the Math PSAT might be given the following
description of skills to improve on: “organizing and managing information to solve multistep
problems” and “applying rules in algebra and geometry.” In fact, every PSAT test-taker is given
advice on improving up to three skills identified by ETS’s Rule Space algorithm. This major
advance by ETS scientists, undergirded by the Tatsuoka Rule Space research, is an example
of practically important and intellectually challenging psychometric research generated by an
important test applications problem. In the context of this article, it is a particularly nice example
of a “back again” success!

The Bayes net approach to skills diagnosis is the product of an extensive team-oriented re-
search effort that has been vigorously put forward by Robert Mislevy and colleagues (especially
Russell Almond and Linda Steinberg). An excellent source is Bob Mislevy’s (1994) Psycho-
metrika Society presidential address paper. This Bayes net approach to cognitive diagnosis has
been applied in a variety of applied diagnostic settings, including the assessment of problem-
solving skills of dental hygienists (Mislevy, Almond, Yan, & Steinberg, 1999) and airplane repair
training.
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FIGURE 8.
PSAT Score Report Plus Skills Mastery Reporting.

A very recent exposition, which includes a description of Bayes nets, appears in Mislevy,
Steinberg, and Almond (2002). The paper places a heavy emphasis on evidence-centered design
(ECD). ECD is a principled approach to test design (and to assessment in general) that combines
student modeling, evidence modeling, and task modeling, thus creating a model-based approach
to complex assessments, as all skills diagnosis tests are. It is worth noting that ECD is a general
approach, which does not suppose a Bayes net statistical analysis

It is useful and instructive to translate the three ECD modeling components into an IRT la-
tent modeling setting. The student model becomes the possibly complex and hierarchical stochas-
tic model for the latent ability space p(θ). The task model reduces and quantifies possibly rich
and complex examinee responding to items (a task becoming an item) to a useful scoring metric.
The last and most important component is the evidence model, which becomes the likelihood-
based stochastic modeling link between the student model variable θ and the task modeled re-
sponse variable x, namely p(x|θ). The overall goal of ECD from a psychometric modeling per-
spective is to link x to θ as informatively as possible, namely, to provide a highly informative
p(θ|x) distribution. The ECD paradigm is expected to help guide future skills level formative
assessment research and practice.

The Bayes net approach represents a joint probability latent cognitive model as a carefully
sequenced recursive product of conditional probabilities, where the order of multiplied factors
is carefully chosen to simplify the model representation as much as possible through local inde-
pendence assumptions:

p(X1, X2, . . . , Xn) = p(Xn |Xn−1, Xn−2, . . . , X1)

× p(Xn−1|Xn−2, Xn−3, . . . , X1) · · · p(X2|X1)p(X1) (13)

Graph theory (in particular directed acyclic graphical networks) is used as a tool for discovering
and representing the conditional dependencies and the simplifying conditional independences
required to simplify (13).

Another important psychometric approach worth recognizing, especially because of the
“back again” applications orientation of this paper, is the Berkeley Evaluation and Assessment
Research (BEAR) embedded-assessment system using a graded-response multidimensional
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Rasch approach and under the leadership of Mark Wilson. This system has been successfully
applied in precollege science learning settings and draws upon the Rasch modeling tradition (see
http://bear.berkeley.edu/pub.html for a long list of relevant papers).

It is interesting to note that there are approaches to skills diagnosis that are more expert
systems and algebraic in their flavor than psychometric probability modeling. As a nice example,
Jean-Caude Falmagne and colleagues have developed the ALEKS (Assessment and Learning in
Knowledge Spaces) system, which provides course-based diagnostic assessments in a variety
of subject areas, including algebra, trigonometry, and basic statistics (available from McGraw
Hill and the ALEKS Corporation). For an exhaustive treatment of the complex combinatorial
algebraic approach behind the ALEKS course assessment system, see Doignon and Falmagne
(1999).

Two excellent surveys on the contributions of statistics and psychometric modeling to skills-
level assessment, both surveys underscoring the importance of psychometric modeling of skills
diagnosis, are (the first survey) Chapter 4 of the National Research Council’s Knowing What
Students Know, which in fact is based in part on a (the second survey) more technical survey by
Brian Junker (1999). A nice foundational paper about skills-level latent modeling by Eric Maris
(1995) is also highly recommended.

4.2. The Unified Model and Generalizations Making it Useful

Lou DiBello, Louis Roussos, and I set out to develop a Q-matrix-based parametric IRT
skills diagnosis model with easily interpretable parameters for both users and psychometricians.
Further, its parameters were expected to describe the major sources of stochastic departures from
the deterministic pattern-recognition-responding predicted by the Q matrix. Now, I present a
simplified version of the Unified Model (UM) we developed (see DiBello, Stout, & Roussos,
1995).

The UM characterizes each examinee by his or her multidimensional latent ability (α, θ )
in the traditional sense that LI given latent ability (α, θ ) is assumed. α is a dichotomous latent
vector characterizing an examinee’s mastery profile on the skills specified as important by the
user. As such, estimating α is the goal of any skills diagnostic assessment.

From the statistical perspective, the amount of statistically recoverable skills-level informa-
tion about examinees provided by a test of dichotomously scored items is by its intrinsic nature
limited. Hence, if a skills-based psychometric model, such as the UM is to be effectively used to
undergird a statistically effective skills diagnosis, the model must obey the principle of statisti-
cal parsimony and thus introduce only a statistically reasonable number of skills to be assessed.
Hence, it is obvious that, in contrast to traditional cognitive psychology modeling of human
intellectual performance (where there is no penalty for model complexity: see Koedinger and
Maclaren, 2002, for an example of a complex cognitive model developed in pursuit of a deeper
understanding of human problem-solving behavior in the “early algebra” stage), many of the
skills influencing item performance must be intentionally left out of the psychometric model.

It is this profoundly simple insight, viewed from our perspective as psychometricians, that
mandates a certain parametric simplicity of our skills diagnostic models. Indeed, the skills diag-
nosis modeling challenge is to achieve as much parametric model complexity as possible using
interpretable, informative, and useful (for the practitioner) parameters, while still retaining sta-
tistical and computational tractability.

To incorporate explicitly the influence of the intentionally omitted (and usually numerous)
skills upon item responding, the UM introduces a residual continuous ability θ that unidimen-
sionally summarizes the examinee ability level on the large collection of skills left out of the
UM. That is, θ compensates for the cognitive-processing incompleteness of the specified skills
vector α.

Although in the UM we dichotomize a skill as being mastered or nonmastered by an ex-
aminee, the UM was developed from the philosophical position that an examinee can be a non-
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master of a skill but still (noisily) apply it correctly in attempting to solve an item. Similarly
a master of a skill can (noisily) fail to apply it correctly. This phenomenon of deviating from
the mastery/nonmastery patterns as predicted by Q for an examinee with skill vector α is called
positivity.

Although some might view positivity as merely amounting to guesses and slips, actually
something cognitively more subtle and important is being modeled. That is, the presumed di-
chotomization of examinees into masters and nonmasters of a skill is an idealization that partially
breaks down in reality. To illustrate, some algebra items may require such daunting uses of the
“rules of exponentials” skill that many “masters” of the skill will fail to apply it correctly and thus
answer many of these items incorrectly. Likewise, for some items requiring use of exponents, the
correct application of the skill will be so routine that many “nonmasters” of the skill will tend to
apply the skill correctly for these items. It is this heterogeneity of the role of examinee mastery
and nonmastery required across items that leads to the positivity parameters of the UM.

Modeling positivity and incompleteness led to the UM’s evidence model for an item IRF:

P(Ui = 1|α, θ) = �k π
αk
ik r (1−αk )

ik P(θ + ci ) (14)

where the product is over the attributes k required for item i as specified by Q, 0 ≤ ci ≤ 3 is the
completeness parameter, αk = 0 or 1 denotes skill nonmastery or mastery respectively, and, by
definition,

πik = P(Attribute k applied correctly to Item i |αk = 1), (15)

rik = P(Attribute k applied correctly to Item i |αk = 0), (16)

and

P(x) = exp(1.7x)

1 + exp(1.7x)
. (17)

Here � is assumed to have a standard normal distribution. Note that the correct applications
of different skills are assumed independent given latent ability (α, θ ) in (14).

For an item in which the required αk’s are relatively complete in the sense that the role of
other attributes as captured via θ is minor, ci will tend to be large (close to 3). Clearly an item
with small r ’s, large π’s, and a large c will be a highly discriminating item in its capacity to
separate masters from nonmasters of the skills required by the item, and hence the item will be
highly desirable for skills diagnostic purposes.

The positivity and completeness item parameters of the UM promise to be quite useful in
providing a model to be used for skills diagnosis test performance evaluation and just as impor-
tantly in providing a model to be used for skills-level test design purposes, just as the difficulty
and discrimination parameters of logistic IRT models are useful for conventional unidimension-
ally scaled tests. This capability is very important because skills-based testing is a “whole new
ball game” for which principles of item construction, test design, and test performance evaluation
are totally undeveloped. In particular, the impressive body of knowledge about item construction,
test design, and test performance evaluation for unidimensionally scaled summative tests may not
be very transferable to the multidimensional discrete-skills formative assessment test setting. In
summary, having estimable parameters that measure diagnostic effectiveness at the fine-grained
item/skill level lays a sound foundation for evaluating skills-level test performance and for de-
signing skills level tests.

Unfortunately, the 1995 version of the UM founders on the shoals of the credit/blame prob-
lem in that examinee item level correct/incorrect response data is intrinsically not rich enough
in information to render all the π’s and r ’s of (14) identifiable. In her thesis, Sarah Hartz (2002)
reparameterizes the UM in a manner that produces identifiable and still nicely interpretable and
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highly useful parameters, these parameters continuing to quantify the key concepts of incom-
pleteness and positivity.

Hartz also recast the UM as a hierarchical Bayes model and wrote an MCMC algorithm
to successfully calibrate the resulting reparameterized UM. This was a major required step for-
ward, making the model statistically tractable with highly interpretable parameters, useful to the
practitioner designing or psychometrically evaluating the effectiveness of skill diagnostic tests.
Henceforth, the reparameterized Bayes UM of Hartz will be referred to as the “Bayes UM.”

Simulation studies by Hartz (2002) showed effective estimation of the model parameters by
her MCMC procedure. In a 1500 examinee, 7 skills, 40 item, 2 skills/item on average setting with
highly skills-discriminating items assumed (“strong cognitive structure”), the correct classifica-
tion rate achieved by the MCMC algorithm averaged 95% across the seven skills with only about
4% of the examinee/skill pairs left unclassified on average across the seven skills because of
lack of statistical information. Further, the evidence was strong that MCMC convergence to the
stationary distribution for the non burn-in portion of the generated Markov chain had occurred.
Interestingly and appropriately, when a weak cognitive structure setting (low item discrimination
of skills) was simulated, then the classification accuracy dropped to 84% and the proportion of
examinees not classified rose to 14%. Item parameters still tended to be well estimated.

One of the biggest concerns was that the prerequisite specification of the Q matrix might
produce a high degree of nonrobustness. That is, if the Q matrix was inaccurate by a minor
amount (as it surely must be!), then the diagnostic accuracy could be seriously compromised.
Indeed, we tend to view a user-supplied Q matrix as a hypothesis, setting up a confirmatory
situation where good statistical practice would allow data-driven minor modifications of the Q
matrix.

With this in mind, Hartz carried out a number of simulation studies where the Q matrix was
incorrectly specified. In all cases, the deterioration in skills classification accuracy was appro-
priately minor. Moreover, in an interesting finding, the presence of θ in the UM compensated
nicely for 0s erroneously placed in the MCMC’s presumed Q matrix—see Hartz (2002) for de-
tails. Further, the data-driven parameter-reduction statistical approaches built into the MCMC
Bayes UM analysis, designed to remove unneeded parameters, nicely removed the parameters
corresponding to 1s erroneously placed in the MCMC’s presumed Q matrix. The terms “placed
erroneously” and “incorrectly specified” mean that the (correct) Q matrix entry of the simulation
model generating the data differed from the corresponding entry in the Q matrix (incorrectly)
presumed by the MCMC statistical analysis of the simulated data.

4.3. Application of the Unified Model to PSAT Data

Of course, it is a sort of psychometricians’ joke that one can prove almost anything using
simulation studies. Hence, we were very pleased when ETS presented us with the opportunity to
try out the Bayes UM on experimentally obtained PSAT test/retest data. For example, the PSAT
math test had 40 items and a Q matrix based on 16 skills (these skills carefully developed for
ETS by teachers, educational psychologists, psychometricians, and cognitive scientists), having
approximately three skills per item.

Of particular interest is the Bayes UM methodology’s capacity to assess skill, and item,
level performance aspects of a test being used for skills diagnostic purposes. Indeed, the Bayes
UM parameters assess the discrimination of every item/skill pair. Thus, an item’s effectiveness
across the set of skills it is purported to measure, and a skill’s effectiveness across the set of
items purported to require the skill, can both be assessed for all the items and user-specified
skills. To illustrate, according to the Bayes UM analysis of the PSAT Math test conducted using
the Hartz MCMC approach, three items on one math form failed to display a useful amount of
skill discrimination on any of the skills the Q matrix claimed they were measuring.

This result is not surprising in that the PSAT is designed to scale examinees on mathemat-
ics achievement unidimensionally (it is a summative assessment), rather than being designed to
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diagnose the 16 post-test created mathematics skills. Thus, these three items were contributing
to the desired unidimensional scaling by measuring mathematics skills other than those speci-
fied by the Q matrix. From the skills test-design perspective, where one might want to modify
a test to improve its diagnostic power on a set of specified skills, such skills-level information
about particular items would be highly useful. The capability to assess test performance for each
skill and for each item will be very useful for future skills-level test design, where one wants
assurances that each targeted skill is being effectively measured.

The ETS PSAT setting was an experimental setting that went beyond operational data by
providing retest data. This allowed the use for research purposes of the performance criterion
of skill assessment agreement across the two tests each student took. That is, skill assessment
agreement occurs when examinees are independently assessed by both tests to have mastered
a skill or to have not mastered that skill. Although it is not the impossible gold standard of
observing how reliably examinee/skill pairs are correctly diagnosed, it is an excellent stand-in.
Naı̈vely, one might decide that anything above 50% agreement (the naively presumed chance
agreement rate) across tests would provide evidence that the procedure is effectively classifying
examinee skill masteries based on PSAT examinee performances. But, this is wrong of course:
the correct baseline rate depends on the baseline rates of assigning skill mastery on each of the
two tests (for example, 100% agreement across tests can be obtained by artificially labeling every
examinee a master of all skills on both tests): Let pi denote the assigned proportion of masters
of a skill on Test i. Then the baseline chance agreement rate (assigning (0,0) or (1,1)) is

b
def= p1 p2 + (1 − p1)(1 − p2). (18)

Let a be the observed across-test agreement rate proportion for an skill. Then the percentile
rank of a relative to the chance rate should be a good adjusted agreement rate index:

100
a − b

1 − b
(19)

Using this index, one version of the Bayes UM analyses achieved a percentile index of 70%
almost uniformly across the 12 skills (out of a possible 16) judged to be effectively measured-
very respectable for a test not designed for skills diagnosis.

One could wonder whether labeling an examinee as a master versus a nonmaster of the
entire set of skills required on an item is consistent with examinee performance on the item, in
the sense that masters should perform well and nonmasters poorly. For, if either the Bayes UM
fails to fit the data well or, even when it does, the ensuing statistical MCMC analysis fails to
calibrate the model well or to use the well-calibrated model effectively to predict examinee skills
well, then one would expect the statistically inferred masteries and nonmasteries of examinee
skills to fail to be strongly consistent with examinee correct/incorrect performance on the item.

In this regard, for each item/examinee combination, we classified the combination as an item
mastery or an item nonmastery combination depending on whether or not the MCMC analysis
assessed the examinee as having mastered all the skills the Q matrix shows as required for the
item. Further, the nonmastery category is split into two subcategories depending on whether an
examinee nonmaster has mastered less than half or at least half of the required skills for the item,
producing high and low nonmasterycombinations. In this regard, analysis of both forms of the
PSAT math and both forms of the PSAT writing test produced excellent results. For example, on
the V2 math form, item mastery resulted in an 85% item/examinee combination correct rate, and
item nonmastery in a 27% item correct rate, which split into 42% and 18% for high nonmaster
and low nonmaster/examinee combinations respectively.

Clearly, examinees estimated to be item masters are performing very well on items and
those estimated to be item nonmasters are doing relatively poorly, with low nonmasters doing
extremely poorly. This result is very encouraging. It is relevant to ask whether such behavior
holds up item by item. In this regard it is interesting to contrast two simulation studies performed
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by Hartz (2002), one assuming strong cognitive and one with weak cognitive structure. Even the
weak cognitive structure case effectively produced high-performing masters and low-performing
nonmasters for all the items in the simulated data, with reasonable variation from item to item.
The results for the strong cognitive structure were even better.

Of particular interest (the “back again” perspective of this paper’s title) was the real-data-
based reenactment of the actual College Board PSAT student reporting process described above,
where each student taking the PSAT has up to three nonmastered skills reported. This was carried
out on the ETS PSAT data set using the Bayes UM model as calibrated from PSAT data via the
MCMC statistical inference approach. The results were especially satisfying. About 90% of the
test takers had at least one nonmastered skill “reported”. Among these examinees identified as
lacking at least one needed skill, correct performance proportions (using the actual test data) on
items involving skills examinees were judged to have not mastered was around 0.21 on average
over the four tests (two math forms and two writing forms), a pleasingly low number. The most
authentic aspect was that cross-validation was carried out, in the sense that we recorded the
proportion of times a skill that was “reported” as nonmastered by the examinee on one test was
inconsistently “reported”as mastered on its paired test. These two error-rate proportions (viewing
each test of a test/retest pair as the report-generating test produces two numbers) for the PSAT
Writing test were both around 0.06. On the PSAT Math test, for whatever reason, the resulting
pair of test/retest error rates were still very good but less so, averaging 0.13.

The research on skills diagnosis seems the most compelling example of our research
paradigm of going from practice (in this case the enormous need in the testing arena for sophisti-
cated skills diagnostic IRT modeling and consequent statistical analyses of standardized test data
to produce accurate skills diagnoses and effectively designed skills-level tests) to theory (the
Unified Model of DiBello, Stout, and Roussos and its Bayes reparameterized form and MCMC
procedure for data analysis using the Bayes UM of Hartz) and back again (the very satisfying
and potentially useful analysis of the PSAT data).

4.4. Skills Diagnosis: The New Paradigm?

Is formative assessment skills diagnostics the new test paradigm, as I suggested in the open-
ing paragraph of Section 4? I think so, and I hope the brief and somewhat informal description
in this section convinces my psychometric colleagues of this claim. Further, I am optimistic that
the Bayes UM MCMC approach will play a significant role, according to the stated criterion at
the beginning of this paper that psychometric research is valuable when it is effectively used in
actual educational practice. Of course, many vital research challenges remain in the skills-level
formative assessment arena.

5. Dimensionality, Equity, and Diagnostic Software

The purpose of this section is to give a partial listing of who to contact concerning method-
ology software for procedures mentioned in the article. The conditional covariance based dimen-
sionality assessment software, namely DIMTEST, HCA/CCPROX, DETECT, and CONCOV,
is available from Assessment Systems Corporation (http://www.assess.com). The Mokken mul-
tidimensional scaling software is available from iecProGAMMA (http://www.gamma.rug.nl.
The TESTGRAF nonparametric IRF and examinee ability estimation software is available
through (http://www.psych.mcgill.ca/faculty/ramsay/TestGraf.html). The multiple variations of
SIBTEST are available from Assessment Systems Corporation (http://www.assess.com). Mantel-
Haenszel DIF software is available from many sources and in fact the MH DIF procedure is easy
to program if needed. The MCMC Bayes UM skills diagnostic software is the property of the
Educational Testing Service.
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6. Concluding Remarks

I wrote the presidential address with several themes in mind. First, I wanted somewhat in-
formally to survey progress made in three major research areas that I and former Statistical Lab-
oratory for Educational and Psychological Measurement members worked on over many years.
These areas have not only been intellectually interesting areas to work on from the psychometric
perspective, but I see them as very important from the applied measurement perspective. That is,
achieving the “back again” of the title is seen as truly important for each area. In summary, the
three areas are (i) nonparametric latent structure modeling and dimensionality assessment from
the nonparametric perspective, with the emphasis being on the use of item-pair conditional co-
variances, the conditioning being on an appropriately chosen subtest score, (ii) the nonparametric
modeling and assessment of test fairness with the emphasis being on uniting substantive and sta-
tistical approaches to test equity via the MMD multidimensional model for DIF/DBF/DTF and
on the SIBTEST family of DIF/DBF/DTF procedures growing out of the MMD model, and (iii)
the parametric skills diagnostic IRT modeling and associated Bayes Unified-Model-based skills
diagnostic methodology created by Sarah Hartz for carrying out skills-level formative assessment
and skills-level test design.

Second, I wanted to suggest one appealing, and I think, effective, approach for selecting
and carrying out psychometric research problems. This consists of selecting one’s research prob-
lems as motivated by important applied educational testing and assessment research challenges,
then bringing sophisticated probabilistic modeling and modern statistical thought to bear upon
the research problems selected, and last, making the effectiveness of the research in improving
educational measurement practice the ultimate criterion for judging its worth.

Third, I wanted to stress the great power and enjoyment that can result when a team of ded-
icated and talented researchers, as I have had the great privilege to be associated with regarding
the work described in this presidential paper, cooperatively and collegially attacks carefully se-
lected research problems in a determined manner. Of course, other examples of the team-oriented
approach to psychometric research exist: The L.L. Thurstone Laboratory under the direction of
David Thissen provides an excellent contemporary example of a group environment producing
important psychometric research (see Test Scoring, 2001, for a body of psychometric research
motivated by applied measurement problems and produced largely by members of the Thurstone
Lab).

Fourth, I wanted to stress that there is a major paradigmatic shift broadening the nature of
large scale educational testing and assessment that I personally believe has major implications
for future psychometric IRT research. That is, the summative assessment paradigm for testing is
being supplanted by a new blended summative assessment and formative assessment paradigm.
For those interested in catching this research train, it promises to be an exciting and eventful trip,
both because it is intellectually fascinating and challenging to psychometricians and statisticians
and because it is of great importance to the future of education and training. In this regard, ETS’s
pioneering Score Report Plus Report developed for the College Board’s PSAT Exam is truly the
tip-of-the-iceberg.
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